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Abstract—Compute nodes on high performance computing
(HPC) platforms are increasingly equipped with multiple GPUs.
This results in increased computational capacity per node, and
reduction in the total number of nodes or endpoints in the system.
This trend changes the computation and communication balance
in comparison to pre-GPU era HPC platforms, which warrants
a new study of hardware architectural parameters. In this work,
we leverage the end-to-end system simulation capabilities of
TraceR-CODES and study the impact of several hardware design
parameters on the performance of realistic HPC workloads. We
focus on three crucial hardware parameters: (1) number of GPUs
per node, (2) network link bandwidth, and (3) network interface
controller (NIC) scheduling policies, in the context of two popular
network topologies – fat-tree and dragonfly.

Index Terms—interconnect, GPUs per node, dragonfly, fat-tree

I. INTRODUCTION

Large-scale systems that are expected to deliver over 1
Exaflop/s of sustained performance are being built. Unlike the
systems that dominated the HPC industry a decade ago, most
of the current and next-generation systems have a relatively
modest number of nodes. For example, Sequoia at LLNL [1],
the 2012 fastest supercomputer in the Top500 list, deployed
96K nodes to provide 20 Petaflop/s of peak performance
while Summit at ORNL [2], one of the fastest supercom-
puters in June 2020, has only ∼4600 nodes but delivers 200
Petaflop/s of peak performance. Despite having fewer nodes,
the communication performance that applications can obtain
on a system continues to have a major impact on its overall
performance [3].

The driving force behind the reduction in the number of
nodes is compute acceleration devices such as GPUs [4]. For
example, an NVIDIA Volta V100 can perform 7 Teraflop/s
worth of double-precision computation in comparison to 200
Gigaflop/s for a Blue Gene/Q node. However, such a signifi-
cant computing capability increase has not been matched by a
similar increase in network capability. Further, the deployment
of multiple acceleration devices per node has also contributed
to a lower network bandwidth to flop/s ratio. Hence, even
though communication requirements typically grow slower
than computation requirements (e.g. as the growth of surface
area versus volume), it is important to identify the best way to

use the available communication capability as well the ideal
computation/communication capability balance.

In this work, we use end-to-end system simulations to
explore the performance impact of various hardware design
and parameter choices for GPU-based systems. To drive the
simulations, we instrument and trace representative appli-
cations using Score-P [5]. Information such as the amount
of time spent in computation, communication patterns, and
program flow is extracted from these captures. Based on
these applications, realistic multi-job workloads are built and
simulated using TraceR-CODES [6], [7], a scalable simulation
framework for predicting application performance on HPC
systems.

The key question we seek to answer is: does a system with
fewer nodes each with more computing capability perform bet-
ter than a system with more nodes each with lesser computing
capability? To explore this space, our simulations compare
the performance of the same traces of multi-job workloads on
different systems that represent different compute capability
per network endpoint.

Next, we evaluate the relationship between the available
network bandwidth and overall application and workload per-
formance. Specifically, we perform a sensitivity study of the
overall performance with respect to a decrease or increase in
the available network bandwidth. We hope that this study of
variation in network bandwidth combined with the changing
compute capability per node will guide us toward the optimal
computation/communication capability ratio.

Finally, we explore the impact of message scheduling on
performance. Multiple processes or control flows exist on the
node and compete for scarce network resources. The message
scheduling scheme that decides the distribution of injection
and network bandwidth for each control flow can play an im-
portant role in determining the progress made in the individual
control flows. At the same time, this scheme determines the
skew of traffic load on the network and can affect the network
communication performance. Hence, exploration of this design
choice can help improve communication performance.

For all of the above studies, we have used two network
topologies: fat-tree and dragonfly [8]. We chose these two
topologies because of their prevalence in HPC. The fat-
tree topology [9]–[11] is used in several large HPC systems
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currently in use, e.g. Sierra at Lawrence Livermore National
Laboratory (LLNL) [12] and Summit at Oak Ridge National
Laboratory [2]. Similarly, the dragonfly topology is used in
several existing as well as upcoming systems, e.g. Cori at
NERSC [13], Theta at ANL [14].

The primary contributions of this work are:
• We conduct cross-platform and cross-network validation

of the TraceR-CODES simulation work for multi-job
workloads.

• We analyze the impact of the increase of per node
computational capacity and the reduction of network
endpoints on the performance of multi-job workloads.

• We quantify the impact of increasing network bandwidth
for various compute capability equivalent systems.

• We also study the impact of changing the NIC-scheduling
at the network endpoints for these systems.

II. BACKGROUND

The simulation framework that we use in this study is
TraceR-CODES [6], [7]. TraceR-CODES is a trace replaying
simulator that uses ROSS’s parallel event-driven simulator
[15] underneath for network simulation. TraceR-CODES re-
plays control and communication flow present in MPI appli-
cation traces in the Open Trace Format 2 (OTF2) [16]. It can
replay workloads that consist of multiple jobs in the system.
TraceR-CODES supports unique features including:

• Ability to simulate multiple jobs differing in size, type,
and location simultaneously.

• Computation scaling: the computation proportion of an
application can be decreased or increased.

• Task mapping: the application processes can be mapped
to specific compute nodes in the system.

• Ability to specify the number of iterations for the trace
loop of an application.

Figure 1 shows the workflow of simulating a multi-job
workload in TraceR-CODES. We first collect traces of appli-
cations with different job sizes using Score-P [5]. A multi-job
workload is created from the applications of different sizes.
To replay a multi-job workload on a specific interconnection
network, TraceR-CODES takes as inputs, (1) the workload
configuration that includes the job size for each job in the
workload, the job mapping, and job iteration count, and (2)
the network configuration that specifies the interconnection
network parameters such as topology, bandwidth, and routing.
Based on the workload and network configurations, TraceR-
CODES replays the traces of the applications in the workload
on the system with the specified interconnection network and
reports the execution time of each job in the workload.

III. MODIFICATIONS TO TRACER-CODES

Although TraceR-CODES is powerful, it does not support
all functions required by our study. We added a new graph-
based network model to CODES, which gives us the flexibility
to perform simulations on realistic fat-tree networks. We
also added message scheduling mechanisms that are used in
this study. Further, we modified the Tracer-CODES simulator

Fig. 1: Workflow of multi-job workload simulations using the
TraceR-CODES simulation framework.

so that it can track communication-computation overlap in
applications.

A. Simulating an arbitrary network topology

TraceR-CODES provides many built-in interconnection net-
works, including fat-tree and dragonfly. However, the connec-
tivity within these built-in networks is rigid, and may not ex-
actly match networks deployed in production supercomputers.
Therefore, we implement a new network model, which we
call the arbitrary graph model, that allows users to explicitly
define their network topology.

B. Simulating message scheduling in the NIC

The network interface controller (NIC) in contemporary
HPC systems is responsible for scheduling and packetizing
messages.

FCFS scheduling: Messages are inserted at the back of
the scheduling queue, as and when they arrive. During the
packetization process, the scheduler keeps creating packets
from the top of the queue until the entire message is packetized
before it packetizes the next message in the queue.

RR scheduling: Messages are inserted into the scheduling
queue of the network interface, as and when they arrive.
During the packetization process, the scheduler creates one
packet for a message and then moves to the next message:
all messages are considered in a round-robin manner. RR not
only allows concurrent communication progress for several
communicating-pairs, but may also help the network in better
utilizing multiple communication paths. While desirable, such
a scheme is difficult to implement in the hardware as the
number of concurrent messages can be very large.

RR-N scheduling: In this scheme, N is a parameter. RR-
N is similar to RR, except that instead of packetizing every
message in the scheduling queue in a round-robin manner, the
scheduler packetizes the top N messages in the scheduling



queue. For example, in RR-2, the scheduler only packetizes the
first 2 messages for communication. This newly added scheme
simulates the real world scenario where a limited number of
hardware queues are available at a NIC, which are used to
keep multiple message in-flight concurrently.

C. Simulating multi-GPU nodes in TraceR-CODES

In TraceR, computation is simulated by fast-forwarding the
simulation time by a desired amount. Thus, to emulate GPU
execution in place of a CPU, we reduce the time spent in
computational regions of an application by a certain factor.
For each application, this factor is based on the speed up
observed by us on Sierra supercomputer in comparison to the
CPU cluster used to collect the application traces. Further, to
simulate the impact of high-bandwidth links among the GPUs
in a node (e.g. NV links), we added dedicated communication
routes among the GPUs in a node.

IV. VALIDATION

TraceR-CODES has been previously validated with micro-
benchmarks and stand alone applications including pF3D,
3D Stencil, ping-pong, all-to-all, etc [3]. These validation
studies were done for fat-tree networks and it was found that
TraceR-CODES predicts the absolute value as well as the
trends in the execution time with less than 15% error [3],
[17]. However, these validation studies have been done with
single job simulations. Further, these studies did not validate
cross-platform and cross-network projections, i.e. traces were
collected and projections were done for the same system.

To gain confidence in TraceR-CODES’ prediction for cross-
platform and cross-network multi-job workloads as well as in
our new additions to TraceR-CODES, we validate TraceR-
CODES with three random multi-job workloads. The val-
idation is done by 1) randomly creating three workloads
that consist of representative HPC benchmarks with different
communication and computation characteristics, 2) running the
workloads on the Quartz supercomputer [18] at LLNL, 3) sim-
ulating the workloads using TraceR-CODES with the system
parameters set to the values for Quartz, and 4) comparing the
predicted job execution times from the simulations with the
measured times on Quartz.

The three workloads are formed by selecting jobs from
two communication intensive benchmarks (Stencil4d and Sub-
comm3d) and two computation intensive applications (Kripke
and Laghos). More information about the four applications is
given in Section V.A.

We ran the three workloads in a dedicated access time
(DAT) on Quartz at LLNL, during which period no other
jobs ran on the machine. We used linear mapping of job
ranks to nodes and measured the execution time of each job
in the workloads. For simulation with the TraceR-CODES
framework, we use the exact system settings as Quartz: (1) we
create the exact fat-tree topology as Quartz using the arbitrary
graph model; (2) we set the values of the network parameters
to the corresponding values on Quartz: 11.9 GB/s peak link
bandwidth, 8 packets buffer size, 4096 bytes packet size, and

so on; and (3) the jobs and processes in each workload are
mapped to compute nodes exactly in the same way as they
ran on Quartz.

The traces for driving the simulation were collected on
Vulcan [19], a 5D-torus based Blue Gene/Q system. Since,
the computational capabilities of Vulcan are different from
Quartz, we measure the relative compute scaling factor be-
tween Vulcan and Quartz, and scale the computation regions
of simulations accordingly. This set up helps us evaluate the
projections when the network (5D-torus vs fat-tree) as well as
computational capability (IBM PowerPC vs Intel Xeon) of the
traced system are different from the target system.

L 0 L 1 L 2 L 3 L 4 L 5 L 6 L 7
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Fig. 2: A Quartz pod with eight aggregate and eight leaf
switches, and all links.

Quartz Topology: The Quartz system deploys a 3-level fat-
tree, with a 2:1 tapering at each of its 84 leaf switches. There
are 84 aggregate switches and 32 core switches. Each switch
has a radix of 48 and each leaf level switch is connected
to 32 compute nodes. Note that some ports in the aggregate
switches and core switches are left unused. The 84 leaf level
switches are divided among 11 pods. Figure 2 shows a Quartz
supercomputer pod. Each pod consists of 8 leaf switches and
8 aggregate switches, which are connected in an all-to-all
bipartite graph. Each arc drawn here represents two physical
links. In contrast, a standard 2:1 tapered fat-tree would have 16
leaf switches in each pod, which are connected to 16 aggregate
switches using one physical link each. We give these details
of the Quartz topology to highlight that Quartz’ fat-tree is
different from the standard, symmetric fat-tree topology, as are
the networks in most production systems. These differences
are the main driver for our development of the arbitrary graph
model.

Figure 3 shows the results of the validation. On the hori-
zontal axis, we have each application and their corresponding
job size used in various workloads. Each blue dot represents
the average of the error percentage between the predicted
runtime and the measured runtime for various instances of
the given application-job size pair that appear across the
three workloads. For example, since Subcomm3d jobs with
a process count of 128 appears two times across the three
workloads, we compute their average error percentage to be -



7.88% and present it here. We can see that for all cases except
32-ranks Stencil4d, the prediction error is within 20%; and for
all except 3 cases (32-rank Stencil4d, 32-ranks Kripke, and 64-
ranks Kripke), the error is within 15%. These results suggest
that TraceR-CODES predictions reasonably approximate the
actual runtime on real systems for multi-job workloads even
when the computational capability and underlying network are
different.
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Fig. 3: Validation of TraceR-CODES (mean percentage error
in predicted runtime compared to the actual runtime).

V. SIMULATION METHODOLOGY

In this section, we describe the applications and workloads
used in this paper, and then discuss the hardware parameters
varied in the simulations.

A. Applications and Workloads

We selected six applications of different computation and
communication characteristics to create realistic HPC work-
loads. The applications include two communication-heavy
kernels, Stencil4d [20] and Subcomm3d [20], two compute-
intensive applications, Kripke [21] and Laghos [22], and two
applications with a balanced communication-to-computation
ratio, AMG [23] and SW4lite [24] (see Figure 4, left). The
traces used in the study were collected using Score-P [5] on
Vulcan, a Blue Gene/Q installation and Quartz, an Intel Xeon
cluster at Lawrence Livermore National Laboratory (LLNL).
The traces contain information about all MPI events executed
on each MPI process, along with their timestamps. In addtion,
they also record user annotations such as loop begin and end
for the main compute loop. Following is a brief description of
the six applications:

• Stencil4d: MPI benchmark with 8-point near-neighbor
communication in a 4D virtual process grid.

• Subcomm3d: MPI benchmark with all-to-all communi-
cation within subsets of processes in a 3D virtual process
grid.

• Kripke: 3D Sn deterministic particle transport code,
which runs an MPI-based parallel sweep algorithm.

• Laghos: Proxy application that solves time-dependent
Euler equations with MPI-based domain decomposition.

• AMG: Parallel algebraic multigrid solver.
• SW4lite: Proxy application for SW4 [24], a 3D seismic

modeling code.
Figure 4 (left) presents the fraction of total execution time

these applications spend in communication and computation
when running with 32 processes. Computation is denoted by
the red color, and non-overlapped communication is shown
in green. At 32 processes, Stencil4d and Subcomm3d are
dominated by communication. We tuned the communication-
computation ratios in Stencil4d and Subcomm3d such that they
replicate the runtime profiles of representative communication-
intensive applications. Kripke and Laghos are dominated by
computation with both nding more than 95% of time in
computation. AMG and SW4lite spend ∼80% of their time
in computation and the rest in communication. As described
in Section III-C, suitable computation scaling factors are
used to alter the behavior of these traces to emulate run-
ning the computation on GPUs. Figure 4 (right) shows how
the computation-to-communication ratios change as we apply
these scaling factors. Stencil4d and Subcomm3d spend most
of their time in communication after compute scaling and the
other applications now spend between 25-65% in communi-
cation.

The workloads in our study are created using the six HPC
applications mentioned above at different process counts – 32,
64, 128, 256, and 512. In our study, the system supports up
to 2048 processes. Thus, the sum of process counts in each
of the workloads is exactly 2048. Each workload is obtained
by iteratively randomly selecting an application and a job size
until the total workload size has reached 2048. As a result,
each workload has many jobs of different sizes, resembling
the capacity workload of supercomputing centers [7]. Our
experiments use 20 such random workloads. To ensure that the
reported performance of each job size of each application is
representative, we ensure that each job size of each application
appears at least four times in the 20 workloads. This ensures
that each job size of each application has been executed under
different conditions in the experiments.

B. Hardware Design Parameters

Network topology: In our experiments, the impact of the
hardware design parameters are studied in the context of two
widely used interconnect topologies: fat-tree and 1D dragonfly.

(1) 1D Dragonfly – 1D Dragonfly [8] is a two-level direct
network topology: switches form groups with a fully con-
nected intra-group topology and groups are connected with
an inter-group topology. The topology has three important
parameters [8]: the number of compute nodes in each switch
(p), the number of links in each switch that connect to other
switches in the same group (a), the number of links in each
switch that connect to other groups (h). A balanced dragonfly
in general requires a = 2p = 2h. In our experiments, we set
p = h = 8 and a = 16. Each group has 16 switches and 128
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Fig. 4: Computation and communication characteristics of all applications without scaling (left) and with scaling for GPUs
(right) running on 32 processes.

compute nodes. The global link connectivity between group
follows the per-router arrangement [25]. The routing algorithm
used is the progressive adaptive routing (PAR) [8], [25].

(2) Fat-tree – The other topology is a 3-level full bisection
bandwidth fat-tree. In a 3-level full bisection bandwidth fat-
tree, there are three types of switches: 1) core switches which
are at the top layer to connect pods, 2) aggregate switches,
which connects the leaf switches and form a pod, and 3) the
leaf switches, which are connected to the compute nodes. In a
3-level full bisection bandwidth fat-tree, the number of uplinks
in the aggregate and leaf switches is the same as the number
of downlinks. For our study, the 3-level fat-tree is built using
32 radix switches. Each leaf switch connects to 16 compute
nodes and 16 aggregate switches. Each pod has 16 aggregate
switches, 16 edge switches, and 256 compute nodes.

Number of GPUs per node: In our study, we vary the number
of GPUs in each compute node from 1 to 8 to analyze the
impact of the increased computation density and the reduction
of network endpoints on the system performance. Each GPU
is assigned to one MPI process; to simulate different number
of GPUs per node, multiple MPI process are assigned to a
node. The GPUs inside a node are connected in an all-to-all
connection topology resembling the intra node connectivity
of Sierra system with NVlink. The bandwidth between GPUs
within a node is set to be twice the network link bandwidth,
so that it replicates that of Sierra supercomputer. The default
setting for GPUs per node is 1 GPU per node. This is the
default GPU per node setting whose performance is used to
normalize other results.

In the experiments, when we increase the number of GPUs
per node, we proportionally reduce the number of network
endpoints, i.e. we make sure that for all network configura-
tions, the total GPU count, as well the total MPI processes,
is 2048. This is done to ensure that we compare systems that
are of computationally equal capability as is often the case in
the real world. Secondly, we make sure that each workload

covers the entire network and no node is left empty during
the simulation. Table I summarizes the network sizes used for
each GPU per node setting, with the default setting being that
of 1 GPU per node.

TABLE I: Network sizes for different GPUs per node.
GPUs per node 1D Dragonfly Fat-tree

1 16 Groups 8 Pods
2 8 Groups 4 Pods
4 4 Groups 2 Pods
8 2 Groups 1 Pods

Network link bandwidth: We set our baseline link bandwidth
as x=11.9 GB/s, which is the peak achieved link bandwidth on
Mellanox EDR networks such as the Quartz supercomputer at
LLNL. To analyze the sensitivity of various compute capability
equivalent systems to communication capability, we vary the
bandwidth from x/16 (16 times slow down of the baseline)
to 16x (16 times speedup of the baseline). In the rest of the
paper, we will use x to represent the base bandwidth, and will
denote the network speed as x/16, x/8, x/4, x/2, x, 2x, 4x, 8x,
and 16x.

Message scheduling: As the computation and communication
density on the compute node increases, message scheduling
performed by the NIC may have an impact on communication
performance. In particular, scheduling schemes that alleviate
head-of-line blocking may have significant benefits, especially
when the link bandwidth is very high. In addition to head-
of-line blocking, which is often mitigated by the use of
virtual channels, message scheduling also affects congestion
management and network utilization. Scheduling schemes that
expose packets from multiple communicating-pairs to the
network may perform better as it provides the network with
the flexibility to use multiple network paths concurrently.
To investigate the effect of message scheduling on a system
with different network and different node compute capability,
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Fig. 5: Speedup on fat-tree for various numbers of GPUs per node settings with respect to 1 GPU/node configuration.

we compare the performance of FCFS, RR, and RR-N with
different values of N on systems with different configurations.

VI. SIMULATION RESULTS

We now present the results of simulation studies that vary
different architectural parameters presented in Section V-B.

A. Impact of the number of GPUs per node

The number of GPUs per node determines the balance
of computation to communication capacity of a system and
thus is an important configuration choice in GPU-based HPC
clusters. We study the impact of this parameter on different
types of HPC applications.

Figure 5 presents the relative performance of the applica-
tions running on fat-tree based systems with different number
of GPUs per node. The speedup in the figure is computed
relative to the performance when running with 1 GPU per
node. For example, in Figure 5, Stencil4d with 32 processes
has a speedup of 0.71 in the 2 GPUs per node mode. This
implies that the performance of Stencil4d with 2 GPUs per
node is 71% of the Stencil4d performance with 1 GPU per
node. Other configuration parameters are held constant at their
default values (1x network link bandwidth, FCFS message
scheduling, etc.) The reported performance is the average
across all occurrences of an application and a given job size in
the 20 workloads. Note that across the different GPUs per node
configurations, each application and job size combination gets
exactly the same computing resources. More GPUs per node
does not imply more computing power for a given application
and job size combination; it simply implies that the computing
resources are available in a more condensed manner on fewer,
more powerful nodes.

In Figure 5, we see that for communication-heavy appli-
cations (Stencil4d and Subcomm3d), as the number of GPUs
per node increases, application performance drops for most
job sizes. This is because as more GPUs are placed per node,
the effective communication resources available for each GPU

reduce. However, the performance drop is not linear w.r.t. the
effective communication resources because the mapping of
multiple MPI processes to node results in some of the data
being communicated within node. This data can make use of
the high-bandwidth intra-node GPU links.

An opposite effect is observed in the simulations of the
1D dragonfly topology in Figure 6. In some cases, such as
Subcomm3d on 32 and 64 nodes, a significant amount of
traffic is converted to intra-node when using 8 GPUs/node,
which results in performance improvement of the application.
Another factor that impacts performance is that when all
processes in a job are mapped to a single switch, the job is
less susceptible to inter-job network interference than when
the processes in a job are mapped to multiple switches in
the interconnect. With 4 GPUs per node, a 32-process job is
mapped to 8 nodes and a 64-process job is mapped to 16
nodes. With 8 GPUs per node, a 32-process job is mapped
to 4 nodes and a 64-process job is mapped to 8 nodes. Each
switch in the fat-tree connects to 16 nodes and each switch
in 1D dragonfly connects to 8 nodes: there are chances for
the 32-process and 64-process jobs to be mapped completely
within one switch and achieve higher performance.

For the next two applications (Kripke and Laghos), we
observe a noticeably different impact of changing the balance
of communication to computation capability. In the case of
Kripke, more GPUs per node do not impact its performance.
This is because the overall communication volume is low,
and GPUs are often waiting on other GPUs to finish their
computation. For Laghos, we observe a slowdown primarily
with 8 GPUs per node. This indicates that having these many
GPUs per node shifts the communication-computation balance
and also the performance characteristics of the application.

Finally, for the last two applications (AMG and SW4lite),
we observe a gradual slow down when more GPUs are
incorporated per node, on both network topologies. While this
performance drop is not as high as the communication-heavy
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Fig. 6: Speedup on 1D dragonfly for various numbers of GPUs per node settings with respect to 1 GPU/node configuration.

applications, it is noticeable for the 4 and 8 GPUs per node
configurations. We also find that for most applications that are
sensitive to network performance, several factors including the
communication pattern of the application, job mapping, and
inter-job interference impact the execution time. For example,
AMG and Laghos, experience higher slowdown in 8 GPUs per
node configuration in workloads in which they are placed adja-
cent to communication-heavy applications. The typical reason
for this slowdown is that communication-sensitive applications
when mapped adjacent to similar applications contend for
network resources, thus impacting the performance.

Overall Observation: Most applications run slower with four
or more GPUs per network endpoint.
In our experiments, all but one application (Kripke, which is
not sensitive to network capabilities) slow down noticeably
with four or more GPUs per network endpoint. Although
part of the communication volume may be restricted to intra-
node communication with more GPUs per node, this benefit
is typically overshadowed by performance loss due to the
reduction of the node communication to computation ratio.

B. Impact of network bandwidth

In the previous section, we saw that as the number of GPUs
per node increases, the default 1x network bandwidth becomes
a performance bottleneck for many cases. Thus, we next study
the impact of varying network bandwidth along with number
of GPUs/nodes on application performance.

In our simulation experiments, we observed that the impact
of network bandwidth on jobs of different sizes shares similar
trends. Hence, we present data only for a job size of 128 pro-
cesses. Figure 7a shows the performance for the 4 GPUs per
node configuration with varying network bandwidth relative
to 1 GPU per node, 1x network bandwidth configuration on
fat-tree network. We find that the network bandwidth has a
significant impact on most applications. The gains are highest
for communication-heavy applications such as Stencil4d and

Subcomm3d. Conversely, the impact of reducing the network
bandwidth is also highest for those. A similar trend is observed
for the 1D dragonfly topology as shown in Figure 7b.

Table II presents the minimum bandwidth required for
each application and a given job size to achieve 90% of the
performance of the default setting for the fat-tree topology.
As expected, different types of applications have different
bandwidth requirements. In general, communication-intensive
applications require larger bandwidth to sustain the increased
number of GPUs per node while computation-intensive ap-
plications have less bandwidth requirement. For example, for
the 8 GPUs per node case with 512 processes job size,
Stencil4d needs 8x network bandwidth to achieve 90% of
the performance from the default setting; AMG and SW4lite
need more than 4x bandwidth while Kripke only needs x/8
bandwidth.

TABLE II: Minimum bandwidth required to achieve 90% of
the performance of the default 1 GPU/node configuration for
fat-tree

Applications 32 processes 512 processes
4 GPUs/node 8 GPUs/node 4 GPUs/node 8 GPUs/node

Stencil4d 1x 1x 4x 8x
Subcomm3d x/2 x/2 4x 4x
Kripke x/16 x/16 x/8 x/8
Laghos x/2 2x x 2x
AMG 4x 8x 4x 8x
SW4lite 2x 2x 2x 4x

Further, application requirement is also affected by the job
size and the placement with other jobs. For example, 32-
process Laghos ran slower in some workloads when mapped in
the 8 GPUs per node configuration, which is why here we need
double bandwidth to get more than 90% speedup. We also see
that sometimes communication-intensive applications such as
Stencil4d and Subcomm3d require less bandwidth in 8 GPUs
per node configuration than 4 GPUs per node configuration
to reach 90% of the performance for 32 processes and 64
processes. This is mainly due to the fact that, with a larger
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Fig. 7: Speedup for the 4 GPUs/node configuration over 1 GPU/node, 1x network bandwidth configuration. Data is shown
only for job sizes of 128 GPUs; similar trends observed for other job sizes.

number GPUs per node, a significant fraction of the communi-
cation happens within the same node. This indicates that future
GPU-based platforms must consider its workloads to decide
important networking hardware parameters. The results for 1D
dragonfly, which has a similar trend as that in fat-tree.

Overall Observation: Bandwidth requirement to sustain high
performance depends on GPU density and job sizes.
Our results show that each type of application has a sweet-spot
for them to perform effectively. Hence, the design of a future
GPU cluster should take its applications into consideration in
order to achieve the maximum performance-cost ratio.

C. Impact of message scheduling in the NIC

The impact of message scheduling on system performance
has not received sufficient attention in the community. To our
knowledge, this is the first time that the impact of message
scheduling on system and application performance is being
studied systematically. Similar to the impact of the number
of GPUs per node and network link bandwidth, the impact
of message scheduling is similar for both fat-tree and 1D
dragonfly. Thus, we only discuss results for the 1D dragonfly
in detail.

Figure 8 shows the speedup for 64 and 512 processes
(GPUs) of Stencil4d relative to the default case with 1 GPU
per node and FCFS scheduling (network bandwidth is fixed at
1x for all configurations). For the 1 GPU per node cases, the
scheduling significantly affects the performance: the larger the
number of messages the scheduler considers for packetization
concurrently, the higher the performance. The RR scheduler
reaches a speed-up of 1.45 for the 64-process job and 1.93
for the 512-process job in comparison to the default FCFS
scheduler. A similar trend is observed for the 8 GPUs per
node cases: the RR scheduler improves the speed up from
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Fig. 8: Results for Stencil4d (64 processes and 512 processes
on 1D dragonfly)

0.48 with the FCFS scheduler to 0.76 for the 64-process job,
and from 0.22 to 0.35 for the 512-process job.

Figure 9 shows the speedup for 64 and 512 processes of
Subcomm3d. For 1 GPU per node, RR scheduler performs
better than FCFS. However, RR is only slightly better than
RR-2 and RR-4 and achieves a 1.3 speed-up for the 64-process
job and 1.7 speed-up for the 512-process job over FCFS. For
8 GPUs per node cases, all schedulers have similar perfor-
mance with FCFS being slightly better than other schedul-
ing schemes. Although both Stencil4d and Subcomm3d are
communication-intensive, the impact of message scheduling
is different. This is because the communication characteristics
in these two applications are different.

Message scheduling has no impact on Kripke as Kripke
is not sensitive to communication as seen earlier. Figure 10
shows the speedup for 64-process and 512-process simulations
of Laghos. For 1 GPU per node cases, all schedulers have the
same performance. For 8 GPUs per node cases, all schedulers
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Fig. 9: Results for Subcomm3d (64 processes and 512 pro-
cesses on 1D dragonfly)
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Fig. 10: Results for Laghos (64 processes and 512 processes
on 1D dragonfly)

have the same performance for the 64-process job, but RR
has a significantly better performance than others for the
512-process job. As shown in Figure 6, for 512 processes
(and 256 processes and 128 processes), Laghos is affected
by communication only in the 8 GPUs per node setting.
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Fig. 11: Results for SW4lite (64 processes and 512 processes
on 1D dragonfly)

Figures 11 show the results for SW4lite. Message schedul-
ing has no impact on the 1 GPU per node cases, but affects
the performance significantly for 8 GPUs per node cases for
both applications and the two job sizes. The impact, however,
depends on both the application and job sizes. Simillar results
are seen for AMG application.

Overall Observation: For most applications, some degree of
round robin in NIC scheduling is effective. However the exact
degree is application dependent – no single scheduling scheme
can achieve the best performance across applications.

Message scheduling can impact performance only when
there are many concurrent communicating pairs. For the 1
GPU per node cases, it thus only affects the communication
heavy applications such as Stencil4d, and has virtually no
impact on the other applications in our study. As the number
of GPUs per node increases, so does the number of communi-
cation sources and the number of concurrent communications.
Thus, with 8 GPUs per node, message scheduling makes a
difference in all applications, except Kripke. The magnitude of
the impact, however, depends on the application as well as the
job size: Round-robin (RR) is the most effective scheduling in
many cases. However, each of the scheduling schemes that we
use in our study achieves the best performance in some cases.
For example, FCFS is the best for AMG with 64 processes and
8 GPUs per node; RR-4 is slightly better than other scheduling
policies for SW4lite with 512 processes and 8 GPUs per node.
We conclude that the effectiveness of message scheduling
depends on both application and the network parameters, and
needs to be further studied by examining more applications as
well as system configurations.

VII. RELATED WORK

Application simulations are widely used to evaluate an HPC
network. Jain and Bhatele in their past studies have exploited
the full system simulation capability of TraceR-CODES sim-
ulator to perform comprehensive simulation studies of various
systems. Bhatele et al. performed a holistic study on how
three different scalable topology - dragonfly, express mesh,
and fat-tree performed under different conditions [26]. Here
he tried to explore different network design aspects such as
the number of nodes, routers, and links, all of which in turn,
influence dollar costs. These studies are very important in
system design, installation and procurement. Jain et al. have
previously used multi-job workloads with different communi-
cation characteristic and communication-computation ratios to
study the effects of various configuration parameters like link
bandwidth, number of rails, number of planes, and tapering,
for fat-tree [3]. Our work goes beyond the previous study by
systematically investigating two different topologies (fat-tree
and 1D dragonfly), the impact of the number of GPUs per
node, its interaction with network link bandwidth, and the mes-
sage scheduling scheme. A lot of previous studies have been
conducted on designing and evaluating network topologies and
routing methods. For example, Rahman et al. have conducted
studies on topology custom routing across various dragonfly



topologies [27]. Here they showed how by customizing the
paths used in UGAL routing in dragonfly topology, a better
communication performance can be achieved. Zaid et al. have
done similar studies with Jellyfish topologies [28].

Such studies, however, do not evaluate the overall system
and application performance as we do in this paper.

VIII. CONCLUSION

We validate the TraceR-CODES simulation framework that
is able to produce performance results similar to measurement
results in real execution, and use the framework to study the
impact of hardware parameters for future GPU-based HPC
systems on the popular fat-tree and dragonfly topologies. The
hardware parameters studied include the number of GPUs per
node, the network bandwidth, and the message scheduling
scheme. Our results indicate that as more GPUs are equipped
on each compute node, more applications will be sensitive
to the communication performance; and thus, the network
bandwidth as well as the message scheduling method will play
a more important role in the system performance. In general,
higher network bandwidth is necessary for maintaining the
performance of communication intensive applications on sys-
tems with more GPUs per node; some degree of round-robin
fair scheduling works well for most applications. The exact
impact of these hardware parameters, however, is application
dependent. We conclude that to build a performance-cost
effective GPU cluster, the applications to be executed on the
cluster must be studied along with the system parameters. In
summary, the general trend of shifting to fatter nodes does
not always give optimal performance of an application. An
investigation similar to ours can be used to determine the most
cost-effective hardware parameters.
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