
Comparative Evaluation of Call Graph
Generation by Profiling Tools

Onur Cankur and Abhinav Bhatele

Department of Computer Science
University of Maryland, College Park, Maryland 20742 USA

ocankur@umd.edu, bhatele@cs.umd.edu

Abstract. Call graphs generated by profiling tools are critical to dis-
secting the performance of parallel programs. Although many mature
and sophisticated profiling tools record call graph data, each tool is dif-
ferent in its runtime overheads, memory consumption, and output data
generated. In this work, we perform a comparative evaluation study on
the call graph data generation capabilities of several popular profiling
tools – Caliper, HPCToolkit, TAU, and Score-P. We evaluate their run-
time overheads, memory consumption, and generated call graph data
(size and quality). We perform this comparison empirically by executing
several proxy applications, AMG, LULESH, and Quicksilver on a parallel
cluster. Our results show which tool results in the lowest overheads and
produces the most meaningful call graph data under different conditions.

Keywords: profiling tools · call graph · performance analysis · parallel
performance · measurement

1 Introduction

Analyzing and optimizing the performance of parallel programs is critical to
obtaining high efficiency on high performance computing (HPC) architectures.
The complexity in hardware architectures and system software makes measuring
and recording performance data challenging. At the same time, the complexity
in HPC applications and compiler transformations can make analyzing and at-
tributing performance to source code and external libraries challenging [23]. Even
so, a plethora of performance analysis tools exists for gathering and analyzing
performance data [5, 1, 9, 22, 13]. One category of performance tools collects per-
formance data that is aggregated over time. In this work, we refer to these as
profiling tools to distinguish them from tracing tools that gather more detailed
time-series data or full execution traces. Specifically, we focus on profiling tools
that record contextual information about the performance data such as calling
context, file and line numbers in the source code, etc., which can help users in
attributing performance to source code.

Although several profiling tools exist in the HPC community, they differ in
their profiling methods and capabilities, which affects their efficiency and the
quality of generated performance data. Broadly, profiling tools use one of two

2 O. Cankur, A. Bhatele

methods for collecting information – instrumentation and sampling. Instrumen-
tation involves adding extra instructions to the source or binary code that are
used to measure the execution time of different parts of a program. In contrast,
sampling does not require adding instructions. It periodically samples the pro-
gram counter, uses that to identify the code being executed, and aggregates
the performance measurements of a code block across multiple samples. These
different profiling methods can lead to varying overheads and capabilities in
different profiling tools. For example, an instrumentation-based profiling tool
might cause more overhead than a sampling-based tool while providing more
accurate output. Besides, two different profiling tools that use the same method
might have different capabilities depending on how well they are implemented.
For instance, a sampling-based tool might work better than others under low
sampling intervals. Since end-users have many choices when using a profiling
tool, a systematic study is needed to understand the impact of different profiling
techniques on data generation.

Performance data gathered by profiling tools consist of different kinds of in-
formation about the program such as the call graph, communication patterns,
and MPI process topology. In this study, we focus on the call graph data gener-
ation capabilities of profiling tools since the call graph provides critical informa-
tion about program structure, which can be quite useful in performance analysis.
There are many factors that come into play when comparing call graph data gen-
eration. Runtime overhead and memory consumption are two comparison met-
rics that naturally come to mind since they directly impact the application being
profiled. In addition, profiling complex parallel applications on a large number of
processes can result in a large amount of call graph data being generated, which
can also be an important factor to consider when comparing tools. The quality
and usefulness of the data generated in terms of its correctness (e.g., correctly
measuring and attributing execution time) and ability to attribute performance
to source code are also important. In this paper, we consider runtime overhead,
memory usage, and quality of the call graph data to compare the data generation
capabilities of profiling tools.

We compare several popular tools that are used in the HPC community to
profile parallel programs – Caliper [5], HPCToolkit [1], Score-P [9], and TAU [22]
– in terms of their capabilities, performance, and generation of meaningful call
graph data. More specifically, we compare their runtime overheads, memory us-
age, and the size, correctness and quality of the generated call graph data. We
conduct these experiments on a parallel cluster by profiling three different proxy
applications, AMG, LULESH, and Quicksilver, using both instrumentation and
sampling under different sampling intervals and different numbers of processes.
To the best of our knowledge, this is the first comparative evaluation study on
call graph data generation capabilities of profiling tools for parallel programs. In
addition, we extend and use Hatchet [4], a Python-based tool that enables ana-
lyzing the output from profiling tools programmatically, to compare call graph
data. We show which tools are more efficient in terms of measurement overheads
and memory consumption, and generate more meaningful call graph data under

Comparative Evaluation of Call Graph Generation 3

different conditions and for different proxy applications. Specifically, this study
makes the following contributions:

– Comparatively evaluate the call graph generation capabilities of profiling
tools considering their measurement and memory overheads, and quality of
the generated data.

– Extend the Hatchet performance analysis tool to support output data gen-
erated by Score-P and TAU, enabling the comparison of data from several
popular profiling tools.

– Provide feedback to tool developers for the improvement of various aspects
of the performance data gathering process.

2 Background and Related Work

In this section, we provide an overview of the profiling tools used in this paper
and give detailed background information about profiling methods and the out-
put of profiling tools. We also introduce Hatchet, using which we perform our
analyses. Finally, we present related work on the evaluation of profiling tools.

2.1 Different Methods for Profiling

Performance measurement tools can be divided into two categories: profiling and
tracing. In this work, we only consider profiling which can be done using sampling
or instrumentation. Instrumentation can be classified along two dimensions: the
method of instrumentation and where is the instrumentation added. The method
can be manual (by the developer) or automatic (by the tool, compiler, library
interposition, etc.) and it can be performed by adding additional instructions
in the source code, byte code, or binary code [18]. These additional instructions
allow measuring the performance of a code section.

On the other hand, sampling-based profiling tools take periodic snapshots of
the program, check the location of the program counter and collect the function
call stack by performing stack unwinding [23] and then aggregate this data that
they gathered periodically. It also allows to change sampling interval, hence,
provides controllable overhead.

2.2 Information Gathered by Profiling Tools

The data generated by profiling tools usually contains contextual information
(the function name, file name, call path, process or thread ID, etc.) and per-
formance metrics such as time, cache misses, communication information, and
the total number of instructions along with the callpath information on the pro-
gram. Some profiling tools collect individual callpaths (i.e. calling contexts) on
the program and represent it in a tree format called calling context tree. Other
tools aggregate that information and generate call graphs which show aggre-
gated information in which a procedure that is called in multiple distinct paths

4 O. Cankur, A. Bhatele

is represented as a single node. Profiling tools typically have their own custom
output formats to store the calling context tree (CCT) or call graph. In this
paper, we use call graph as a general term for both CCT and call graph.

2.3 Profiling Tools Used in this Study

All profiling tools in this study, which are introduced below, support C, C++,
and Fortran programs and MPI, OpenMP, and pthreads programming models
(see Table 1).

Table 1: Salient features of different profiling tools

Tool Samp. Instr. Languages Output Format

Caliper Yes Yes C, C++, Fortran .json and custom
HPCToolkit Yes No C, C++, Fortran XML and custom
Score-P Partially Yes C, C++, Fortran, Python XML and custom
TAU Yes Yes C, C++, Fortran, Java, Python custom

Caliper is a performance analysis toolbox that provides many services for users
to measure and analyze the performance, such as tracing and profiling services
[5]. It allows users to activate these capabilities at runtime by annotating the
source code or using configuration files. It provides json or custom file formats
and generates CCT data.

HPCToolkit is a toolkit for performance measurement and analysis [1]. It sup-
ports both profiling and tracing and uses sampling instead of instrumentation.
It generates a performance database directory that contains XML and custom
file formats that store CCT information.

Score-P is a measurement infrastructure that supports both profiling and trac-
ing [9]. It is primarily an instrumentation-based tool that supports source, com-
piler, and selective instrumentation, but it also supports sampling for instru-
mented executables. Score-P supports Python in addition to C, C++, and For-
tran. It generates .cubex [20] output tarballs which are in CUBE4 format and
contain files in XML and custom formats and generates CCT information.

TAU is also a performance measurement and analysis toolkit and supports pro-
filing and tracing [22]. TAU also primarily uses instrumentation but it also sup-
ports sampling. It supports different types of instrumentation such as source
instrumentation using PDT [11], compiler instrumentation, and selective in-
strumentation. It supports C, C++, Fortran, Java, and Python and generates
profile.<rank>.<>.<thread> files which are in custom format and stores
CCT as its default profiling output format.

2.4 Post-mortem Analysis of Profiling Data

Most of the profiling tools we evaluate provide their own analysis and visualiza-
tion tools such as HPCViewer [15], ParaProf [3], and CubeGUI [20]. Visualization

Comparative Evaluation of Call Graph Generation 5

tools usually provide a graphical user interface (GUI) that allows the visualiza-
tion of one or two call graphs at the same time. These GUIs provide limited call
graph analysis capabilities since they do not provide a programmable interface.
In this study, we used and improved Hatchet [4] to compare the call graph data
generated from different profiling tools on the same platform.

Hatchet is a Python-based performance analysis tool that provides a pro-
grammable interface to analyze the call graph profiling data of different tools
on the same platform [4]. It reads in the profiling data and generates a data
structure called graphframe which stores numerical (e.g. time, cache misses) and
categorical (callpath, file and line information, etc.) information along with the
caller-callee relationships on the program.

2.5 Related Work

All tools used in this paper have some kind of prior performance evaluation.
For example, some of them study the overhead of TAU using tracing, profiling,
sampling, and instrumentation [21, 17, 14]. There is a similar study on HPC-
Toolkit [12] which includes runtime overhead evaluation. Score-P and Caliper
include similar runtime overhead evaluation studies in their corresponding pa-
pers [9] [5]. Although each tool has been evaluated for performance, these past
studies only cover the runtime and memory overhead of a tool, different profiling
methods a tool supports, or include a simple overhead comparison with another
tool that is not currently state-of-the-art. Therefore, the only criteria considered
in these papers are the runtime and memory overheads, and they do not evaluate
the quality of the call graph data generated by profiling tools.

Other evaluation studies on profiling tools only include functional compar-
isons [8, 16]. The closest related work to our paper is published in 2008 [10].
However, it is more like a case study and a generic user experience comparison
of profiling tools that were widely used at that time and it does not contain
empirical experiments. Our study is the first empirical comparative study on
call graph data generation by state-of-the-art profiling tools, considering their
runtime overhead, memory usage, and output quality.

3 Methodology for Comparative Evaluation

In this study, we consider runtime overhead, memory usage, size, richness and
correctness of the generated call graph data. We do not consider information
such as communication volume and process topology. Below, we present the
various axes along which call graph data generation capabilities are compared
and describe the metrics used for comparison.

3.1 Comparison of Runtime Overhead

One of the most important factors to consider when comparing call graph data
generation is the runtime overhead incurred when using them. The execution

6 O. Cankur, A. Bhatele

time of an application should not be perturbed significantly by the profiling
tool. Different profiling methods can incur different overheads. For example,
sampling causes less overhead than instrumentation methods because it is less
intrusive. Similarly, one instrumentation method can cause more overhead than
another instrumentation method. Hence, we evaluate the runtime overhead by
conducting experiments using both sampling and instrumentation techniques
separately. In addition, sampling-based methods have the flexibility to adjust
the runtime overhead by increasing or decreasing the sampling interval. We also
compare the tools by varying the sampling intervals wherever supported.

We run each application without any profiling and measure the execution
time by calling MPI Wtime() at the start and end of the program. Dividing these
two timings gives us the relative execution time of a program. We then run each
application with different profiling tools to calculate the increase in execution
time due to profiling overheads.

3.2 Comparison of Memory Consumption

Ideally, performance tools should not consume large amounts of memory. Hence,
it is important to compare the additional memory consumption of different pro-
filing tools. We compare the amount of memory consumed by profiling tools
during application execution. We perform the same experiments using the de-
fault and varying sampling intervals and using instrumentation.

We measure the memory usage of a program using the getrusage() function
call and obtain the largest memory usage at any point during program execution.
We calculate the additional memory consumed by a tool by gathering memory
usage information for two runs – one with and one without profiling.

3.3 Comparison of the Quality of Call Graph Data

We expect profiling tools to provide useful information without generating un-
necessary or repetitive information. In this study, we evaluate the quality of the
call graph profiling data recorded by each tool considering the data size, correct-
ness and richness of the data with the assumption that if the data generated by
multiple tools is nearly identical, it should be close to the ground truth.

Size of Call Graph Data: A significant amount of call graph data can be
generated when profiling HPC applications, which can make post-mortem anal-
ysis challenging. We evaluate the size of the data generated when using different
tools for the same experiments by using default and varying sampling intervals
and instrumentation. We use default settings for each tool without changing the
number of metrics collected and collect per-process data without aggregating it.
We also observe how the data size increases with an increase in the number of
processes since some tools generate a separate file per MPI process while others
represent this data in a more compact output format.

Correctness of Call Graph Data: The correctness of the generated call graph
data is critical in order to perform meaningful analysis. We consider the infor-

Comparative Evaluation of Call Graph Generation 7

mation to be correct if different tools generate the same results with correct
contextual information. We follow two different strategies for this analysis. First,
we load the profiling data from different tools in Hatchet and identify the top
5 slowest call graph nodes in the call graph by inclusive and exclusive time and
investigate if the tools identify the same slowest nodes. We also compare the file,
line numbers, and callpaths reported by each tool for the slowest nodes. Second,
we identify the hot path in each dataset. The hot path refers to a call path in the
graph in which all nodes account for 50% or more of the inclusive time of their
parent [2]. The node at the end of a hot path is called a hot node. Therefore,
hot path analysis gives us the most time-consuming call path in the execution.
Our hot path analysis implementation in Hatchet makes it possible to perform
the same analysis for each tool.

Richness of Call Graph Data: The richness of call graph profiling data refers
to having detailed information in the CCT such as caller-callee relationships,
and contextual information (file and module information, line number, etc.). To
evaluate richness, we take the following parameters into account: the maximum
and average callpath lengths, the number of nodes, the number of identified
.so files (dynamically loaded modules), and the number of MPI routines. The
callpath length provides insight into how detailed the caller-callee relationships
are. In addition, examining the number of total and unique nodes in the call
graph tells us if a tool is missing some information or generating excessive data
that is not required. We also compare the information generated by different tools
about dynamically loaded libraries and MPI routines. Similar to the correctness
evaluation, these comparisons are performed using Hatchet. For example, we
filter the Hatchet dataframe by node names to get the MPI functions or .so files.
We traverse the graph to calculate the maximum and average callpath length.

3.4 Extensions to Hatchet

We have improved Hatchet by implementing TAU and Score-P readers to use in
this study. Below, we explain how we implement these readers.

Score-P Reader: Score-P stores profiling data in CUBE4 tar files (extension:
.cubex) [20]. These tar files in turn contain anchor.xml, .index, and .data files.
The anchor.xml file contains metadata information about metrics and processes
along with caller-callee relationships. The .index and .data files contain infor-
mation about metric measurement and metric values. To implement a Python
reader in Hatchet, we use pyCubexR which is a Score-P reader that can read
cubex files. After implementing the reader, we compared the generated Hatchet
graphframe with the CubeGUI visualization provided by Score-P to confirm the
correctness of our implementation.

TAU Reader: TAU generates profiles in its custom format. It generates a sepa-
rate file for each process and thread. In addition, it generates a separate directory
for each metric (time, cache misses, etc.). We combine all this information gath-
ered from different directories and files, and create a single CCT which is stored

8 O. Cankur, A. Bhatele

as a graphframe in Hatchet. Finally, we validate our reader implementation by
comparing the Hatchet graphframe with ParaProf output which is a visualization
tool for TAU outputs.

4 Experimental Setup

In this section, we describe each experiment in detail. We used three HPC appli-
cations written in C/C++ and four profiling tools in our experiments: AMG [6],
LULESH [7], and Quicksilver [19] proxy applications and Caliper, HPCToolkit,
Score-P, and TAU profiling tools. We chose LULESH because it is a simple code
(lines of code=∼5.5k), which can help us illustrate differences between tools.
Quicksilver is more complex than LULESH in terms of lines of code (∼10k),
and AMG (∼65k) uses external libraries such as Hypre which makes its call
paths more complex. In addition, all the profiling tools we used in this study
are actively and widely used in many supercomputers and they are still being
improved. We used the latest release versions of these tools: Caliper 2.6.0, HPC-
Toolkit 2021.05.15, Score-P 7.1, and TAU 2.30.1. We compared their sampling
and instrumentation capabilities by running experiments accordingly. We sepa-
rately built each of the applications with these tools using GCC 8.3.1 and Open
MPI 3.0.1. We only used MPI, so multithreading using OpenMP or Pthreads
was not enabled. We ran the applications on a parallel cluster which has x86 64
architecture with 36 cores on each node and performed weak scaling experiments
using 64, 128 (125 for LULESH), 256 (216 for LULESH), and 512 processes using
1 through 16 nodes and 32 cores on each node in all experiments.

4.1 Experiment 1: Comparison of Sampling Capabilities

In this experiment, we used Caliper, HPCToolkit, Score-P, and TAU using their
default sampling intervals. However, it should be noted that Score-P supports
sampling of instrumented programs, while other tools directly perform sampling
on executables without instrumenting them. The default sampling interval for
Caliper, HPCToolkit, Score-P, and TAU is 20, 5, 10, and 30 ms, respectively.
We evaluated the runtime overhead, memory usage and the size, richness, and
correctness of the generated data.

4.2 Experiment 2: Impact of Sampling Intervals

Similar to Experiment 1, we only used the tools that support sampling and
evaluated the same comparison metrics. However, for this experiment, we used
varying sampling intervals as follows: 1.25, 2.5, 5, 10, 20 ms. Sampling interval
refers to the milliseconds spent between two samples (Caliper uses Hertz as
a unit). For example, sampling interval with a value of 5 ms refers that the
profiling tool samples the program for every 5 milliseconds. This experiment
shows whether tools can properly work when the sampling interval is low and
how the performance and the generated data change as we change the interval.

Comparative Evaluation of Call Graph Generation 9

4.3 Experiment 3: Comparison of Instrumentation Capabilities

In this experiment, we compared the instrumentation capabilities of Caliper,
Score-P, and TAU since HPCToolkit does not support instrumentation. We tried
to use the default instrumentation method that the tools support. By default,
Caliper supports manual source instrumentation, Score-P supports compiler in-
strumentation, and TAU supports automatic source instrumentation. During the
experiments, we realized that TAU’s automatic source instrumentation, which
uses PDT, gives errors for almost all of the runs because it is not fully updated.
Therefore, we decided to use compiler instrumentation for TAU which works
for all applications. Caliper requires manual annotations to perform the source
instrumentation. We used annotated versions of LULESH and Quicksilver which
are publicly shared by Caliper developers on Github and we annotated AMG by
ourselves learning from the already available annotations. We evaluated the same
comparison metrics also in this experiment and this experiment shows which tool
or instrumentation method causes more overhead or can generate better data
and how well these tools can perform an instrumentation method.

5 Evaluation

In this section, we present the findings of our empirical comparison of call graph
data generation by different profiling tools.

5.1 Runtime Overhead

We first evaluate the runtime overhead of the profiling tools by performing exper-
iments using instrumentation and sampling with default and varying intervals.

64 128 256 512
Number of Processes

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
T

im
e

AMG

Caliper

HPCToolkit

Score-P

TAU

64 125 216 512
Number of Processes

0.0

0.5

1.0

1.5

2.0
LULESH

Caliper

HPCToolkit

Score-P

TAU

64 128 256 512
Number of Processes

0.0

1.5

3.0

4.5

6.0
Quicksilver

Caliper

HPCToolkit

Score-P

TAU

Fig. 1: Runtime overhead for different tools when the sampling method is used.
Default sampling intervals (20, 5, 10, and 30 ms) were used for Caliper, HPC-
Toolkit, Score-P, and TAU respectively.

Figure 1 shows runtime overheads caused by Caliper, HPCToolkit, Score-P,
and TAU when we sample the programs using default sampling intervals. We can
see that most tools have a small overhead (slightly over 1x) except Score-P. Score-
P has ∼1.25x overhead for AMG, ∼1.02x for LULESH, and ∼5x for Quicksilver.

10 O. Cankur, A. Bhatele

We think that the significant difference between the overhead caused by Score-
P and other tools is because Score-P samples instrumented executables while
others can directly perform sampling on uninstrumented executables. Caliper,
HPCToolkit, and TAU do not have a significant overhead. The overhead increases
as we increase the number of processes but the increase is small. In addition, TAU
fails to produce output when we use it with AMG and Quicksilver on 256 and
512 processes. Similarly, Score-P does not work when we run Quicksilver using
128, 256, and 512 processes. Both TAU and Score-P give segmentation faults in
some runs. We tried to fix these errors by debugging, running the applications
multiple times, and contacting the developers but could not find a solution.

In Figure 2, we show the runtime overhead of the tools under varying sam-
pling intervals (1.25–20.0 ms). It can be observed that the runtime overhead
does not change significantly under different sampling intervals and the results
are similar to what we see in Figure 1. Hence, we can say that the sampling
interval does not have a significant impact on the runtime overhead. We re-
alized that Caliper, Score-P, and TAU do not work at all when the sampling
interval is 1.25 ms on AMG and Quicksilver runs, and TAU and Score-P do not
work deterministically under some sampling intervals. For example, sometimes
three of five experiments run to completion while at other times, only one of
them works. HPCToolkit works under all samplings intervals and its runtime
overhead is stable in all settings.

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
T

im
e

AMG

Caliper

HPCToolkit

Score-P

TAU

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

0.0

0.5

1.0

1.5

2.0
LULESH

Caliper

HPCToolkit

Score-P

TAU

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

0.0

1.5

3.0

4.5

6.0
Quicksilver

Caliper

HPCToolkit

Score-P

TAU

Fig. 2: Runtime overhead for different tools as a function of the sampling interval
used. Each execution used 64 MPI processes.

Figure 3 shows the runtime overhead caused by Caliper, Score-P, and TAU
when the instrumentation method is used instead of sampling. As mentioned
before, we used automatic compiler instrumentation for both TAU and Score-
P and manual source instrumentation for Caliper. All three plots in Figure 3
show that Caliper results in lower runtime overhead. Interestingly, TAU has
the highest runtime overhead (∼2x) for LULESH while Score-P has the highest
overhead for Quicksilver (∼10x) although the same compiler version and same
compiler wrappers that the tools provide are used. We believe this is related to
the implementation details of each tool and how they handle some specific cases
(e.g. inlining and loop optimizations). Therefore, we can say that compiler in-
strumentation is not stable under different conditions and is highly dependent on

Comparative Evaluation of Call Graph Generation 11

the application. We also note that TAU and Score-P’s compiler instrumentation
of Quicksilver causes more overhead compared to sampling (Figure 1).

64 128 256 512
Number of Processes

0.0

1.0

2.0

3.0

4.0

R
el

at
iv

e
T

im
e

AMG

Caliper

Score-P

TAU

64 125 216 512
Number of Processes

0.0

1.0

2.0

3.0

4.0
LULESH

Caliper

Score-P

TAU

64 128 256 512
Number of Processes

0.0

4.0

8.0

12.0

16.0
Quicksilver

Caliper

Score-P

TAU

Fig. 3: Runtime overhead for different tools when the instrumentation method is
used. Caliper uses source instrumentation, while Score-P and TAU use compiler
instrumentation.

5.2 Memory Consumption

In this section, we evaluate the memory usage of each tool but we do not report
the results under default sampling intervals because we observed that it does
not change significantly depending on the sampling interval.

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

1
101
102
103
104
105
106
107

A
dd

iti
on

al
 M

em
or

y
U

sa
ge

 (
K

B)

AMG

Caliper

HPCToolkit

Score-P

TAU

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

1
101
102
103
104
105
106
107

LULESH

Caliper

HPCToolkit

Score-P

TAU

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

1
101
102
103
104
105
106
107

Quicksilver

Caliper

HPCToolkit

Score-P

TAU

Fig. 4: Total additional memory usage (in KB) for different tools as a function
of the sampling interval used. Each execution used 64 MPI processes.

Figures 4 and 5 show that the total memory usage for each tool typically does
not change drastically with different applications, different numbers of processes,
and different sampling intervals. It can be observed in both figures that TAU
uses more memory in all of the runs where it works (∼10 MB in sampling and
∼100 MB in instrumentation) compared to the other tools. Score-P has the least
memory usage except in AMG runs using 10 ms and 20 ms sampling intervals (see
left plot in Figure 4). HPCToolkit has the second-highest memory usage while
Caliper has the third-highest. It can also be seen that TAU uses more memory
when compiler instrumentation is used (∼100 MB, Figure 5) versus sampling
(∼10 MB, Figure 4). Because of this significant difference between tools, we can
say that memory usage is an important comparison metric to evaluate call graph
data generation.

12 O. Cankur, A. Bhatele

64 128 256 512
Number of Processes

1
101
102
103
104
105
106
107
108

A
dd

iti
on

al
 M

em
or

y
U

sa
ge

 (
K

B)

AMG

Caliper

Score-P

TAU

64 125 216 512
Number of Processes

1
101
102
103
104
105
106
107
108

LULESH

Caliper

Score-P

TAU

64 128 256 512
Number of Processes

1
101
102
103
104
105
106
107
108

Quicksilver

Caliper

Score-P

TAU

Fig. 5: Total additional memory usage (in KB) for different tools when the instru-
mentation method is used. Caliper uses source instrumentation, while Score-P
and TAU use compiler instrumentation.

Next, we evaluate the quality of the generated call graph data considering
the size, richness, and meaningfulness of the data.

5.3 Size of Call Graph Data

We compared the size of the generated call graph data while performing the
same experiments. We observed that there is a significant difference between
tools in terms of the size of the generated data.

64 128 256 512
Number of Processes

10 1
1

10
102
103
104
105
106

D
at

a
Si

ze
 (

M
B)

AMG

Caliper

HPCToolkit

Score-P

TAU

64 125 216 512
Number of Processes

10 1
1

10
102
103
104
105
106

LULESH

Caliper

HPCToolkit

Score-P

TAU

64 128 256 512
Number of Processes

10 1
1

10
102
103
104
105
106

Quicksilver

Caliper

HPCToolkit

Score-P

TAU

Fig. 6: Size of the profiling data (in MB) for different tools when the default
sampling method is used. Default sampling intervals (20, 5, 10, and 30 ms) were
used for Caliper, HPCToolkit, Score-P, and TAU respectively.

Figure 6 shows the increase in the data size when the default sampling
method is used for each tool. The size of the generated data increases with
an increase in the number of processes since data for more processes is being
recorded. We can see that TAU generates the largest amount of data for all
applications (from ∼100 to ∼1000 MB). In addition, TAU and HPCToolkit gen-
erate much more data compared to Score-P and Caliper because they generate
a separate file for each process while Score-P and Caliper generate more com-
pact data. For example, Caliper generates only a single json file that contains
information about all the processes. In contrast, Figure 7 shows the decrease in
the data size under varying sampling intervals. In this case, the size of the data
decreases as we increase the sampling interval since less data is being recorded
as we increase the time between two samples. Interestingly, Caliper has an op-
posite behavior and it generates slightly more data as the sampling interval is

Comparative Evaluation of Call Graph Generation 13

increased. We examined the Caliper data and realized that it generates more
nodes as we increase the interval up to 5.0 ms and then, it starts generating
fewer nodes again.

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

10 1
1

10
102
103
104
105

D
at

a
Si

ze
 (

M
B)

AMG

Caliper

HPCToolkit

Score-P

TAU

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

10 1
1

10
102
103
104
105

LULESH

Caliper

HPCToolkit

Score-P

TAU

1.25 2.5 5.0 10.0 20.0
Sampling Interval (ms)

10 1
1

10
102
103
104
105

Quicksilver

Caliper

HPCToolkit

Score-P

TAU

Fig. 7: Size of the profiling data (in MB) for different tools as a function of the
sampling interval used. Each execution used 64 MPI processes.

Similar to Figure 6, we see the increase in data size when using instrumen-
tation in Figure 8. As the number of processes is increased, TAU generates the
largest amount of data. In addition, it can be also seen from LULESH plots
in Figures 6 and 8 that TAU generates more data when sampling is used in-
stead of compiler instrumentation because it generates additional information
such as [CONTEXT] and [SAMPLE] nodes. [CONTEXT] nodes do not store useful
information and they can be removed from the data.

64 128 256 512
Number of Processes

10 1
1

10
102
103
104
105

D
at

a
Si

ze
 (

M
B)

AMG

Caliper

Score-P

TAU

64 125 216 512
Number of Processes

10 1
1

10
102
103
104
105

LULESH

Caliper

Score-P

TAU

64 128 256 512
Number of Processes

10 1
1

10
102
103
104
105

Quicksilver

Caliper

Score-P

TAU

Fig. 8: Size of the profiling data (in MB) for different tools when the instrumen-
tation method is used. Caliper uses source instrumentation, while Score-P and
TAU use compiler instrumentation.

5.4 Correctness of Call Graph Data

In order to evaluate the correctness of the call graph data, we compare the two
slowest nodes and their identified callpaths and summarize the other findings.
We only report results for LULESH since we get similar results with other ap-
plications. First, we identified the slowest and the hot node for each tool and
checked if the file and line information of the slowest node is correct. Table 2
shows the identified slowest nodes, hot nodes, and the correctness of file and line
information for the slowest node. We assume that if the majority of the tools
provide the same output, it should be close to the ground truth. As it can be
seen from the table, Caliper instrumentation, HPCToolkit sampling, and TAU

14 O. Cankur, A. Bhatele

instrumentation can identify the same node, CalcHourglassControlForElems, as
the slowest node with the correct file and line information. Caliper and TAU
sampling cannot identify the same node as the slowest node although they also
have the same node in their output data with the correct file and line infor-
mation which suggests that either these tools record a different time value for
that node or they have incomplete contextual information. The CalcHourglass-
ControlForElems node was missing in Score-P output, therefore, we could not
identify it. We also observed that Caliper instrumentation cannot generate file
and line information but we could not check that for Score-P since the node was
missing in its output. Score-P does not identify the same slowest node because
it does not record information for inlined functions by default but provides an
option to enable it.

Table 2: Comparison of the correctness of the generated call graph data for
different tools when the default sampling interval and instrumentation method
are used. The data was generated by executing LULESH using 64 MPI processes.

Slowest node File & line
Tool Method (inc. time, exc. time) Hot node correctness

Caliper
Sampling (main, syscall)*** main*** Correct**

Instrumentation (main, lulesh.cycle Missing
CalcHourglassControlForElems)

HPCToolkit
Sampling (main, Loop in lulesh.cc at line 1048. Correct

CalcHourglassControlForElems) (CalcHourglassControlForElems) Correct

Score-P
Sampling (lulesh-scorep2.0 (main), main) lulesh-scorep2.0 (main) Missing

Instrumentation (lulesh-scorep2.0 (main), main) main Missing

TAU
Sampling (progress engine, progress engine)*** .TAU Application*** Correct**

Instrumentation (.TAU Application (main), CalcHourglassControlForElems Correct
CalcHourglassControlForElems)

Figure 9 shows the callpath for the commonly identified slowest node, Cal-
cHourglassControlForElems. We confirm that TAU and Caliper sampling out-
puts (Figure 9(b), 9(a)) contain information about that node and can generate
its callpath although they cannot identify it as the slowest node. We can see from
TAU and Caliper sampling callpaths that they do not aggregate the measured
time values for that node and they connect the nodes related to it directly to
the main node which results in having many related nodes with low time values.
In addition, Caliper sampling cannot generate the name of the node as seen in
Figure 9(a), and the only way to find it is to use the line information on the
output for that node. Score-P is missing that node in its output, therefore, it is
not included in this figure. In summary, TAU and Caliper sampling and Score-P
generate incomplete call graphs for LULESH compared to TAU instrumentation,
Caliper instrumentation, and HPCToolkit.

We also investigated the top five slowest nodes and observed that Caliper in-
strumentation, HPCToolkit, and TAU instrumentation identify almost the same
nodes as the top five but the order of the top five list is somewhat different in
each tool. Score-P sampling and instrumentation also find similar top five slow-
est nodes with greater differences. Caliper and TAU sampling do not identify

Comparative Evaluation of Call Graph Generation 15

(a) Caliper (sampling)

(b) TAU (sampling)

(c) HPCToolkit

(d) Caliper (instrumentation)

(e) TAU (instrumentation)

Fig. 9: Callpath of the CalcHourglassControlForElems node obtained by different
tools for LULESH running on 64 processes.

the same slowest nodes. We present the call paths of the second slowest node in
Figure 10. The leaf node in each call path is the second slowest node. It can be
seen that the leaf nodes are usually different from each other except for a few
similarities. Score-P instrumentation (Figure 10(f)) identifies the same second
slowest node as TAU instrumentation (Figure 10(g)). However, their callpaths
are not identical since they handle inlined functions differently. Similarly, Score-P
sampling (Figure 10(d)) identifies the same second slowest node as HPCToolkit
(Figure 10(b)) but the callpaths are different. In addition, Caliper instrumen-
tation (Figure 10(e)) does not identify the same slowest node but the node
identified by Caliper is also in the top five list of HPCToolkit and TAU instru-
mentation. Caliper sampling (Figure 10(a)) and TAU sampling (Figure 10(c))
do not provide as meaningful results. Note that we do not have Score-P results
in Figure 9 because Score-P identifies the main node as the slowest node and
the slowest node that is commonly identified by other tools does not exist in
the Score-P output. However, it identifies the same second slowest node as some
other profiling tools, hence, we included Score-P in Figure 10.

5.5 Richness of Call Graph Data

We compared the richness of the call graph data generated by the profiling tools
considering the maximum and average callpath depth, the number of nodes,

16 O. Cankur, A. Bhatele

(a) Caliper (sampling)

(b) HPCtoolkit

(c) TAU (sampling)

(d) Score-P (sampling)

(e) Caliper (instrumentation)

(f) Score-P (instrumentation)

(g) TAU (instrumentation)

Fig. 10: Callpath of the second slowest node obtained by different tools for
LULESH running on 64 processes.

the number of dynamically loaded libraries (.so files), and the number of MPI
functions. The data is gathered by running each application on 64 processes.

Table 3 shows the richness of the data generated by each tool using their
default method. The fourth and fifth columns show the maximum and aver-
age callpath lengths in the call graph data. The callpaths generated by HPC-
Toolkit and Caliper sampling usually have similar depths. TAU and Score-P
compiler instrumentation abnormally generate very long callpaths for a node
called hypre qsort0 which is a recursive sorting function. Interestingly, they
keep creating a new callpath for that function every time it calls itself instead
of aggregating its information. The other tools usually generate callpaths that
have fewer than ten nodes. The length of the callpaths might be related to how
well a tool can handle inlined functions, but generating unnecessary data might
also result in longer callpaths. Therefore, we cannot infer that a longer callpath
is richer. In addition, some of these tools allow the user to set the maximum call-
path length to be recorded, so expert users could adjust it depending on their
needs. Therefore, this comparison gives insights on tools’ and profiling methods’
capabilities for generating sufficient call graph data with enough caller-callee
relationships.

The next column shows the number of all and unique nodes. HPCToolkit
data usually contains more unique nodes although TAU sampling usually has
the largest number of nodes. We believe that it is related to how [UNWIND] nodes
are stored in TAU data format since we realized that they include unnecessary
information (confirmed by TAU developers). This suggests that the information

Comparative Evaluation of Call Graph Generation 17

Table 3: Comparison of the richness of the generated data for different tools
when a fixed sampling interval (20.0 ms) and the instrumentation method are
used. Each execution used 64 MPI processes.

Max Avg No. of nodes No. of .so files No. of MPI
App. Tool Method depth depth (all,unq) (all,unq) functions (all,unq)

AMG

Caliper
Sampling 30 9.724 (1414,739) (363,36) (37,17)

Instrumentation 3 2.384 (50,22) 0 (38,10)
HPCToolkit Sampling 35 13.931 (12112,2528) (4616,25) (585,66)

Score-P
Sampling 63 10.859 (1470,199) 0 (668,52)

Instrumentation 163* 31.428* (3117,332) 0 (676,51)

TAU
Sampling 12 8.416 (13645,1976) (2010,20) (1036,91)

Instrumentation 111* 10.12* (1956,334) 0 (683,52)

LULESH

Caliper
Sampling 19 3.984 (832,729) (96,47) (7,6)

Instrumentation 7 5.115 (71,31) 0 (40,7)
HPCToolkit Sampling 23 10.412 (4546,1775) (1496,22) (96,81)

Score-P
Sampling 5 3.0 (97,65) 0 (19,11)

Instrumentation 4 2.656 (43,34) 0 (19,11)

TAU
Sampling 12 5.473 (4999,1281) (915,12) (236,32)

Instrumentation 8 4.408 (114,78) 0 (36,11)

Quicksilver

Caliper
Sampling 30 10.703 (1495,807) (413,25) (17,8)

Instrumentation 8 3.937 (122,84) 0 (36,7)
HPCToolkit Sampling 29 14.376 (5253,2392) (1307,22) (24,15)

Score-P
Sampling 10 5.05 (343,206) 0 (40,15)

Instrumentation 9 5.184 (418,267) 0 (80,29)

TAU
Sampling 12 7.802 (7776,1779) (731,16) (230,41)

Instrumentation 9 4.831 (401,246) 0 (47,18)

is not stored as efficiently in TAU. Caliper and Score-P usually generate call
graphs with fewer nodes since they generate less data.

The difference between the number of all .so files generated by different tools
is larger than the difference between the number of unique .so files. For example,
while HPCToolkit output contains a much larger number of .so files compared
to Caliper sampling, the number of unique .so files in Caliper sampling is larger.
The reason is that HPCToolkit can identify more dynamically loaded libraries
while Caliper can identify only some of them so the number of all .so files is
much higher in HPCToolkit data. We also realized that the number of unique
.so files are is significantly different from each other when sampling is used.
However, Score-P does not provide information about .so files when we use
sampling. The table also shows that .so files cannot be identified when using
instrumentation which is expected since they are dynamically loaded libraries.
We emphasize that it does not imply that the instrumentation method provides
poor call graph data compared to the sampling method since information about
.so files might not be necessary for some analyses.

The last column shows the number of MPI functions. We investigated how
many MPI functions can be detected by each tool since it is a commonly used
programming model. TAU sampling generates a significantly large number of
MPI functions in all applications compared to other tools. As mentioned before,
the reason might be that TAU generates unnecessary [CONTEXT] nodes that
do not contain useful information and these nodes are mostly related to MPI
functions.

18 O. Cankur, A. Bhatele

In summary, all the information about runtime overhead, memory usage, and
data size should be connected to the quality of output to have a more complete
evaluation of call graph data generation. We emphasize that we cannot conclude
that a tool provides richer call graph data by only looking at Table 3. However,
this comparison shows some characteristics, abnormalities, and sufficiency of call
graph data generated by different tools.

6 Discussion

Our comparative evaluation shows that the runtime overhead when using profil-
ing tools is similar, except in the case of Score-P for some applications. Additional
memory consumed by a tool does not vary significantly with the application be-
ing profiled. In general, we can order the memory usage of tools from highest to
lowest as TAU, HPCToolkit, Caliper, and Score-P. Also, TAU typically gener-
ates the largest amount of data with HPCToolkit being a close second. The size
of the data generated by Score-P and Caliper is notably lower compared to TAU
and HPCToolkit because their representation of output data is more compact.
The top five slowest nodes identified by the profiling tools are usually similar to
each other except when using sampling in Caliper and TAU. However, although
different tools identify the same nodes as slow, the relative ordering of the top
five slowest nodes is usually different from each other. In terms of call path
completeness, Caliper instrumentation, TAU instrumentation and HPCToolkit
generate more complete call graphs in default mode.

After extensively using and evaluating the tools, we are also in a position
to provide some feedback to their respective developers. From all the figures in
Section 5.3, it can be seen that TAU usually generates the largest amount of data.
The reason for this is that it stores repetitive information such as [CONTEXT]

nodes. These nodes do not have useful metric values and could be removed from
the generated data. In addition, TAU stores the same metric information twice –
in a separate line by itself and at the end of each callpath. This can be optimized
by storing the information only once. When we implemented a reader for TAU
output in Hatchet, we realized that TAU generates a separate file for each metric
that contains exactly the same callpath information when more than one metric
is measured. The size of the output data can be further reduced by storing the
call graph only once.

When using the instrumentation method in Caliper, we observed that that
Caliper does not generate file and line number information in instrumentation
only mode. Although we perform manual source instrumentation in this study,
it would be helpful for the end user if file and line number information was in the
output. Finally, when using sampling in Caliper and TAU and either method in
Score-P, the generated call graphs are relatively incomplete on the experiments
performed in this study. We believe that their callpath generation capabilities
can be improved.

In summary, we performed the first empirical study to compare call graph
data generation capabilities of profiling tools considering many different aspects.

Comparative Evaluation of Call Graph Generation 19

We used these tools as per their official documentation and contacted the tool
developers when needed. This study shows that more comprehensive evaluation
studies on profiling tools considering their scalability and other performance
analysis capabilities may reveal interesting information and could be helpful for
the community. In the future, we plan to extend this work by using produc-
tion applications, collecting other structural information, and performing more
empirical and analytical analyses on the output data.

Acknowledgments

This work was supported by funding provided by the University of Maryland
College Park Foundation.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: Hpctoolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2010)

2. Adhianto, L., Mellor-Crummey, J., Tallent, N.R.: Effectively presenting call path
profiles of application performance. In: 2010 39th International Conference on Par-
allel Processing Workshops. pp. 179–188. IEEE (2010)

3. Bell, R., Malony, A.D., Shende, S.: Paraprof: A portable, extensible, and scalable
tool for parallel performance profile analysis. In: European Conference on Parallel
Processing. pp. 17–26. Springer (2003)

4. Bhatele, A., Brink, S., Gamblin, T.: Hatchet: Pruning the overgrowth in paral-
lel profiles. In: Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’19 (Nov 2019),
http://doi.acm.org/10.1145/3295500.3356219, lLNL-CONF-772402

5. Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.T., Gimenez, A., LeGen-
dre, M., Pearce, O., Schulz, M.: Caliper: Performance introspection for hpc soft-
ware stacks. In: SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 550–560 (2016).
https://doi.org/10.1109/SC.2016.46

6. Henson, V.E., Yang, U.M.: Boomeramg: A parallel algebraic multigrid
solver and preconditioner. Applied Numerical Mathematics 41(1), 155–
177 (2002). https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5,
https://www.sciencedirect.com/science/article/pii/S0168927401001155, devel-
opments and Trends in Iterative Methods for Large Systems of Equations - in
memorium Rudiger Weiss

7. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Tech. Rep. LLNL-
TR-641973 (August 2013)

8. Knobloch, M., Mohr, B.: Tools for gpu computing–debugging and performance
analysis of heterogenous hpc applications. Supercomputing Frontiers and Innova-
tions 7(1), 91–111 (2020)

20 O. Cankur, A. Bhatele

9. Knüpfer, A., Rössel, C., Mey, D.a., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philip-
pen, P., Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., We-
sarg, B., Wolf, F.: Score-p: A joint performance measurement run-time infrastruc-
ture for periscope,scalasca, tau, and vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2011. pp. 79–91.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

10. Leko, A., Sherburne, H., Su, H., Golden, B., George, A.D.: Practical experiences
with modern parallel performance analysis tools: an evaluation. In: Parallel and
Distributed Processing, IPDPS 2008 IEEE Symposium. pp. 14–18 (2008)

11. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Ras-
mussen, C.: A tool framework for static and dynamic analysis of object-oriented
software with templates. In: SC’00: Proceedings of the 2000 ACM/IEEE Confer-
ence on Supercomputing. pp. 49–49. IEEE (2000)

12. Liu, X., Mellor-Crummey, J.: A tool to analyze the performance of multithreaded
programs on numa architectures. ACM Sigplan Notices 49(8), 259–272 (2014)

13. Madsen, J.R., Awan, M.G., Brunie, H., Deslippe, J., Gayatri, R., Oliker, L., Wang,
Y., Yang, C., Williams, S.: Timemory: modular performance analysis for hpc. In:
International Conference on High Performance Computing. pp. 434–452. Springer
(2020)

14. Malony, A.D., Huck, K.A.: General hybrid parallel profiling. In: 2014 22nd Euromi-
cro International Conference on Parallel, Distributed, and Network-Based Process-
ing. pp. 204–212. IEEE (2014)

15. Mellor-Crummey, J., Fowler, R., Marin, G.: HPCView: A tool for top-down analysis
of node performance. The Journal of Supercomputing 23, 81–101 (2002)

16. Mohr, B.: Scalable parallel performance measurement and analysis tools-state-
of-the-art and future challenges. Supercomputing frontiers and innovations 1(2),
108–123 (2014)

17. Nataraj, A., Sottile, M., Morris, A., Malony, A.D., Shende, S.: Tauoversupermon:
Low-overhead online parallel performance monitoring. In: European Conference on
Parallel Processing. pp. 85–96. Springer (2007)

18. Nethercote, N.: Dynamic binary analysis and instrumentation. Tech. rep., Univer-
sity of Cambridge, Computer Laboratory (2004)

19. Richards, D.F., Bleile, R.C., Brantley, P.S., Dawson, S.A., McKinley, M.S.,
O’Brien, M.J.: Quicksilver: a proxy app for the monte carlo transport code mer-
cury. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER).
pp. 866–873. IEEE (2017)

20. Saviankou, P., Knobloch, M., Visser, A., Mohr, B.: Cube v4: From performance
report explorer to performance analysis tool. Procedia Computer Science 51, 1343–
1352 (2015)

21. Shende, S., Malony, A.D.: Integration and application of tau in parallel java envi-
ronments. Concurrency and Computation: Practice and Experience 15(3-5), 501–
519 (2003)

22. Shende, S.S., Malony, A.D.: The tau parallel performance system. The Interna-
tional Journal of High Performance Computing Applications 20(2), 287–311 (2006)

23. Tallent, N.R., Mellor-Crummey, J.M., Fagan, M.W.: Binary analysis for measure-
ment and attribution of program performance. ACM Sigplan Notices 44(6), 441–
452 (2009)

