
AxoNN: An asynchronous, message-driven parallel
framework for extreme-scale deep learning

Siddharth Singh, Abhinav Bhatele

Department of Computer Science, University of Maryland, College Park, Maryland 20742 USA
E-mail: ssingh37@umd.edu, bhatele@cs.umd.edu

Abstract—In the last few years, the memory requirements
to train state-of-the-art neural networks have far exceeded the
DRAM capacities of modern hardware accelerators. This has
necessitated the development of efficient algorithms to train these
neural networks in parallel on large-scale GPU-based clusters.
Since computation is relatively inexpensive on modern GPUs,
designing and implementing extremely efficient communication
in these parallel training algorithms is critical for extracting the
maximum performance. This paper presents AxoNN, a parallel
deep learning framework that exploits asynchrony and message-
driven execution to schedule neural network operations on each
GPU, thereby reducing GPU idle time and maximizing hardware
efficiency. By using the CPU memory as a scratch space for
offloading data periodically during training, AxoNN is able to
reduce GPU memory consumption by four times. This allows
us to increase the number of parameters per GPU by four
times, thus reducing the amount of communication and increasing
performance by over 13%. When tested against large transformer
models with 12–100 billion parameters on 48–384 NVIDIA Tesla
V100 GPUs, AxoNN achieves a per-GPU throughput of 49.4–
54.78% of theoretical peak and reduces the training time by
22-37 days (15–25% speedup) as compared to the state-of-the-art.

Index Terms—parallel deep learning, asynchrony, message
driven scheduling, memory optimizations

I. INTRODUCTION

In recent years, the field of deep learning has been moving
toward training extremely large neural networks (NNs) for
advancing the state-of-the-art in areas such as computer vision
and natural language processing (NLP) [1], [2], [3]. This surge
in popularity of large NNs has been propelled by the availability
of large quantities of data and the increasing computational
capabilities of hardware such as GPUs. However, the memory
requirements to train such networks have far exceeded the
DRAM capacities of modern hardware accelerators. This has
necessitated the development of efficient algorithms to train
neural networks in parallel on large-scale GPU-based clusters.

Computation is relatively inexpensive on modern GPUs and
has outpaced the increase in network bandwidth on GPU-based
clusters with size. Hence, the design and implementation of
efficient communication algorithms is critical to prevent star-
vation of GPUs waiting for data to compute on. Contemporary
frameworks for parallel deep learning suffer from a number
of shortcomings in this regard. Some of them employ bulk
synchronous parallel algorithms to divide the computation of
each layer across GPUs [4], [2]. The synchronization step in
these algorithms can be time-consuming as it employs collective

communication on the outputs of each layer, which are fairly
large in size. Other frameworks try to divide contiguous subsets
of layers across GPUs [5], [6], [7]. Data is then exchanged
between consecutive GPUs using point-to-point communication.
In this setting, such implementations fail to exploit the potential
of overlapping communication and computation due to the use
of blocking communication primitives and static scheduling of
layer operations.

In this paper, we present AxoNN, a parallel deep learning
framework that exploits asynchrony and message-driven exe-
cution to schedule neural network operations on each GPU,
thereby reducing GPU idle time and maximizing hardware
efficiency. To achieve asynchronous message-driven execution,
we implement AxoNN’s communication backend using CUDA-
aware MPI with GPU-Direct support. While the general
consensus among other frameworks [5], [6], [7] has been to
use NCCL [8] or Gloo [9] for point-to-point communication,
we find that MPI is more suitable for this task because it
offers higher intra-node bandwidth and supports non-blocking
primitives, which are great for asynchrony. This gives AxoNN
an edge over other frameworks in terms of performance. To
the best of our knowledge, this is the first work to exploit
implement message-driven execution for parallel deep learning,
with prior work using static scheduling schemes due to the
constraints of synchronous communication.

Neural networks with extremely large number of parameters
like the GPT-3 [3] architecture require a correspondingly
large number of GPUs often ranging in the hundreds. At
such large GPU counts, there is a notable drop in hardware
efficiency due to increasing communication to computation
ratios [5]. To mitigate this problem, AxoNN implements an
intelligent memory optimization algorithm that enables it to
reduce the number of GPUs required to train a single instance
of a neural network by four times. This is made possible
by using the CPU memory as a scratch space for offloading
data periodically during training and prefetching it intelligently
whenever required. To extend training to a large number of
GPUs, we employ data parallelism wherein multiple instances
of the neural network are trained in an embarrassingly parallel
manner [10]. When evaluated against a 12 billion parameter
transformer [11] neural network, our memory optimizations
yield a performance improvement of over 13%.

We demonstrate the scalability of our implementation and
compare its performance with that of existing state-of-the-

art parallel deep learning frameworks - Megatron-LM [5]
and DeepSpeed [6], [12]. Our experiments show that AxoNN
comprehensively outperforms other frameworks in both weak
scaling and strong scaling settings. When tested against large
GPT-style [3] transformer models with 12, 24, 50 and 100
billion parameters on 48, 96, 192 and 384 NVIDIA Tesla V100
GPUs respectively, AxoNN achieves an impressive per-GPU
throughput of 49.4–54.78% of theoretical peak and reduces
the training time by 22-37 days as compared to the next
best framework – DeepSpeed. Our framework can thus help
researchers save time and resources in their experiments.

Our contributions can be summarized as follows:
• We propose a MPI-based point-to-point communication

backend for parallel deep learning that exploits asynchrony
to overlap communication with computation and thus
increase hardware efficiency.

• We also implement a message-driven scheduler that
enables the scheduling of neural network operations in
the order in which their data dependencies are met.

• We develop a proof that explains the reasons for ineffi-
ciency of certain parallel deep learning algorithms at scale.
We then propose a novel memory optimization algorithm
that mitigates this issue by using the CPU memory as a
scratch space to offload and prefetch data intelligently.

• We present a user-friendly, open-source implementation of
AxoNN1, which places minimal programming burden on
the end-user, similar to the familiar single GPU PyTorch
programming environment.

II. BACKGROUND ON DEEP LEARNING

This section provides a background on training neural
networks, and different modes of parallelism in deep learning.

A. Definitions and basics of training neural networks

We now describe the basic terminology and the layout of a
typical neural network training procedure.

Neural networks: are parameterized function approximators.
Their popularity stems from their flexibility to approximate
a plethora of functions on high dimensional input data.
The training algorithm iteratively adjusts the values of the
parameters to fit the input data accurately. We collectively refer
to the entire parameter vector of the neural network as ~θ.

Layers: Computation of a neural network is divided into layers.
Each layer consumes the output of its previous layer. The first
layer operates directly on the input. The output of the last
layer is the final output of the neural network. The outputs of
intermediate layer are called activations. We refer to a neural
network with N layers as (l0, l1, l2, ...lN−1), where li stands for
the ith layer. ~θi and ~ai refer to the parameters and activations
of the ith layer respectively.

Loss: is a scalar which defines how well a given set of
parameters of a neural network ~θ approximate the input dataset.
The task of training is essentially a search for the value of ~θ,

1https://github.com/hpcgroup/axonn

which minimizes the loss function - L(X, ~θ), where X is the
input dataset.

Forward and backward pass: A neural network first computes
the activations for each layer and subsequently the loss function
for a given (X, ~θ). This is called the forward pass. After that
it computes the gradient of the loss w.r.t. the parameters i.e.
∇~θ = dL(X,~θ)

d~θ
via the backpropagation algorithm [13]. This is

called the backward pass.

Optimizer: The optimizer uses ∇~θ to update ~θ to a value that
incrementally reduces the value of L(X, ~θ). A training run
includes repeated forward pass, backward passes followed by
the optimizer step to iteratively update ~θ to a desirable value
which fits the data better. Deep learning optimizers maintain
a state vector ~sopt of size O(|~θ|) which is usually a running
history of past gradient vectors. The updated ~θ is a function
of ~sopt and ∇~θ.

Batch: Training algorithms do not use the entire dataset X for
computing the loss. Instead mutually exclusive and exhaustive
subsets called batches of the dataset are repeatedly sampled
for training. The cardinality of a batch is called the batch size.

Mixed precision: Mixed precision training involves keeping
two copies of the network parameters in single and half
precision [14]. Forward and backward passes are done in half
precision to boost performance. However, the optimizer step is
applied to the single precision copy of the weight. To prevent
underflow during the calculation of half precision gradients,
the loss is typically scaled up by multiplication with a large
number called the scaling factor. The optimizer first converts
the half precision gradients into full precision and then descales
them to obtain their true value. Mixed precision computation
can take advantage of the fast Tensor Cores present in modern
hardware accelerators such as the NVIDIA V100 and A100
GPUs. We refer to half precision parameters and gradients as
~θ16 and ∇ ~θ16 respectively and their full precision counterparts

as ~θ and ∇~θ respectively.

B. Modes of parallelism in deep learning
Algorithms for parallel deep learning fall into three cate-

gories - data parallelism, intra-layer parallelism and inter-layer
parallelism. Frameworks that rely on more than one kind of
parallelism are said to be implementing hybrid parallelism.

Data parallelism: In data parallelism, identical copies of the
model parameters are distributed among GPUs. Input batches
are divided into equal sized chunks and consumed by individual
GPUs for computation, which proceeds independently on each
GPU. After that a collective all-reduce communication is
initiated to average the parameter gradients on each rank. The
average gradients are used to update the local copies of the
network parameters. Due to its embarrassingly parallel nature,
data parallelism scales very efficiently in practice. However,
vanilla data parallelism is restricted by the need to fit the entire
model in a single GPU. To overcome this restriction, it has
to be combined with inter-layer and intra-layer parallelism for
training extremely large neural networks such as GPT-3 [3].

https://github.com/hpcgroup/axonn

Intra-layer parallelism: divides the computation of each
layer of the neural network on multiple GPUs. Each GPU
is responsible for partially computing the output activation
of a layer. These partial outputs are pieced together using a
collective communication primitive like all-gather or all-reduce
to be used for the computation of the next layer. For example,
Megatron-LM [2], [5] shards the various matrix multiplications
of a transformer [11] layer across GPUs. While saving
memory, it is prohibited by expensive collective communication
after computing the output activations. Typically, intra-layer
parallelism cannot scale efficiently beyond the confines of
GPUs inside a node connected via a high-speed inter-connect
like NVLink [5].

Inter-layer parallelism: divides the layers of a neural network
among worker GPUs. To achieve parallelism, an input batch
is divided into smaller microbatches. Forward and backward
passes for different microbatches can thus proceed on different
GPUs concurrently. Inter-layer parallelism is often called as
pipelining and the set of GPUs implementing it are called the
pipeline. Prior work has shown that inter-layer parallelism is
inefficient for a large number of GPUs in the pipeline due
to an increase in the idle time in the pipeline [5]. Figure 1
illustrates the working of inter-layer parallelism.

0GPU 0

GPU 1

GPU 2

GPU 3

0

1 2 3

Inter-layer Parallelism with Pipelining

Time

1 2 3

0 1 2 3

0 1 2 30

0

1

1

2 3

2

0

0 4

1

1

2

2

4

4

4

3

3

35

5

5

54

4

4

46 7

6

6

65 6

5

7

7

Fig. 1. Inter-layer parallelism on four GPUs. The green and yellow boxes
represent the forward and backward passes of a microbatch respectively. The
numbers inside each box represent the microbatch number. We assume that
the backward pass takes twice as much time as the forward pass.

Hybrid parallelism: Data parallelism is often combined
with either or both of intra-layer or inter-layer parallelism
to realize hybrid parallelism. For example, Megatron-LM [5]
and DeepSpeed [12], [6] combine all three forms of parallelism
to train large transformer neural networks [11] at extreme scale.
This form of parallelism has been called 3D parallelism in
literature. Prior work [15], [5] has shown 3D parallelism as
the fastest method for training large scale neural networks.

III. DESIGNING A PARALLEL DEEP LEARNING FRAMEWORK

We now present the design of our new framework. AxoNN
combines inter-layer parallelism and data parallelism to scale
parallel training to a large number of GPUs.

A. A hybrid approach to parallel training

The central idea behind AxoNN’s hybrid parallelization of
neural networks is to create a hierarchy of compute resources
(GPUs) by dividing them into equally sized groups. Each group
of GPUs can be treated as a unit that has a full copy of the
network similar to a single GPU in the case of pure data

parallelism. Each group works on different shards of a batch
concurrently to provide data parallelism. GPUs within each
group are used to parallelize the computation associated with
processing a batch shard using inter-layer parallelism. In the
case of AxoNN, we arrange GPUs in a virtual 2D grid topology
as shown in Figure 2. GPUs in each row form a group and are
used to implement inter-layer parallelism within each group.
The groups together are used to provide data parallelism by
processing different shards of a batch in parallel. We use Gdata

and Ginter to denote the number of data-parallel groups and the
number of GPUs inside each data-parallel group respectively.

g0,0

g0,1

g0,2

g1,0

g1,1

g1,2

g2,0

g2,1

g2,2

g3,0

g3,1

g3,2

Inter-layer Parallel Phase

g0,0

g0,1

g0,2

g1,0

g1,1

g1,2

g2,0

g2,1

g2,2

g3,0

g3,1

g3,2

Data Parallel Phase

Fig. 2. AxoNN uses hybrid parallelism that combines inter-layer and data
parallelism. In this example, we train a neural network on 12 GPUs in a 4× 3
configuration (4-way inter-layer parallelism and 3-way data parallelism). The
blue and red arrows represent communication of activations and gradients
respectively. In inter-layer parallelism, these gradients are w.r.t. the output
activations, whereas in data parallelism, these gradients are w.r.t. the network
parameters.

Algorithm 1 AxoNN’s hybrid training algorithm for GPU gi,j

in a Ginter ×Gdata configuration
1: function TRAIN(neural network, dataset ...)
2: nn shard ← instantiate neural network shard for gi,j

3: while training has not finished do
4: next batch ← get next batch from dataset
5: batch shard ← get batch shard for gi,j

6: DATA PARALLEL STEP(nn shard, batch shard ...)
7: run the optimizer
8: end while
9: end function

10:
11: function DATA PARALLEL STEP(nn shard, batch shard ...)
12: INTER LAYER PARALLEL STEP(nn shard, batch shard ...)
13: All-reduce on nn shard.∇~θ
14: end function

Algorithm 1 explains the working of AxoNN’s parallel
algorithm from the point of view of one of the GPUs gi,j in
the 2D virtual grid. Training begins in the TRAIN function (line
1) which takes a neural network specification and a training
dataset as its arguments. For each GPU, we first instantiate a
neural network shard (contiguous subset of layers) that GPU
gi,j will be responsible for in the inter-layer phase (line 12).
In the main training loop (lines 3-7), we divide the input batch
into Gdata shards (line 5) and run the data parallel step on the
corresponding shard of gi,j . The data parallel step first calls
the inter-layer parallel step followed by an all-reduce on the
gradients of the network shard. In the optimizer phase, we run
a standard optimizer used in deep learning such as Adam [16]

as described in Section II-A. Next, we provide details about
the inter-layer and data-parallel phases in AxoNN.

B. Data parallel phase

We outline AxoNN’s data parallel phase in Algorithm 1.
The central idea of AxoNN’s data parallelism is to divide the
computation of a batch by breaking it into Gdata equal sized
shards and assigning each individual shard to a row of GPUs
in Figure 2 (line 5). Each row of GPUs then initiates the inter-
layer parallel phase on their corresponding batch shards (line
12). On completion of the inter-layer parallel phase, GPUs in
a column of Figure 2 issue an all-reduce on the gradients (∇~θ)
of their network shards (line 13). This marks the completion
of the data parallel phase, after which we run the optimizer to
update the weights (line 7).

C. Inter-layer parallel phase

The algorithm for the inter-layer parallel phase in AxoNN is
described in Algorithm 2. We first divide the batch shard into
equal sized microbatches (line 2). The size of each microbatch
is a user-defined hyperparameter. We define the pipeline limit
as the maximum number of microbatches that can be active
in the pipeline. To make sure computation can concurrently
happen on all GPUs we first inject pipeline limit number
of microbatches into the pipeline (lines 4-6) by scheduling
their forward passes on each of the first GPUs in a row of
Figure 2 (line 6). The output of the forward pass is then
communicated to the next GPU (line 7). We call lines 3-9
the warmup phase. Once, the pipeline has been initialized
with enough microbatches, we enter the steady state of the
computation (lines 11-31).

In the steady state, each GPU repeatedly receives messages
(line 12) and starts the computation for a forward or backward
pass of the network shard depending on if the message is
received from a GPU before or after it in its row (lines 15 and
21). If the source is gi−1,j (line 13), a forward pass computation
is done using the received message (line 14). We then send
the output of the forward pass to GPU gi+1,j (line 19) unless
GPU gi,j is the last GPU in the pipeline (line 15). If GPU
gi,j is the last GPU in the pipeline, it initiates the backward
pass. Similarly if the source of the message is gi+1,j (line 21),
the GPU starts the backward pass computation. Once that is
complete, we send the output to gi−1,j (line 28) if GPU gi,j is
not the first GPU in the pipeline. If it is the first GPU, we inject
a new microbatch into the pipeline by initiating its forward
pass (lines 24-26). This ensures that the pipeline always has a
steady number of microbatches equal to the pipeline limit in
its steady state. This process repeats until all of the messages
for all microbatches of the batch shard have been received and
processed (line 11).

IV. IMPLEMENTATION OF AXONN

In this section, we provide details of the implementation of
AxoNN in Python using MPI, NCCL [8], and PyTorch [17].
AxoNN is designed to be run on GPU-based clusters ranging
from a single node with multiple GPUs to a large number

Algorithm 2 AxoNN’s inter-layer parallelism for GPU gi,j in
a Ginter ×Gdata configuration

1: function INTER LAYER PARALLEL STEP(nn shard, batch shard
...)

2: microbatches ← divide batch shard into microbatches
3: if i = 0 then
4: for in pipeline limit do
5: next microbatch ← microbatches.POP()
6: output ← nn shard.FORWARD(next microbatch)
7: SEND(output, gi+1,j)
8: end for
9: end if

10:
11: while messages to receive do
12: msg ← RECEIVE()
13: if msg.source = gi−1,j then
14: output ← nn shard.FORWARD(msg)
15: if i = ninter − 1 then
16: output ← nn shard.BACKWARD(1)
17: SEND(output, gi−1,j)
18: else
19: SEND(output, gi+1,j)
20: end if
21: else if msg.source = gi+1,j then
22: output ← nn shard.BACKWARD(msg)
23: if i = 0 then
24: next microbatch ← microbatches.POP()
25: output ← nn shard.FORWARD(next microbatch)
26: SEND(output, gi+1,j)
27: else
28: SEND(output, gi−1,j)
29: end if
30: end if
31: end while
32: end function

of multi-GPU nodes. Following the MPI model, AxoNN
launches one process to manage each GPU. Each process
is responsible for scheduling communication and computation
on its assigned GPU. We use PyTorch for implementing and
launching computational kernels on the GPU. AxoNN relies on
mixed-precision trainingfor improved hardware utilization [14].

GPUs consume data at a very high rate. As an example, the
peak half-precision performance of V100 GPUs on Summit is
a staggering 125 Tflop/s. Ensuring that the GPUs constantly
have data to compute on requires designing an efficient inter-
GPU communication backend, both for inter-layer and data
parallelism. We use NVIDIA’s GPUDirect technology, which
removes redundant copying of data to host memory and thus
decreases the latency of inter-GPU communication. We use
CUDA-aware MPI for point-to-point communication in the
inter-layer parallel phase. In the data parallel phase, we use
NCCL for collective communication. We provide explanations
for our choices in the sections below.

A. Inter-layer parallel phase

We first fix the pipeline limit to Ginter for our implemen-
tation of inter-layer parallelism. This ensures that all the GPUs
in the pipeline can compute concurrently while placing a low
memory overhead for storing activations. When implementing

the point-to-point sends and receives in Algorithm 1, we
had a choice between CUDA-aware MPI and NVIDIA’s
NCCL library, both of which invoke GPUDirect for inter-
GPU communication. We compared the performance of the
two libraries for point-to-point and collective operations on
Summit using the OSU Micro-benchmarks v5.8 [18].

Figure 3 compares the performance of MPI and NCCL for
intra-node (GPUs on the same node) and inter-node (GPUs on
different nodes) point-to-point messages (the osu_latency
ping pong benchmark). Typical sizes of messages exchanged
during point-to-point communication in deep learning work-
loads are in the range of 1–50 MB. In Figure 3, we see
nearly identical inter-node latencies. However, MPI clearly
outperforms NCCL for intra-node communication. Further,
NCCL point-to-point communication primitives block on the
communicating GPUs until a handshake is completed. MPI
on the other hand allows the user to issue sends/receives
without blocking other computation kernels on the GPU.
We thus implement AxoNN’s asynchronous point-to-point
communication backend using MPI.

1 8 64 512 4K 32K 256K 2M 16M 128M
Message size (B)

10 4

10 3

10 2

10 1

1

101

102

T
im

e
(m

s)

Point-to-point Communication Bandwidths

Inter-node NCCL

Inter-node MPI

Intra-node NCCL

Intra-node MPI

region of interest

Fig. 3. Execution time for point-to-point messages in MPI and NCCL on
Summit using the OSU Micro-benchmarks v5.8 [18]. We use two GPUs on the
same and different nodes for the intra- and inter-node experiments respectively.

We build our implementation of inter-layer parallelism on
top of MPI4Py [19], a library which provides Python bindings
for the MPI standard. We use MPI_Isend and MPI_Irecv
to implement the SEND and RECEIVE methods mentioned
in Algorithm 1. The MPI_Irecv s are issued preemptively
at the beginning of a forward or backward pass to overlap
the reception of the next message with the computation and
thus achieve asynchronous messaging. In lines 13 and 21 of
Algorithm 2, we have already shown how AxoNN is designed
to support message driven scheduling for inter-layer parallelism.
Combined with the asynchronous point-to-point communication
backend discussed in this section, we are able to realize our
goal of asynchronous message driven scheduling for improving
hardware utilization.

B. Data parallel phase
We again had a choice between MPI and NCCL for the

all-reduce operation in the data-parallel phase and we decided

to make that choice based on empirical evidence. Figure 4
presents the performance of the all-reduce operation using
MPI and NCCL. In this case, intra-node refers to performing
the collective over all six GPUs of a single node and inter-
node refers to performing it over 12 GPUs on two nodes. The
results demonstrates the significantly better performance of
NCCL (dashed lines) over MPI for collective communication.
This makes NCCL the clear choice for AxoNN’s collective
communication backend.

8 64 512 4K 32K 256K 2M 16M 128M 1G 8G
Message size per process (B)

10 2

10 1

1

10

102

103

104

T
im

e
(m

s)

Collective Communication Bandwidths

Inter-node MPI

Intra-node MPI

Inter-node NCCL

Intra-node NCCL

region of interest

Fig. 4. Execution time for an All-reduce operation in MPI and NCCL on
Summit using the OSU Micro-benchmarks v5.8 [18]. We use six and twelve
GPUs for the intra-node and inter-node experiments respectively.

Our implementation of data parallelism uses NCCL for the
all-reduce operation over half-precision parameter gradients. We
avoid using full-precision gradients to reduce communication
times. To prevent overflow in the all-reduce operation, we
pre-divide the loss by the total number of microbatches in
the input batch. We use PyTorch’s torch.distributed
API [10] for making NCCL all-reduce function calls.

V. MEMORY AND PERFORMANCE OPTIMIZATIONS

In this section, we discuss optimizations that are critical
to the memory utilization and performance of AxoNN. We
implement these optimizations on top of the basic version
of our framework discussed in Section IV. We verify their
efficacy by conducting several experiments on a 12 billion
parameter transformer neural network [11] on 48 NVIDIA
V100 GPUs. Section VI-B provides the exact architectural
hyperparameters of this model in Table I, and describes how
these hyperparameters affect the computational and memory
requirements of a transformer. For all the experiments in this
section, the batch size and sequence length are fixed at 2048
and 512 respectively, and we use mixed-precision training [14]
with the Adam optimizer [16].

A. Memory optimizations for reducing activation memory

Gradient checkpointing reduces the amount of memory used
to store activations by only storing the output activations
of a subset of layers during the forward pass [20] . For
a neural network with N layers (l1, l2, ..lN), this subset of

layers is defined as Sckp = (lac , l2·ac , l3·aclN), where
ac is a tunable hyperparameter with the constraint that it
should be a factor of N. Activations for layers that are not
checkpointed are regenerated during their backward pass. For
inter-layer parallelism, it can be shown that the maximum
activation memory occupied per GPU with ac as the gradient
checkpointing hyperparameter is:

Mactivation ∝ Ginter ×
(

N

Ginter × ac

)
+ 1 + ac (1)

The value ac =
√
N leads to the lowest value of Mactivation.

We thus set the value of ac to the factor of N
Ginter

(the number of
layers on each GPU) closest to

√
N . To the best of our knowl-

edge, our work is the first to derive an optimal value of this
hyperparameter for inter-layer parallelism. We implement gra-
dient checkpointing using the torch.utils.checkpoint
API provided by PyTorch [17].

B. Memory optimizations for reducing Ginter and improving
performance of the inter-layer parallel phase

Narayanan et al. show empirically that the performance
of inter-layer parallelism deteriorates with increasing values
of Ginter [5]. They attribute this to an increase in the idle
time in the warmup phase with increasing Ginter . Below, we
show analytically that it is not only the warmup phase, but the
entire inter-layer parallel phase which suffers from inefficiency
with increasing Ginter by virtue of rising communication to
computation ratios.

Lemma 5.1: Given a neural network, batch size, and number
of GPUs, the total amount of communication per GPU in the
inter-layer parallel phase is proportional to Ginter .

Proof: The total amount of input data a GPU computes on
reduces as the number of GPUs used for data parallelism
increases. Hence, the amount of data per GPU is inversely
proportional to Gdata given a fixed total number of GPUs
that are split between data and inter-layer parallelism. It also
follows that the amount of data computed on per GPU is directly
proportional to Ginter . Assuming that the output activations of
each layer of the neural network have the same size, the amount
of point-to-point communication per GPU only depends on the
amount of input data it consumes and not on the number of
layers it houses. Thus the total amount of communication is
directly proportional to Ginter .

Lemma 5.2: Given a neural network, batch size, and number
of GPUs, the total amount of computation per GPU in the
inter-layer parallel phase is independent of Ginter .

Proof: We have shown in Lemma 5.1 that the total amount
of input data a GPU computes on is directly proportional
to Ginter . Since layers are sharded evenly among the Ginter

GPUs of a row in Figure 2, the total amount of computation
per instance of the input is inversely proportional to Ginter .
Thus the total amount of computation per GPU is independent
of Ginter .

Theorem 5.3: Given a neural network, batch size, and number
of GPUs, the ratio of the total amount of computation to
communication in the inter-layer parallel phase is inversely
proportional to Ginter .

Proof: Directly follows from Lemmas 5.1 and 5.2.

We thus expect the efficiency of inter-layer parallelism
to decrease with increasing Ginter due to an increase in
the ratio of communication to computation. We empirically
verify this phenomenon by studying the effect of varying
Ginter on performance. We gather the time spent in the
inter-layer parallel phase for processing a batch of input
using our reference transformer neural network for values
of Ginter = [6, 12, 24, 48]. The corresponding value of Gdata

is automatically set to be 48
Ginter

. We fix the microbatch size
and batch size to 1 and 2048 respectively. We also remove
the optimizer states so that we do not run out of memory
for lower values of Ginter . Figure 5 illustrates the results of
our experiment. As expected, we observe significant gains in
performance with decreasing Ginter .

6 12 18 24 30 36 42 48
Ginter

0

10

20

30

40

50

60
T

im
e

(s
)

Performance of inter-layer parallelism v/s Ginter

Fig. 5. Time spent in the inter-layer parallel phase for a single batch for
different values of Ginter when training a 12 billion parameter transformer
model on 48 GPUs of Summit.

Theorem 5.3 thus provides a motivation to optimize the
implementation by reducing the number of GPUs used for
inter-layer parallelism. However, a smaller value of Ginter

requires the entire network to fit on a smaller number of GPUs,
which increases the number of parameters per GPU. This
increases the memory requirements per GPU. Lets say the
number of parameters per GPU is φ = |~θ| and we are using
the Adam optimizer [16] which stores two state variables per
parameter. The memory required to store model parameters,
gradients and the optimizer states comes out to be 20φ (4φ
bytes each for ~θ and ∇~θ, 2φ bytes each for ~θ16 and ∇ ~θ16, and
8φ bytes for ~sopt). Note that this analysis does not include
memory required fori storing activations.

At Ginter = 6 on our reference transformer, this would
amount to 40 GB memory per GPU which is 2.5 times more
than the 16 GB DRAM capacity of Summit’s V100 GPUs. To
solve this problem, we introduce a novel memory optimization

algorithm that reduces the amount of memory required to store
the model parameters and optimizer states by five times.

Implementation: In our memory optimization, only the half
precision model parameters (~θ16) and gradients (∇ ~θ16) reside
on the GPU. Everything else is either moved to the CPU (~sopt
and ~θ) or deleted entirely (∇~θ) before the training begins.
The training procedure requires ~sopt and ~θ on the GPU in the
optimizer phase. We save memory by not fetching the entire ~θ
and ~sopt arrays to the GPU, but only small equal sized chunks
at a time. We call these chunks buckets and their size as the
bucket-size (bsize). After fetching a bucket of ~sopt and ~θ, we
run the optimizer step on this data and offload it back to the
CPU. GPU Memory is saved by reusing buffers across buckets.

The total memory footprint of the optimizer is only 16bsize
now (4bsize and 8bsize for the ~θ and ~sopt buckets respectively
and another 4bsize for descaling the half precision gradients).
With our memory optimizations, the total memory requirements
to store model parameters and optimizier states is now 4φ+
16bsize , down from 20φ. As bsize� φ, this amounts to a 5×
saving in memory utilization. Since the activation memory is
unaffected the total memory saved should obviously be less
than this number. With Ginter = 24, Gdata = 2, microbatch
size 1 and bsize = 16 million our total memory usage for the
reference transformer reduces four fold in practice - from 520
GB to 130.24 GB.

Next, we use our memory optimization algorithm with
bsize = 16 million to reduce Ginter from 24 to 6, and study
the performance implications. We expect an increase in the
time it takes to complete the data parallel phase, because both
the amount of data and number of GPUs participating in the
all-reduce increases four fold. Figure 6 compares AxoNN’s
performance with and without the memory optimizations. We
notice an improvement of 13 percent in the absolute batch
timings. While the time for the data parallel phase increases
from 0.62s to 4.32s, the corresponding performance gain in
the pipelining phase (46.08s v/s 34.05s) compensates for this
increase. We expect higher speedups for larger values of batch
size, which are typical in large scale model training.

C. Overlapping all-reduce & optimizer phases for performance

After optimizing the inter-layer parallel phase, we turned our
attention to the less time consuming all-reduce and optimizer
phases. We observed that the all-reduce phase (in blue) takes
2.5 times longer than the optimizer phase (in green) (right
bar in the Figure 6 plot). We hypothesize that by interleaving
their executions, we could overlap data movement between the
CPU and the GPU in the optimizer phase with the expensive
collective communication of the data parallel phase. We explain
our approach for enabling this overlap below.

Implementation: The main idea here is to issue the all-reduce
call into smaller operations over chunks of the half precision
gradients (∇ ~θ16). For convenience, we keep the size of the
chunk as k×bsize , where we call k as the all-reduce coarsening
factor. As soon as an all-reduce on a chunk finishes, we enqueue
the optimizer step for the corresponding k buckets and start

W/o memory
 optimization
(Ginter = 24)

With memory
 optimization
 (Ginter = 6)

0

20

40

60

80

100

T
im

e
(s

)

Breakdown of Batch Times

optimizer phase

all-reduce phase

inter-layer parallel phase

Fig. 6. AxoNN’s performance for a single batch with and without our memory
optimization on a 12 billion parameter transformer on 48 GPUs

the all-reduce of the next chunk. The key to achieving overlap
is to use separate CUDA streams for the optimizer and the
all-reduce. Figure 7 shows an Nvidia Nsight Sytems profile of
our implementation.

 Data-parallel stream

Optimizer stream

Fig. 7. An Nsight profile of AxoNN training a 12 billion parameter transformer
model on 48 GPUs shows the interleaving of the all-reduce and optimizer
phases for a single batch. The two rows represent separate CUDA streams for
the optimizer and all-reduce.

10 20 30 40 50 60
All-reduce coarsening factor (k)

0

2

4

6

8

T
im

e
(s

)

Performance of all-reduce and optimizer phases v/s k

Fig. 8. Combined execution time of optimizer and all-reduce phases for a
single batch versus the coarsening factor, k, for the all-reduce.

We study the variation of the time it takes to finish the
combined data parallel and optimizer phases with k in Figure 8.
At k = 1, we observe high overheads due to too many all-
reduce calls. Infact, performance is even worse than the case

where we had no overlap between the two phases. We observe
optimum behavior at two and four. Beyond that, we encounter
increasing latencies since increasing k makes the algorithm
gravitate towards sequential behavior.

VI. EXPERIMENTAL SETUP

This section provides an overview of our empirical evaluation
of AxoNN against the current state-of-the-art frameworks in
parallel deep learning. Along with comparing performance, we
also verify the correctness of our implementation by training
a neural network to completion and reporting the loss curves.
We conduct all of our experiments on Oak Ridge National
Laboratory’s Summit Cluster. Each node of Summit consists
of two Power 9 CPUs each connected to 3 NVIDIA V100
GPUs via NVLink interconnects. The peak intra and inter-node
bandwidth for GPU communication is 50 GB/s and 12.5 GB/s
respectively. Each V100 GPU has 16 GB DRAM and a peak
half precision throughput of 125 Tflop/s.

A. Choice of frameworks

We compare AxoNN with two frameworks implementing
3D parallelism (intra-layer, inter-layer, and data parallelism),
namely - Megatron-LM [5] and DeepSpeed [6], [12], both of
which have successfully demonstrated impressive performance
when scaled to models with as many as trillion parameters.
Both these frameworks augment Shoeybi et al.’s intra-layer
parallelism [2] with a NCCL based implementation of inter-
layer parallelism. Additionally, DeepSpeed uses the ZeRO [12]
family of memory optimizations which distribute optimizer
states across data parallel GPUs.

B. Choice of neural networks

We conduct our strong and weak scaling experiments on
GPT-like [1], [3] transformer [11] neural networks on the
task of causal language modeling. For a fair comparison, we
use Megatron-LM’s extremely efficient implementation of the
transformer kernel for all the three frameworks. A transformer
can be parameterized by three hyperparameters - number of
layers, hidden size, and number of attention heads. For more
details about the transformer architecture, we refer the reader
to Vaswani et al. [11]. We first verify the correctness of
our implementation by training GPT-2 small [1] (110 million
parameters)- to completion. Table I lists the transformer models
and the corresponding GPU counts used in our weak scaling
runs. We start with a 12 billion parameter transformer on
48 GPUs (8 nodes) and scale up to a 100 billion parameter
transformer on 384 GPUs (64 nodes). We choose 48 GPUs as
the starting point as it was the least number of GPUs the three
frameworks could all train the 12 billion parameter transformer
without running out of memory. For strong scaling, we choose
the 12 billion parameter transformer from Table I and vary the
number of GPUs from 48 to 384.

C. Dataset and hyperparameters

The batch size and number of parameters are the two most
important quantities that affect hardware performance. We thus

TABLE I
DETAILS ABOUT THE TRANSFORMERS MODELS USED IN THE WEAK

SCALING STUDY

Parameters Hidden Attention
Nodes GPUs (in Billions) Layers Dimension Heads

8 48 12 48 4512 24
16 96 24 48 6336 36
32 192 50 96 6528 48
64 384 100 96 9360 60

perform two separate experiments that vary the batch size
and number of parameters independently with increasing GPU
counts. Since the dataset size is fixed, both these experiments
neatly translate to a strong scaling and weak scaling setup.
We note that it is absolutely imperative not to vary both
these quantities together, otherwise they can artificially inflate
performance numbers. Thus we fix the batch size for the weak
scaling run at 16384. For the strong scaling experiments, we
vary the batch size linearly, starting with 4096 for 48 GPUs (8
nodes) and scaling upto 32768 for 384 GPUs (48 nodes). We
train all our models on the wikitext-103 [21] dataset which
consists of around 100 million English words sourced from
more than 28000 Wikipedia articles. We fix the sequence
length and vocabulary size at 512 and 51200 respectively.
We use the Adam optimizer [16] with learning rate 0.001,
β1 = 0.9, β2 = 0.999 and 0.01 as the decoupled weight decay
regularization [22] coefficient. We tune Ginter , Gintra , and
Gdata for Megatron-LM and DeepSpeed. For AxoNN we just
tune Ginter and Gdata since it does not implement intra-layer
parallelism. For AxoNN’s memory optimizations we fix bsize
to 4 million and k to 4.

D. Metrics

We use two metrics in our experiments - namely expected
training time and the percentage of peak half precision
throughput. Both of these are metrics derived from the average
batch time, which we calculate by training for eleven batches
and averaging the timings of the last ten. In accordance with
the training regime employed for GPT-3 [3], we define the
expected training time as the total time it would take to train a
transformer on a total of 300 billion tokens. Let b, s, l, h, V ,
t be the batch size, sequence length, number of layers, hidden
size, vocabulary size, and the average batch time respectively.
Then the estimated training time can be estimated from the
batch time as follows:

estimated training time = 3e1011
t

bs
(2)

We derive the average flop/s by using Narayanan et al.’s lower
bound for flops in a batch for a transformer [5]:

flop/s =
96bslh2

t
(1 +

s

6h
+

V

16lh
) (3)

Dividing this by the total peak half precision throughput of all
the GPUs used for training (on Summit this is 125 Tflop/s per
GPU) yields the percentage of peak throughput.

12 B
 (48 GPUs)

24 B
 (96 GPUs)

50 B
 (192 GPUs)

100 B
 (384 GPUs)

Number of parameters

0
30
60
90

120
150
180
210
240
270
300
330

T
im

e
(d

ay
s)

Expected Training Times - Weak Scaling

Megatron-LM

DeepSpeed

AxoNN

12 B
 (48 GPUs)

24 B
 (96 GPUs)

50 B
 (192 GPUs)

100 B
 (384 GPUs)

Number of parameters

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ea

k
flo

p/
s

(%
)

Percentage of Peak Throughput - Weak Scaling

Megatron-LM

DeepSpeed

AxoNN

Fig. 9. Plots comparing the weak scaling performance of AxoNN with other frameworks: expected training times (left) and % of peak GPU throughput (right).

0 1000 2000 3000 4000 5000 6000 7000 8000
Batch number

0

2

4

6

8

Ba
tc

h
lo

ss

Training GPT-2 small on Wikitext-103

PyTorch

AxoNN

Fig. 10. Loss curves for training GPT-2 small on the wikitext-103 dataset.
We run AxoNN on 12 GPUs (Ginter = 2) and PyTorch on a single GPU.

VII. RESULTS

We now present the results of the experiments outlined in
the previous section.

A. Training validation

It is critical to ensure that parallelizing the training process
does not adversely impact its convergence. Diverging training
loss curves are a sign of undetected bugs in the implementation
or statistical inefficiency of the parallel algorithm. To validate
the accuracy of our parallel implementation, we train the 110
million parameter GPT-2 small to completion using PyTorch on
a single GPU and using AxoNN on 12 GPUs with Ginter = 2.
Figure 10 shows the training loss for PyTorch, and AxoNN
and we can see that the loss curves are identical. This validates
our AxoNN implementation.

B. Weak scaling performance

To be fair to each framework, we tune various hyperpa-
rameters for each framework on each GPU count and use the

best values for reporting performance results. Table II lists the
optimal hyperparameters we obtain in our tuning experiments
for each framework in the weak scaling experiment. Across
all model sizes, AxoNN uses four to eight times the number
of GPUs for data parallelism as compared to Megatron-LM.
This number is identical for AxoNN and DeepSpeed for the
12 billion and 24 billion parameter models but for the larger
50 and 100 billion parameter models, AxoNN uses twice as
many GPUs for data parallelism as DeepSpeed. Since data
parallelism is embarrassingly parallel, this ends up substantially
improving AxoNN’s performance.

TABLE II
OPTIMAL HYPERPARAMETER VALUES OBTAINED FROM TUNING

EXPERIMENTS FOR THE WEAK SCALING STUDIES.

No. of
Params.
(billions)

Framework
Micro
Batch
Size

Gintra Ginter Gdata

12
AxoNN 8 - 6 8
DeepSpeed 2 3 2 8
Megatron-LM 8 3 16 1

24
AxoNN 4 - 12 8
DeepSpeed 2 3 4 8
Megatron-LM 1 3 16 2

50
AxoNN 4 - 24 8
DeepSpeed 1 3 16 4
Megatron-LM 8 6 32 1

100
AxoNN 2 - 48 8
DeepSpeed 1 3 32 4
Megatron-LM 4 12 32 1

Figure 9 (left) presents a performance comparison of the
three frameworks in the weak scaling experiment. When
compared with the next best framework - DeepSpeed, AxoNN
decreases the estimated training time by over a month for the
12, 24 and 50 billion parameter models and 22 days for the 100
billion parameter model. For the 100 billion parameter model,
AxoNN is faster than DeepSpeed by 1.18× and Megatron-LM
by 2.46×! This is significant for deep learning research as it

allows us to train larger models faster. Even at identical values
of Gdata for the 12 and 24 billion parameter models, AxoNN
surpasses DeepSpeed because of our asynchronous, message-
driven implementation of inter-layer parallelism. These results
suggest that AxoNN could scale to training trillion parameter
neural networks on thousands of GPUs in the future. AxoNN
also delivers an impressive 49-54% of peak half precision
throughput on Summit GPUs, outperforming DeepSpeed (39-
42%) and Megatron-LM (21-41%) (see Figure 9, right).

C. Strong scaling performance

As with weak scaling, we first tuned hyperparameters for
each framework for strong scaling experiments. For these
experiments we see all the three frameworks using the same
values of Ginter , Gintra (not applicable for AxoNN) as
Table II and scale the value of Gdata with increasing GPU
counts. This is a testament to data parallelism’s near perfect
scaling behavior due to its embarrassingly parallel nature.
Figure 11 compares the strong scaling performance of the
three frameworks. Once again, AxoNN again outperforms
both DeepSpeed and Megatron-LM by 11.47 and 18.14%
respectively on 384 GPUs.

48 96 192 384
Number of GPUs

15

30

60

90

120
150

T
im

e
(d

ay
s)

Expected Training Times - Strong Scaling

Megatron-LM

DeepSpeed

AxoNN

Fig. 11. Plots comparing the strong scaling performance of AxoNN with other
frameworks: training times for the 12 billion parameter transformer model.

VIII. RELATED WORK

Due to it’s simplicity and embarrassingly parallel nature,
data parallelism has been the most commonly adopted algo-
rithm in parallel deep learning research. Initial frameworks
gravitated towards asynchronous data parallelism with pa-
rameter servers [23], [24]. Chen et al however established
that asynchronous data parallelism does not work on a large
number of GPUs [25]. The ensuing discrepancy between
model weights on each GPU ends up hurting the rate of
convergence. Subsequently, modern implementations of data
parallelism are synchronous and do not employ central param-
eter servers [10], [26], [2], [5], [12], [15]. These frameworks
average gradients using all-reduce communication primitives
in a bulk synchronous fashion after the backward pass of a

batch is completed. With advances in interconnect technology
and communication libraries [8], the cost of synchronous all-
reduce communication has drastically reduced, making data
parallelism the most effective algorithm for scaling neural
network training on 100s of GPUs.

Data parallelism needs to be combined with one or both
of intra-layer and inter-layer parallelism when the memory
requirements of a neural network exceed the DRAM capacity
of a GPU. The exponentially increasing parameter sizes of
modern neural networks [1], [3] have made it absolutely
critical to develop efficient algorithms for intra-layer and inter-
layer parallelism. While a number of frameworks have been
proposed for intra-layer parallelism [4], [2], frequent collective
communication calls after the computation of each layer
prevents them from scaling beyond a small number of GPUs
connected by NVLink. Algorithms for inter-layer parallelism
fall into two categories based on the type of pipelining they
implement: namely pipelining with flushing [27], [5], [6], [28]
or pipelining without flushing [7], [29]. Under the former
approach, worker GPUs update their weights only after all
of the microbatches of a batch have been flushed out of
the pipeline. While this maintains strict optimizer semantics,
constant flushing leads to inefficient hardware utilization.
This problem is greatly exacerbated at higher GPU counts.
Pipelining without flushing was proposed as a remedy for this
problem. In this approach a constant number of microbatches
are always present in the pipeline. Each GPU updates their
weights asynchronously after completing the backward pass of
a microbatch. While this leads to increased hardware utilization,
the departure from exact optimizer semantics ends up hurting
model convergence severely. Again, greater the GPU count the
more severe this problem is. Subsequently, modern parallel
deep learning frameworks have adopted pipelining with flushing
for realizing inter-layer parallelism.

To counteract the extreme memory requirements of modern
neural networks, Rajbhandari et al. have augmented data par-
allelism with a number of memory optimizations (ZeRO [12],
ZeRO-Offload [30], ZeRO-Infinity [15]). ZeRO distributes
optimizer states, parameters and gradients across data-parallel
GPUs. ZeRO-Offload and ZeRO-Infinity are targeted towards
extremely memory scarce environments. To reduce GPU
memory utilization they offload data to the CPU or NVMe.

IX. CONCLUSION

In this work, we presented a new highly scalable parallel
framework for deep learning, called AxoNN. We have demon-
strated that AxoNN utilizes available hardware resources effi-
ciently by exploiting asynchrony and message-driven schedul-
ing. We augmented AxoNN with a novel memory optimization
algorithm that not only provided a four-fold savings in GPU
memory utilization, but also boosted performance by over
13%. In both strong and weak scaling experiments, AxoNN
outperformed the state-of-the-art for training large multi-billion
parameter transformer models. We believe that AxoNN will
allow deep learning researchers to save valuable resources and
time in their training runs. Our results give us hope that we

can use AxoNN to train transformer models with more than
one trillion parameters on thousands of GPUs. We plan to
open-source the weights of these trained models for the benefit
of the research community.

ACKNOWLEDGEMENT

This work was supported by funding provided by the
University of Maryland College Park Foundation. This research
used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

REFERENCES

[1] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[2] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” CoRR, vol. abs/2005.14165, 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

[4] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani,
P. Koanantakool, P. Hawkins, H. Lee, M. Hong, C. Young,
R. Sepassi, and B. Hechtman, “Mesh-tensorflow: Deep learning
for supercomputers,” in Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf

[5] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language model
training on GPU clusters,” CoRR, vol. abs/2104.04473, 2021. [Online].
Available: https://arxiv.org/abs/2104.04473

[6] Microsoft, “3d parallelism with megatronlm and zero redundancy
optimizer,” https://github.com/microsoft/DeepSpeedExamples/tree/master/
Megatron-LM-v1.1.5-3D parallelism, 2021.

[7] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. Devanur,
G. Granger, P. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in ACM Symposium on
Operating Systems Principles (SOSP 2019), October 2019. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
pipedream-generalized-pipeline-parallelism-for-dnn-training/

[8] NVIDIA, “Nccl,” https://docs.nvidia.com/deeplearning/nccl/user-guide/
docs/overview.html.

[9] Facebook, “Gloo,” https://github.com/facebookincubator/gloo.
[10] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,

J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch distributed:
Experiences on accelerating data parallel training,” Proc. VLDB Endow.,
vol. 13, no. 12, p. 3005–3018, Aug. 2020. [Online]. Available:
https://doi.org/10.14778/3415478.3415530

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[12] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’20. IEEE Press, 2020.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Representations by Back-propagating Errors,” Nature, vol. 323, no.
6088, pp. 533–536, 1986. [Online]. Available: http://www.nature.com/
articles/323533a0

[14] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh,
and H. Wu, “Mixed precision training,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=r1gs9JgRZ

[15] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning,” ser.
SC ’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3458817.3476205

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[18] O. S. University, “Osu micro-benchmarks 5.8,” http://mvapich.cse.
ohio-state.edu/benchmarks/.

[19] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Computing in Science Engineering, vol. 23, no. 4, pp.
47–54, 2021.

[20] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” 2016.

[21] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” CoRR, vol. abs/1609.07843, 2016. [Online]. Available:
http://arxiv.org/abs/1609.07843

[22] I. Loshchilov and F. Hutter, “Fixing weight decay regularization
in adam,” CoRR, vol. abs/1711.05101, 2017. [Online]. Available:
http://arxiv.org/abs/1711.05101

[23] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014, pp.
571–582. [Online]. Available: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/chilimbi

[24] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in NIPS, 2012.

[25] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” in International Conference on Learning
Representations Workshop Track, 2016. [Online]. Available: https:
//arxiv.org/abs/1604.00981

[26] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 2018.

[27] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen,
H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and z. Chen, “Gpipe:
Efficient training of giant neural networks using pipeline
parallelism,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf

[28] M. Tanaka, K. Taura, T. Hanawa, and K. Torisawa, “Automatic
graph partitioning for very large-scale deep learning,” in 35th IEEE
International Parallel and Distributed Processing Symposium, IPDPS
2021, Portland, OR, USA, May 17-21, 2021. IEEE, 2021, pp. 1004–1013.
[Online]. Available: https://doi.org/10.1109/IPDPS49936.2021.00109

[29] B. Yang, J. Zhang, J. Li, C. Re, C. Aberger, and C. De Sa, “Pipemare:
Asynchronous pipeline parallel dnn training,” in Proceedings of Machine
Learning and Systems, A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3,
2021, pp. 269–296. [Online]. Available: https://proceedings.mlsys.org/
paper/2021/file/6c8349cc7260ae62e3b1396831a8398f-Paper.pdf

[30] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He, “Zero-offload: Democratizing billion-scale
model training,” CoRR, vol. abs/2101.06840, 2021. [Online]. Available:
https://arxiv.org/abs/2101.06840

https://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://arxiv.org/abs/2104.04473
https://github.com/microsoft/DeepSpeedExamples/tree/master/Megatron-LM-v1.1.5-3D_parallelism
https://github.com/microsoft/DeepSpeedExamples/tree/master/Megatron-LM-v1.1.5-3D_parallelism
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://www.microsoft.com/en-us/research/publication/pipedream-generalized-pipeline-parallelism-for-dnn-training/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html
https://github.com/facebookincubator/gloo
https://doi.org/10.14778/3415478.3415530
http://arxiv.org/abs/1706.03762
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1145/3458817.3476205
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1711.05101
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://arxiv.org/abs/1604.00981
https://arxiv.org/abs/1604.00981
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://doi.org/10.1109/IPDPS49936.2021.00109
https://proceedings.mlsys.org/paper/2021/file/6c8349cc7260ae62e3b1396831a8398f-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/6c8349cc7260ae62e3b1396831a8398f-Paper.pdf
https://arxiv.org/abs/2101.06840

	Introduction
	Background on deep learning
	Definitions and basics of training neural networks
	Modes of parallelism in deep learning

	Designing a parallel deep learning framework
	A hybrid approach to parallel training
	Data parallel phase
	Inter-layer parallel phase

	Implementation of AxoNN
	Inter-layer parallel phase
	Data parallel phase

	Memory and performance optimizations
	Memory optimizations for reducing activation memory
	Memory optimizations for reducing Ginter and improving performance of the inter-layer parallel phase
	Overlapping all-reduce & optimizer phases for performance

	Experimental setup
	Choice of frameworks
	Choice of neural networks
	Dataset and hyperparameters
	Metrics

	Results
	Training validation
	Weak scaling performance
	Strong scaling performance

	Related work
	Conclusion
	References

