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Figure 1: A flame graph representation of a user-annotated nested region profile of the LULESH proxy application.

ABSTRACT
Performance analysis is critical for eliminating scalability bottle-
necks in parallel codes. There are many profiling tools that can
instrument codes and gather performance data. However, analyt-
ics and visualization tools that are general, easy to use, and pro-
grammable are limited. In this paper, we focus on the analytics
of structured profiling data, such as that obtained from calling
context trees or nested region timers in code. We present a set of
techniques and operations that build on the pandas data analysis
library to enable analysis of parallel profiles. We have implemented
these techniques in a Python-based library called Hatchet that al-
lows structured data to be filtered, aggregated, and pruned. Using
performance datasets obtained from profiling parallel codes, we
demonstrate performing common performance analysis tasks repro-
ducibly with a few lines of Hatchet code. Hatchet brings the power
of modern data science tools to bear on performance analysis.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software maintenance tools.
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1 MOTIVATION
Understanding performance bottlenecks is critical to optimizing the
performance of high performance computing (HPC) codes. Profiling
tools [3, 5, 12, 21, 25] allow developers to focus their optimization
efforts by pinpointing the parts within a code’s execution that con-
sume the most time. Without them, it would be extremely difficult
to find performance problems, especially in modern applications,
which can comprise millions of lines of code.

Attributing time to code can be tricky, and it requires a reason-
able understanding of the structure of the program. Most basic
profilers attribute time to functions or statements in the code. More
sophisticated profilers can record time spent in different call paths
or calling contexts. For example, the profiler would differentiate time
spent in MPI_Send when it is called in a hydrodynamics routine
from time spent in MPI_Send when it is called in a solver library.
Such profilers maintain a prefix tree of unique calling contexts.
Other profilers may attribute time to nodes in a static or dynamic
call graph, in which case time would be attributed to nodes in the
graph. So, code regions can be represented by a range of structures,
from simple, “flat” strings, to nodes in trees or graphs. Figure 1
shows an example of a simple tree, where each node (each box in
the flame graph) represents a code region annotated by the user.

Most profiling tools use their own unique format to store recorded
data, and they may display this data as text or with a tool-specific
viewer (typically a GUI). These tools are limited in the kinds of
analysis they support, and they do not enable the end user to pro-
grammatically analyze performance data. Most profile data viewers
provide a point-and-click-based workflow, with limited support
for saving or automating analysis. As such, analyzing performance
data can be very tedious, and using a new measurement tool of-
ten requires also using a new analysis tool to understand the data.
Moreover, most tools only support viewing one or two call graphs
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at a time. They are often insufficient for tasks like load balance
analysis that require detailed averaging and clustering across ranks,
threads, and time. They also lack general capabilities for effectively
sub-selecting and focusing on specific parts of larger datasets.

Growing interest in data science has led to the availability of
many fully-featured data analysis environments. Python and R in
particular support DataFrames that blend features of traditional nu-
merical computing environments such as MATLAB with database-
derived features such as indexed queries, joins, and aggregations.
Numerous plotting libraries and visualization tools are available
to view data in these environments, all with programmable APIs.
In addition, data analysis tools have more features, and are better
maintained by open-source software communities than tool GUIs.
While these environments can handle numerical and temporal in-
dices with ease, they cannot handle structured datasets, such as
profiles that are indexed by nodes in a tree or a graph.

This paper presents a set of techniques that allow modern data
analysis libraries to be leveraged for parallel profile analysis. We
have developed a canonical data model that can read, represent,
and index the data generated by most profiling tools. We call this
data model a structured index. We have developed techniques for
selecting, filtering, and aggregating datasets with structured indices,
and we have generalized these techniques for datasets that have
hybrid indices over code, processes, threads, and time. Finally, we
have implemented these techniques in a library that we call Hatchet,
which builds on the popular pandas data analysis library [15, 16].

This paper makes the following contributions:
• A canonical data model that enables different types of profile
data (e.g., HPCToolkit, Caliper, callgrind, gprof, perf) to be
represented and analyzed in a common way;

• an indexing technique that allows structured graph or tree
nodes to be used and queried as a DataFrame index;

• operators that allow structured data to be filtered, aggregated,
and pruned to produce API-centric sub-profiles; and

• an implementation of these techniques in the Hatchet li-
brary that enables users to leverage modern data analysis
approaches for analyzing large-scale call path profiling data.

Using performance datasets derived from running HPC codes,
we also present several case studies that demonstrate performing
common performance analysis tasks reproducibly with only a few
lines of Hatchet code. Examples include: 1) identifying regions or
callsites with the most load imbalance across MPI processes or
threads; 2) filtering datasets by a metric or library/function names
to focus on subsets of data; and 3) easily handling and analyzing
multi-rank, profile data from multiple executions. We expect that
Hatchet will make analysis of HPC performance data quicker, easier,
and more reproducible.

2 BACKGROUND
Wedefine the different kinds of structured profiles output by various
profiling tools (in particular HPCToolkit and Caliper), and provide
a brief background on the pandas data analysis library.

2.1 Structured Performance Data
Profiles can be collected either through sampling or through direct
instrumentation. In a directly instrumented program, measurement

code is typically inserted with a compilation tool, and data is col-
lected at each instrumentation point. Sampled profilers instead
periodically force an interrupt while a program runs, and data is
collected at each interrupt. In either scenario, the collected data
contains two types of information: contextual information, i.e., the
current line of code, file name, the call path, the process ID, etc.; and
performance metrics, such as the number of floating point operations
or branch misses that occurred since the last sample. Depending on
how these samples are aggregated, different types of profiles can
be generated.

Calling Context Trees (CCT): Callpath profilers analyze the stack
at runtime to determine the full calling context of each sample.
Calling contexts, or call paths, refer to the sequence of function
invocations that led to the sampled one. Each stack frame becomes
a node in the CCT, and the path from the root of the tree to a given
node represents the call path, or calling context, that led to the leaf
invocation. A calling context tree (CCT) is a prefix tree of call paths.
CCTs allow analysts to understand differences in function behavior
that depend on how the function was called.

Call Graphs: Call graph profiles [7] do not perform the stack analy-
sis required to generate CCTs; they attribute data only to the name
of each function called. Edges in the call graph represent static
calling relationships (i.e., that one function is called by another), av-
eraged across all invocations regardless of origin. Samples can also
be aggregated at the granularity of user-annotated regions, which
can produce an even coarser tree or graph than call graphs. Call
graphs are a more concise, (and sometimes clearer) representation
than a CCT but they discard all context information.

The most insightful representation of a given performance pro-
file depends on the problem being analyzed. Hatchet’s data model
is designed to handle structured profiling data generated at vari-
ous granularities from different file formats. To motivate this, we
provide a brief overview of two profiling tools in the next section.

2.2 Call Path Profilers
HPCToolkit: HPCToolkit [3] provides a suite of performance
tools enabling measurement, analysis, correlation, and visualization.
When asynchronous or synchronous events occur in the applica-
tion, HPCToolkit records the full calling context as a CCT. With
this data structure, a unique call path for a given node corresponds
to the path from that node to the root. In HPCToolkit, a CCT node
is not limited to function invocations only, but can also record
loops, statements, and other code structures. Moreover, for parallel
programs, HPCToolkit records the metrics per process and thread
for every node in a unified CCT. The database generated by HPC-
Toolkit’s hpcprof-mpi utility is derived by modifying the CCT to
include the node ID and timestamp. Since there can be multiple
processes in a parallel run, hpcprof-mpi outputs the unified tree
in XML format as well as separate binary files for each process that
contain the metrics for all the nodes in the CCT.

Caliper: Caliper [5] provides a general abstraction layer for ap-
plication performance introspection. Application developers can
use Caliper’s annotation APIs to collect performance information.
It has a flexible data aggregation model [4] designed to handle a
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wide variety of information that can be analyzed offline or in situ.
At runtime, Caliper builds a generalized context tree consisting of
attributes representing data elements. The context information for
any given node can be derived by collecting all attributes on the
path between the node and the root node. User annotations in the
code or enabling the call path service in Caliper can generate a
structured profile or CCT. Caliper supports JSON output formats
that can be generated by either running cali-query on the raw
Caliper samples or by enabling the mpireport service.

2.3 Pandas and DataFrames
Pandas: pandas is an open-source Python library providing data
structures and tools for data analysis [15, 16]. It is built on top of
NumPy and is well-suited for various kinds of data including tabular
and statistical datasets. Pandas provides two main data structures:
Series and DataFrame.

Series: A Series is a one-dimensional, homogeneously-typed array
that has an associated index. Unlike a traditional array, the index
need not be numerical; a Series can be indexed by any ordered,
comparable data type. In this sense a Series in pandas is somewhat
like a sorted dictionary or hashtable, as it allows fast lookup by
non-numerical values.

DataFrame: A DataFrame is a two-dimensional tabular structure
with potentially heterogeneously-typed columns. Each column in a
DataFrame can be thought of as its own Series, and certain columns
can be made the index of the DataFrame. Columns have titles, or
labels that can be used to retrieve their corresponding Series, and
the values in index columns can be thought of as keys for fast
lookup of rows in the DataFrame. DataFrames with like indices can
thus be aligned and compared. In addition to indexing, DataFrames
support a wide range of functionality borrowed from the world
of spreadsheets and SQL databases: operations to handle missing
data, slicing, fancy indexing, subsetting, inserting and deleting
columns, merging datasets, aggregating or grouping data, etc. Most
importantly, multi-indexing a DataFrame provides an intuitive way
of working with high-dimensional data in a two-dimensional data
structure.

MultiIndex: pandas allows designating multiple columns in a
DataFrame to be a composite MultiIndex. This enables users to
easily store and manipulate data with an arbitrary number of di-
mensions. For example, in parallel performance analysis, we may
want to index data not only by a calling context or other structured
code identifier, but also by MPI rank, node hostname, or thread
id. Pandas makes this natural; we can easily add data from addi-
tional levels of parallelism by adding additional index columns to a
MultiIndex.

3 THE HATCHET LIBRARY
We have created Hatchet, a Python library that builds on top of
pandas so that it can deal with structured profiling data such as
calling context trees (CCTs) and call graphs. As mentioned in the
previous section, pandas provides easy ways to manipulate data in
Series and DataFrames, and it has support for arbitrary-dimensional
indexes through MultiIndexes. However, pandas cannot handle

structured datasets such as profiles that refer to source code, and
are indexed by nodes in a tree or a graph. Pandas by default handles
indexes of numbers, text, or dates, but these are all essentially linear
data spaces. Call trees and call graphs have nonlinear node and edge
structures, and we want to be able to preserve the ability to reason
about graph- and tree-based relationships like parent, ancestor,
and child. To overcome this, Hatchet provides data structures that
enable indexing rows of a DataFrame by nodes in the graph.

3.1 Structured Indexes
We have developed a canonical data model that can represent and
index the data generated by most profiling tools. We call this data
model a structured index. This index enables nodes in a structured
graph or tree to be used as a DataFrame index. There can bemultiple
types of nodes, such as procedure/function nodes, loop nodes (rep-
resenting loop structures), and statement nodes (leaf-level nodes).

Hatchet’s structured index is, at the most basic level, an in-
memory graph. The structure of the graph is shown in Figure 2.
This particular graph happens to be a tree, but Hatchet can support
both call graphs and call trees. In the example graph, a function A
calls a function B and a function C, and B contains a loop nest, D.
These code structures span two libraries, or “modules”, libfoo.so
and libbar.so.

Frame: { function: ‘A’,
             module: ‘libfoo.so’ }

Node 1 (key: 0xAB8FE4)

Frame: { function: ‘B’,
             module: ‘libbar.so’ }

Node 2 (key: 0xCF13E4)

Frame: { function: ‘C’,
             module: ‘libfoo.so’ }

Node 3 (key: 0xFCD51A)

Frame: { loop: ‘D’,
             module: ‘libbar.so’ }

Node 4 (key: 0x4E4CBA)

Figure 2: Hatchet’s graph object, showing nodes and Frames.

3.1.1 Generic Frames. Each node in Hatchet’s graph contains a
generic identifier for the code construct it represents. We call this
identifier a Frame (after a call frame). Frames are generated by data
sources such as file readers; they contain a set of key/value pairs
that describe the source code the node represents. Depending on
the type and amount of data the reader provides, this may be as
simple as a function name or region name. It may also be more
complex, including file and line number, code module, or other data
from the particular input tool. Frames support basic comparison
operations, such as ==, >, <, etc., which are evaluated based on
the names and values of component fields. If two Frames do not
have completely identical keys and values, they are not considered
equal. The key design point here is that there is not a rigid schema
for the Frames; they are generic and can be generated by each data
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source according to its granularity. Hatchet attempts to regularize
the names of fields as much as possible over different sources to
enable comparison of data across measurement tools, but this is
not a requirement.

3.1.2 Nodes. Frames are associated with nodes in the Hatchet
graph, and node objects define connectivity and structure of the
Hatchet model. Each node knows its children and its ancestors in
the graph, and each node has a unique key. The key is not meant to
be accessed by Hatchet users. Rather, like Frames, Hatchet nodes
expose their own comparison operations (==, >, <, etc.), which
opaquely operate on this key. This means that we can insert Node
objects directly into a pandas DataFrame column and make it an
index. By default, we use the Python id() function for the node
key. This is equivalent, roughly, to C’s & operator, in that it returns
an integer representing the address of the Python object in memory.
We require only that the node key be unique for each node. We
can optionally use keys that provide certain useful orderings (like
pre-order, post-order, etc.), if we want to pay the cost of a graph
traversal (or sort) to generate more structured keys. We default to
only guaranteeing uniqueness and not order in our keys.

3.2 GraphFrame
The central data structure in the Hatchet library is a GraphFrame,
which combines the structured indexGraphwith a pandasDataFrame.
Figure 3 shows the two objects in a GraphFrame – a graph object
(the index), and a DataFrame object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: InHatchet, theGraphFrame consists of a graph and
a DataFrame object.

Because of the way we have architected the structured index
Graph, we can insert Node objects directly into the pandasDataFrame.
The nodes are sorted using their basic comparison operators, which
operate on their key attribute. Thus, the first column in theDataFrame
(the node) is the index column. As a convenience, we may also add
columns (like name) based on attributes from each node’s Frame.
For example, in the figure, we have added the name and nid columns
from the Frame subclass for HPCToolkit. This allows us to use reg-
ular pandas operations (selection, filtering) on these values directly.
As we will see later, the node column itself also allows various
graph-semantic functions to be used, as well. Finally, in addition to
the identifying information for each node, we also add columns for
each associated performance metric (inclusive and exclusive time
in the figure).

Graphs vs. Trees: Hatchet stores the structure (typically a prefix
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on a
tree can create edges or merge nodes, turning the tree into a graph.
Additionally, output from tools such as callgrind is already in the
form of a DAG. Hatchet’s directed graph could be connected or
have multiple disconnected components. Each entity in the graph,
such as a callsite, procedure frame, or function, is stored as a node
and the caller-callee relationships are stored as directed edges. Each
node in the graph can have one or multiple parents and children.

Benefits of DataFrames: We use a pandas DataFrame to store
all the numerical and categorical data associated with each node.
Profile data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or per-thread. In such cases, each
node in the call tree or graph has metrics per-MPI process and/or
thread and this data needs to be stored and indexed hierarchically.
To index the rows of the data frame in such cases, a MultiIndex
consisting of the structured index for the node and MPI rank or
thread ID is used. In the most general case, a row in the data frame
is indexed by a process and/or thread ID (and any other needed
identifiers in even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the DataFrame. The risk this poses in our API
is that client code can extract a subset of a DataFrame and hand
it off to other client code, which then modifies the graph index
nodes directly and corrupts all DataFrames that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The GraphFrame API is responsible for ensuring that
operations between any two GraphFrames use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the new
GraphFrame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
DataFrame together.

One further consequence of our index model is that to use two
DataFrames together, we require that their graphs be unified. That
is, that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that theymust be in the same graph for
comparison to make sense. We accomplish this by traversing the
graphs and computing their union according to their connectivity
and Frame values (described further in the API section). Incidentally,
this type of restriction is not unusual in pandas, where comparing
two data frames frequently requires reconciling their indexes, as
well. We abstract the details of these graph operations in Hatchet
through the GraphFrame API, which determines when and how
GraphFrames should be unified.

3.4 Reading a CCT Dataset
With all of these components, the structured index Graph models
the edge relationships between nodes in the structured data, and
a DataFrame stores the numerical (performance metrics such as
time, performance counter data, etc.) and categorical data (e.g., load
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module, file, line number) associated with each node. The generality
of what can be stored in a pandas DataFrame enables Hatchet to
store almost any kind of contextual information recorded during
sampling by diverse profiling tools.

Hatchet provides readers for several input formats to support
data collected by popular profiling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also JSON files generated by Caliper. In addi-
tion, one can provide structured data in the Graphviz DOT format,
or simple dictionary and list literals in Python.

Most profiling tools that generate CCTs have two kinds of in-
formation in their output, often separated into different parts of
a file or different files. The first information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON file. The second piece of
information is the performance metrics attached to each node –
available in metric-db files in HPCToolkit data and in the data
section of a Caliper JSON file. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the GraphFrame and the performance metrics are
used to construct the DataFrame object. As the readers construct
these two objects, they also make connects between the graph and
DataFrame objects using the structured index.

4 THE HATCHET API
We now describe some of the operators provided by the Hatchet
API that allow structured data to be manipulated in different ways:
filtered, aggregated, pruned, etc. Even though all of the operations
below are performed on the GraphFrame, some only modify the
DataFrame, some only modify the graph, and others modify both.
They are categorized accordingly in the following sections. Note
that we consider a graph to be immutable, so any operations that
lead to changes in the graph structure will create a new graph and
return a new GraphFrame indexed by the new graph’s nodes.

4.1 DataFrame Operations

filter: Filter takes a user-supplied function and applies that to all
rows in the DataFrame. The resulting Series or DataFrame is used to
filter the DataFrame to only return rows that are true. The returned
GraphFrame preserves the original graph provided as input to the
filter operation. Figure 4 shows a DataFrame before and after a filter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

Filter is one of the operations that leads to the graph object and
DataFrame object becoming inconsistent. After a filter operation,
there are nodes in the graph that do not return any rows when
used to index into the DataFrame. Typically, the user will perform
a squash on the GraphFrame after a filter operation to make the
graph and DataFrame objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the DataFrame, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation

1 gf = GraphFrame( ... )
2 filtered_gf = gf.filter(lambda x: x['time'] > 10.0)

Figure 4: TheDataFrame before (left) and after (right) a filter
operation on the time column.

main

physics solvers

mpi

psm2

hypre mpi

psm2

main

physics hypre psm2

psm2

main

psm2

1 filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
2 squashed_gf = filtered_gf.squash ()
3

4 filtered_gf = gf.filter(
5 lambda x: x['name'] in ("main", "psm2"))
6 squashed_gf = filtered_gf.squash ()

Figure 5: A graph before (left) and after two squashes (mid-
dle, right) on the GraphFrame.

function. Essentially, this performs a groupby and aggregate op-
eration on the DataFrame. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modified), all the columns in the
DataFrame that store inclusive values of a metric become inac-
curate. This function performs a post-order traversal of the graph
to update all columns that store inclusive metrics in the DataFrame
for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a filter operation on the DataFrame. As shown in Figure 5,
the squash on line 2 removes nodes from the graph that were
previously removed from the DataFrame due to a filter operation.
When one or more nodes on a path are removed from the graph, the
nearest remaining ancestor is connected by an edge to the nearest
remaining child on the path. All call paths in the graph are re-wired
in this manner.
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In some cases, a squash may need to merge nodes. The filter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a unified
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the unified
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied first to create a unified graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are unified, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

main

physics solvers

mpi

psm2

hypre mpi

psm2

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )
2 gf2 = GraphFrame( ... )
3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise difference between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modifies one of the GraphFrames in place in the case
of the in-place subtraction (− =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by flame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the flame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and flame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in
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Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and flame graph
(bottom).

Hatchet when using increasingly large datasets. We ran LULESH
to generate Caliper profiles on 1 to 512 cores. LULESH requires a
cubed number of processes. Hatchet was run on a relatively slow
macOS laptop (1.8 GHz Intel Core i5). In the plot, file read is the
time to read the input dataset into memory and convert it into the
Hatchet data representation (graph and DataFrame). drop index
represents the drop_index_levels operation, which we use to
aggregate the per process information. If we apply a filter after
dropping the second index (MPI rank), the filter operation takes
a constant amount of time (∼ 0.2 seconds). Hence, in the plot, the
time shown for filter is measured for the case when filter is done
without aggregating the per-process information. We see that the
time increases linearly with the increase in the size of the dataset
(both axes have a logarithmic scale).

Hatchet only adds a modest amount of code on top of the pandas
library. Currently, the Hatchet code is nearly 2,400 lines of Python
(obtained using sloccount [26]). We expect it to grow modestly as
we add more readers and operations to it.

6 CASE STUDIES
In this section, we present several case studies demonstrating how
common performance analyses can be executed in an automated
manner using the Hatchet API and a few lines of Python code. The
first set of case studies analyze single execution profiles for two
scientific proxy applications, while the second set of case studies
compare profiles from multiple executions.

6.1 Experimental Setup
We performed our single- and multi-node experiments on the
Quartz supercomputer at Lawrence Livermore National Laboratory
(LLNL). Each node of Quartz contains two Intel Broadwell proces-
sors with 36 cores per node. Our case studies used two scientific
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Figure 8: Performance overheads for different operations in
Hatchet shown on a logarithmic scale.file read is the time to
convert the data into the Hatchet representation, drop index
and filter are the time to complete the drop_index_levels
and filter operations, respectively.

proxy applications. LULESH [1] is a Lagrangian shock hydrodynam-
ics mini-application that solves a Sedov blast problem. For these
case studies, we instrumented the LULESH code with Caliper anno-
tations to collect performancemetrics in Caliper’s split JSON format.
The second proxy application we used was Kripke [2, 13], which
simulates neutron transport. We used HPCToolkit to generate the
execution profiles of Kripke.

6.2 Analyzing a Single Execution Profile
Analyzing the profiling output from a single application execution
is a fairly common performance analysis task. Typically, end users
or performance researchers profile their code on a platform using
a number of processes where they expect or have witnessed a
performance degradation, and then analyze the output of such
profiling. One of the most common tasks is to pin-point the regions
of code or functions where the code spends most of its time. This
is traditionally called a flat profile because the calling context is
lost and we just get a flat view of functions or statements or code
regions.

Flat profiles: Flat profiles can be easily generated in Hatchet using
the groupby functionality in pandas. The flat profile can be based
on any categorical column (e.g., function name, load module, file
name). Similar to the sort feature in perf, the flat profile groups
the nodes by the specified categorical column. Figure 9 shows the
code to generate a flat profile by applying a groupby operation on
the DataFrame object. The data read into Hatchet was generated
by profiling 20 time steps of Kripke using HPCToolkit. We can
transform the CCT generated by HPCToolkit into a flat profile by
specifying the column on which to apply the groupby operation
and the function to use for aggregation. In this case, we use sum to
get the total time spent in each function.

Load imbalance: When program developers run their code on a
large number of MPI processes, load imbalance across processes
is often a scaling bottleneck. Hatchet makes it extremely easy to
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1 gf = GraphFrame.from_hpctoolkit('kripke ')
2

3 grouped = gf.dataframe.groupby('name').sum() # replace 'name' with 'module ' or 'file'

Figure 9: Generating a flat profile in Hatchet using the groupby functionality of pandas. Traditional tools create a flat profile
based on functionnames or callsite labels. InHatchet, you can choose any categorical column to group by: name of the function
(left figure), load module (middle figure), or file (right figure).

study load imbalance across processes or threads at the per-node
granularity (call site or function level). A typical metric to measure
imbalance is to look at the ratio of the maximum and average time
spent in a code region across all processes. If the maximum-to-
average ratio is high, it represents heavy imbalance. On the other
hand, if the ratio is close to one, that signifies a well-balanced code.

Figure 10 shows the code for calculating an imbalance metric in
an execution profile. We perform a drop_index_levels operation
on the GraphFrame in two different ways: by providing mean as
a function in one case and max as the function to another copy of
the DataFrame. This generates two DataFrames, one containing
the average time spent in each node, and the other containing the
maximum time spent in each node by any process. If we divide
the corresponding columns of the two DataFrames and look at the
nodes with the highest value of the max-to-average ratio, we have
located the nodes with highest imbalance. The figure shows all the
nodes in LULESH with an imbalance greater than 2.0.

6.3 Comparing Execution Profiles
Another important task in parallel performance analysis is com-
paring the performance of an application on two different thread
counts or process counts. This typically entails generating two sets
of profiles on the different process counts in question and then com-
paring them in a GUI. Most tool GUIs do not provide automated
ways to compare multiple datasets. As a result, in most cases the
user manually goes over the two datasets in two instances of the
tool to look for areas of the tree or graph where the performance
looks different. This can be extremely cumbersome, inefficient and
in many cases, ineffective. The filter, squash and subtract opera-
tions provided by the Hatchet API can be extremely powerful in
comparing profiling datasets from two executions.

On-node scaling: In the first example, we ran LULESH in two
modes: on a single core of a node and using 27 cores on a node. We
generated profiles for the two executions and we wanted to identify

1 gf1 = GraphFrame.from_caliper('lulesh -512 cores')
2 gf2 = gf1.copy()
3

4 gf1.drop_index_levels(function=np.mean)
5 gf2.drop_index_levels(function=np.max)
6

7 gf1.dataframe['imbalance ']
8 = gf2.dataframe['time'].div(gf1.dataframe['time'])

Figure 10: Load imbalance within a single execution is de-
rived by calculating themean andmaximumvalues of amet-
ric at each node across all MPI processes or threads and then
dividing the two values for each node.

themost important code regions in LULESHwith respect to increase
in time as one scales on node. Figure 11 presents the code to do such
analysis.We read in the two profiles into two different GraphFrames
and do a subtract (after dropping the additional index level using
a mean function). The GraphFrame returned by the subtraction
shows the nodes that have the largest increase in execution time.
Although the nodes with the largest absolute time in the two cases
is CalcHourglassControlforElems, the largest increase in time
between the two executions happens on the TimeIncrement node
(time shown in red in the right graph visualization).

Note that we do not need to visualize the graph to find the nodes
with bottlenecks, especially when the graphs are very large. We
can analyze the DataFrame of the GraphFrame returned by the
subtract operation. Each column in the new DataFrame contains
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1 gf1 = GraphFrame.from_caliper('lulesh -1core.json
')

2 gf2 = GraphFrame.from_caliper('lulesh -27 cores.
json')

3

4 gf2.drop_index_levels ()
5

6 gf3 = gf2 - gf1

Figure 11: The subtract operation in Hatchet enables comparing execution profiles. In this figure, the left graph is subtracted
from the middle graph to obtain the right graph. When we sort the nodes in the right graph by time, we can easily identify
the biggest offenders.

1 gf1 = GraphFrame.from_caliper('lulesh -27 cores')
2 gf2 = GraphFrame.from_caliper('lulesh -512 cores')
3

4 filtered_gf1
5 = gf1.filter(lambda x: x['name']. startswith('MPI'))
6 filtered_gf2
7 = gf2.filter(lambda x: x['name']. startswith('MPI'))
8

9 squashed_gf1 = filtered_gf1.squash ()
10 squashed_gf2 = filtered_gf2.squash ()
11

12 diff_gf = squashed_gf2 - squashed_gf1

Figure 12: Hatchet makes it easy to extract the calls in a particular library, MPI for example, using the filter operation, and
then to compare the extracted sub-graphs using the subtract operation. In the example above, we can easily identify which
specific MPI_Send calls take more time when we scale from 27 to 512 cores.

the results of row-wise subtraction of the two input DataFrames.
Sorting the columns in the new DataFrame by decreasing time can
quickly identify the most problematic nodes.

Multi-node scaling: In a similar scenario, a user might be inter-
ested in comparing two executions that use a different number of
MPI processes. Let’s say that the user is interested in finding the
difference in times spent in different MPI routines by call site. We
can do this also using the Hatchet API and a few lines of code.

Figure 12 shows the code for this analysis. We read in the two
datasets of LULESH, and filter them both on the name column by
matching the names against ˆMPI. After the filtering operation,
we squash the DataFrames to generate GraphFrames that just con-
tain the MPI calls from the original datasets. We can now subtract

the squashed datasets to identify the biggest offenders. In the fig-
ure, we observe that as we scale from 27 to 512 cores, the largest
time increase is in MPI_Allreduce. As we can see, the graph and
DataFrame objects in Hatchet and the powerful pandas API can
help in simplifying complex performance analysis tasks, which
would have possibly taken many man-hours in another tool.

Finally, we demonstrate the use of Hatchet for comparing several
datasets to study the weak scaling behavior of an application. We
ran LULESH from 1 to 512 cores on third powers of some numbers
(a requirement of the application). We read in all the datasets into
Hatchet, and for each dataset, we use a few lines of code to filter
the regions where the code spends most of the time. We then use
the pandas’ pivot and plot operations to generate a stacked bar
chart that shows how the time spent in different regions of LULESH
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1 datasets = glob.glob('lulesh *.json')
2 datasets.sort()
3

4 dataframes = []
5 for dataset in datasets:
6 gf = GraphFrame.from_caliper(dataset)
7 gf.drop_index_levels ()
8

9 num_pes = re.match('(.*) -(\d+)(.*)', dataset).group (2)
10 gf.dataframe['pes'] = num_pes
11 filtered_gf = gf.filter(lambda x: x['time'] > 1e6)
12 dataframes.append(filtered_gf.dataframe)
13

14 result = pd.concat(dataframes)
15 pivot_df = result.pivot(index='pes', columns='name', values

='time')
16 pivot_df.loc[:,:]. plot.bar(stacked=True , figsize =(10 ,7))

Figure 13: We read in eight LULESH caliper datasets and create a GraphFrame for each. We then filter the datasets to focus on
the most time-consuming regions. For plotting, we concatenate all the DataFrames into one while storing a key that identifies
the number of processes, and then use pivot to rearrange the data in a format more suitable for pandas’ plot function. The
resulting stacked bar chart is shown on the right.

changes as the code scales (Figure 13). This case study demonstrates
the combined potential of Hatchet and pandas in making data
analytics quick and convenient for the HPC user. We believe no
other performance tool provides the functionality to generate such
information without significant time and effort.

7 RELATEDWORK
There are many profilers that can display call path or call graph
profiles. Tools like Caliper [5], Open|SpeedShop [25], TAU [21],
Score-P [12], and HPCToolkit [3] can all gather fine-grained execu-
tion profiles for post-mortem performance analysis. CallFlow [18],
hpcviewer [17] in HPCToolkit, TAU, and flame graphs [9] are visual-
ization tools specifically for CCTs. All of these tools have their own
format for storing the collected data, and all but Caliper and flame
graphs provide a custom GUI for viewing call path profiles. Some,
like TAU, can import data from other tools, but none of them offer
a programmable interface for dealing with raw, structured profile
data from parallel runs. Users must point and click to analyze the
data, which can be time consuming and inflexible for large datasets
or custom analyses.

Many performance tools provide facilities to store performance
data in a database and to applymachine learning and other data anal-
ysis tools to it. PerfExplorer [11] provides a database, a GUI analysis
environment, and the PerfDMF [10] data format. Open|SpeedShop
has an internal SQL database used by the GUI to load parts of perfor-
mance datasets. However, all of these tools predate the populariza-
tion of data analysis frameworks like R [19] and pandas [15, 16], and
they do not provide rich APIs for manipulating data. TauDB, part of
PerfDMF, provides language bindings for exploring datasets, but it
does not provide the in-memory query or aggregation capabilities
that modern frameworks have. All “queries” in these tools must
be written in SQL, with a fixed schema, and handed off directly
to the backend database. There is no in-memory DataFrame or ab-
straction layer as we have leveraged in Hatchet. The closest related
work to Hatchet is likely differential profiling. Early work [14, 20]
showed the utility of subtracting similar or scaled call trees to

pinpoint performance issues. This work was improved upon by
techniques for scaling analysis implemented in HPCToolkit [23, 24].
HPCToolkit provides facilities for calculating derived expressions
from performance metrics on call trees within the GUI, and this
can be used to scale and subtract columns in the hpcviewer GUI.
However, the usage model is cell-based like a spreadsheet; it is not
fully programmable or easily integrated with other frameworks.

Likely the most scalable existing call path visualizer is HPCTrace-
Viewer [22], which provides visualizations of call paths over time,
MPI ranks, and threads in parallel codes. This tool and Libra [6]
are the closest analogs to the per-MPI-rank analyses in this paper.
Again, though, these are GUI tools and they do not provide the
flexibility to easily script new analyses or to easily query, filter,
aggregate, and squash profile data in an indexed DataFrame as
Hatchet does. Typically, the available analyses are manually se-
lected through drop down menus or some other user-interface, and
there is limited flexibility for customization.

With Hatchet, we provide a common data model for representing
structured profiles from today’s HPC tools. We provide a means to
index a DataFrame by structured attributes, such as nodes in a call
tree or call graph, andHatchet builds on thewidely used pandas data
analysis framework, and all of the plotting and analysis libraries
that can be used with it. Hatchet is not a closed-universe tool; it
provides a canonical representation of profile data and can read
data from many existing tools. If Hatchet users need to analyze data
from a new measurement tool, they can do so without modifying
their analysis scripts, and without learning a new format, new API,
or new GUI. We advocate the use of existing measurement tools
with Hatchet for analysis, in order to achieve more automated,
reproducible results.

8 CONCLUSION
Analyzing performance and connecting performance degradation
to parts of the code is important to guide application developers in
their performance optimization efforts. Large parallel applications
with tens to thousands of lines of codes are difficult to analyze.
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Additionally, performance profiles of such applications can have
hundreds of thousands of call sites or nodes in a dynamic exe-
cution profile. Most existing tools fall short in allowing users to
programmatically analyze performance data.

In this paper, we presented Hatchet, a Python-based library
leveraging the powerful API of data analysis tools, such as pandas
to analyze structured profiling data. Since pandas does not support
structured data indexed by nodes in a graph, Hatchet provides a
hierarchical index to support indexing DataFrame rows by nodes
in the graph. Hatchet provides a canonical data model that enables
representing and analyzing different types of performance data.

Leveraging many DataFrame operations and adding its own,
Hatchet simplifies many common performance analysis tasks on
structured profiling data. Using case studies, we demonstrated that
Hatchet provides an easy way to perform many complex tasks on
parallel profiles by writing a few lines of code. These tasks include,
1) identifying regions or call sites with the most load imbalance
across MPI processes or threads, 2) filtering datasets by a metric
or library/function names to focus on subsets of data; and 3) eas-
ily handling and analyzing multi-rank, profile data from multiple
executions. We expect that Hatchet will make HPC performance
analysis quicker, easier, and more effective.

In the future, we plan to add a query language for the Hatchet
user to specify expressions for filtering a graph. The user should be
able to specify for example, select all the nodes whose load module
is X and a descendant is an MPI routine. We believe that with a
language to specify different ways to dissect and prune graphs and
trees, Hatchet could become even more powerful in the terms of
the kinds of analyses it can support.
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