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Abstract—Accurate modeling of turbulent hypersonic flows has
tremendous scientific and commercial value, and applies to at-
mospheric flight, supersonic combustion, materials discovery and
climate prediction. In this paper, we describe our experiences in
extending the capabilities of and modernizing CRoCCo, an MPI-
based, CPU-only compressible computational fluid dynamics
code. We extend CRoCCo to support block-structured adaptive
mesh refinement using a highly-scalable AMR library, AMReX,
and add support for a fully curvilinear solver. We also port the
computational kernels in CRoCCo to GPUs to enable scaling
on modern exascale systems. We present our techniques for
overcoming performance challenges and evaluate the updated
code, CRoCCo v2.0, on the Summit system, demonstrating a 6×
to 44× speedup over the CPU-only version.

Index Terms—hypersonics, computational fluid dynamics,
adaptive mesh refinement, GPU computing

I. INTRODUCTION

The potential for hypersonic flight and commercial space
access to significantly enhance life on earth is immeasurable
– the growth of new markets, the discovery of new materials,
and our ability to monitor climate change are just a few of
the many possibilities that hypersonic and space flight will
bring. Innovation in hypersonics is guided by physics-based
simulation tools. However, a key challenge in these efforts
is to overcome the extreme computational demands of high-
fidelity (HiFi) modeling for hypersonic systems. Resolving all
important spatial and time scales along with highly nonlinear
multi-physics interactions, especially at the full vehicle level,
goes beyond even the current state-of-the-art.

This is especially difficult in hypersonic applications where
the flow around vehicles can span large spatial domains,
but dictates resolving of turbulent features on the order of
micrometers. To date, the computational cost of including such
resolution across an entire domain is impractical. Alternative
methods must be developed to selectively reduce grid den-
sity while maintaining HiFi capabilities. Overcoming these
numeric and computational challenges is more difficult when
adapting an existing code. Such scientific software is often
optimized for older-generation hardware and may be designed
in a manner that does not readily adapt to modern accelerators
such as GPGPUs. Additionally, such software may be designed
using older programming models and may not integrate well
with state-of-the-art frameworks. This issue is particularly

relevant for solvers working on curvilinear grids, which are
not typically supported by modern solver frameworks.

In this paper, we address these problems by extending
an existing computational fluid dynamics (CFD) code called
CRoCCo. CRoCCo is a hypersonic flow simulation with shock
capturing and high-bandwidth-resolving efficiency, validated
for unsteady, highly-turbulent, high-enthalpy, chemically-
reacting hypersonic flows on structured grids. The code can
operate in direct numerical simulation (DNS) or turbulence
modes. The former solves equations from first principles [1]–
[3] and the latter computes large eddy simulations (LES) [4],
[5] or Reynolds-averaged Navier-Stokes (RANS) simulations.

To tackle the aforementioned difficulties in efficiently re-
solving high-fidelity hypersonic numerics we extend the ca-
pabilities in CRoCCo to support adaptive mesh refinement
(AMR) for a fully curvilinear solver. AMR dynamically
distributes grid densities allowing for selective levels of re-
finement to change and adapt with relevant flow features.
This technique is essential to reducing the time-to-solution of
CFD simulations on massive computational domains including
those required for current flight vehicles such as the BoLT
hypersonic demonstrator [6] or Mars supersonic retropropul-
sion (SRP) configurations [7]. We further extend CRoCCo
to employ GPU accelerators to reduce time-to-solution and
maximize utilization of cutting-edge computing platforms.

We implement the AMR and GPU capabilities by adapting
our existing numerics to efficiently use high-level paradigms
supplied by the AMReX [8] framework. AMReX provides
abstractions for grid representation, domain decomposition,
communication, and GPU acceleration with load balancing
and mesh refinement capabilities. While AMReX is a state-
of-the-art framework for CFD simulations, it does not support
curvilinear grids. Additionally, when accelerated with GPUs,
it does not trivially scale to large node counts.

We evaluate the performance of different versions of
CRoCCo on the Summit system at Oak Ridge National
Laboratory (ORNL). This work makes the following major
contributions:

• We demonstrate a novel methodology for enabling adap-
tive mesh refinement with AMReX in a curvilinear CFD
solver, specifically adapting the handling of grid metrics,
interpolation, and regridding.



• We describe and provide insights from our experiences
converting complex high-fidelity numerics in Fortran to
GPU-enabled C++.

• We present kernel-level performance as well as strong
and weak scaling performance and profiling results for
the augmented GPU- and AMR-enabled CFD code on
Summit at ORNL.

• We demonstrate up to 44× speedup in the GPU-enabled
code over the previous CPU implementation.

II. BACKGROUND

In this section, we provide background on the numerics
implemented in CRoCCo as well as the technique of adaptive
mesh refinement (AMR) as used in high-fidelity modeling.

A. High-fidelity simulation numerics for hypersonics

CRoCCo solves the conservative form of the equations
governing fluid motion, namely the conservation of the species
mass, momentum, and total energy equations of the form:
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where ws represents the rate of production of species s due
to chemical reactions; ρs is the density of species s; uj is the
mass-averaged velocity in the j direction; vsj is the diffusion
velocity of s; p is the pressure; τij is the shear stress tensor
given by a linear stress-strain relationship; qj is the heat flux
due to temperature gradients; hs is the specific enthalpy of
species s; and E is the total energy per unit volume given by
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where cvs is the specific heat at constant volume of species
s; and h◦

s represents the formation heat of species s. CRoCCo
solves these equations on generalized curvilinear grids, mean-
ing the problem’s physical coordinate systems can be curved
and non-uniformly spaced. This physical domain is mapped
to a rectangular block-structured computational domain.

We use a finite-difference, weighted essentially non-
oscillatory (WENO) method to solve convective fluxes. Our
WENO is bandwidth-optimized (WENO-SYMBO) to accu-
rately resolve the smallest-scale features of turbulent flows
on a reduced number of grid points. WENO-SYMBO con-
siders multiple stencils around the interface to reconstruct
the flux at an interface in each direction. WENO weighs
these candidate stencil via local relative smoothness coefficient
to apply optimal stencil coefficients to reconstruct the flux.
Martı́n et al. [9] provide further details of a bandwidth-
optimized WENO method. We use a 4th-order-accurate,
central-difference scheme to compute the viscous fluxes and

propagate viscous and convective fluxes in time using a third-
order accurate, low-storage Runge-Kutta (RK3) method [10].
CRoCCo has been validated against experimental data for

direct numerical simulations (DNS) [3], [11]–[13]. CRoCCo
also can resolve hypersonic turbulent flows using large eddy
simulation (LES) techniques which filters and does not re-
solve on the grid the highest frequency energy content. The
technique allows for a 90% reduction in grid size relative to
DNS and thus faster times to solution. For LES, CRoCCo
solves the filtered form of Equation 1, which includes sub-
grid scale (SGS) models that have also been validated against
experimental and DNS data for hypersonic turbulent flows [4],
[5]. The code was originally written in Fortran with MPI, and
this version remains extremely efficient on massively-parallel
CPU-based supercomputers.

B. Adaptive mesh refinement in the context of HiFi modeling

Adaptive mesh refinement (AMR) allows for computa-
tional domains to be locally and dynamically coarsened or
refined during a simulation. In practice, AMR results in an
overall decrease in time-to-solution by reducing the number
of grid points in regions lacking fine flow scales. Block-
structured AMR (BS-AMR) is a series of logically rectangular
grids, or ‘patches’. Unlike a hierarchical quadtree or octree
AMR framework, there is no parent-child relationship between
patches of differing levels of refinement. Instead, the patches
are overset as presented in Figure 1. Hereafter, we mean
“AMR” to refer specifically to block-structured AMR, which
CRoCCo exclusively employs.

Fig. 1. Example of a 2D AMR grid, showing three levels in total. The coarsest
grid remains active across the entire domain, while the finer and finest patches
are overset as contiguous block-structures.

In AMR, there are three main factors to consider: (1)
how frequently should a patch check whether to refine or to
coarsen, (2) the criteria to refine/coarsen patches, and (3) how
to exchange information between patches of different levels, or
‘interface’. Local physics, numerical ghost-point requirements,



and solver order-of-accuracy or bandwidth properties all in-
fluence the optimal implementation of these factors. Unique
approaches to regrid criteria and interpolation required for
CRoCCo will be discussed in Section III-C.

AMR regridding frequency: The Courant-Friedrichs-Lewy
condition (CFL) is a numerical stability parameter to restrict
the number of grid points that a fluid element can travel in a
simulation time step. The simplest formulation for the CFL in
a one-dimensional flow is:

CFL =
(|u|+ a)∆t

∆x
≤ 1 (3)

where ∆t is the time step, ∆x is the grid spacing, u is
the velocity of the fluid, and a is the local speed of sound.
The desired stable CFL number is uniquely supplied for
stability of the numerical method. For the RK3 method in
CRoCCo, CFL≤ 1. To accurately track features using AMR,
the application estimates the optimal regridding frequency as
the number of timesteps it takes for information to travel from
the center of a patch to the nearest fine/coarse interface. Since
these interfaces require numerical interpolation, the regrid
frequency must be high enough so that flow features do not
convect across different level patches.

AMR regridding criteria: For compressible hypersonic prob-
lems, AMR is most useful for refining near unsteady, turbulent
flow structures and therefore the regridding criteria should
seek to capture such effects. Often the most challenging and
interesting regions of flow are near shocks, or regions of
discontinuous fluid density, ρ. Criteria based on the local
gradients of density, ∇ρ, or the local gradient of momentum
∇(ρui) can aid solvers in capturing shock structures.

AMR fine/coarse interpolation: Determining values at fine
ghost points requires interpolation across interfaces. AMReX
provides a trilinear interpolator that interpolates fine informa-
tion by considering information from eight neighboring coarse
vertices of a tetrahedral cell. Interpolation introduces error
by way of numerical dissipation. Selecting an interpolation
technique that is similar in formulation to the chosen numerical
method can prevent error and noise propagation [14].

III. DEVELOPING CURVILINEAR AMR CAPABILITIES IN
CROCCO

Below, we describe our approach to designing and imple-
menting AMR support in CRoCCo, and designing a unique
approach to support curvilinear coordinates via AMReX.

A. Enabling AMR in CRoCCo

CRoCCo follows a typical time-marching scheme. Algo-
rithm 1 outlines the code for the main routine, including the
regridding step (Regrid) before calling the RK3 function.
Algorithm 2 describes the implementation of the RK3 func-
tion. We distinguish between FillPatch, we adapt from
AMReX’s Advection_AmrCore example, and BC_Fill,
a custom written kernel. The former handles the main ghost

exchange between patches, including performing the interpo-
lation across fine/coarse AMR interfaces. The latter BC_Fill
applies the physical boundary conditions of the problem.
AverageDown sets covered coarse AMR cells to be equal
to the average of the covering fine cells.

Algorithm 1 The main loop in CRoCCo
1 InitGrid()
2 InitGridMetrics()
3 InitFlow()
4
5 for n = nstart, nend do
6 if mod(step, regridFreq) == 0 or step == 0 then
7 Regrid()
8 end if
9 ComputeDt()

10 RK3()
11 end for
12
13 Finalize()

Algorithm 2 RK3 Advance Stage in CRoCCo
1 for RKstage = 1, 3 do
2 for n = 0, nlevels do
3 FillPatch()
4 BC Fill()
5 WENOx()
6 WENOy()
7 WENOz()
8 Viscous()
9 Update()

10 if RKStage == 3 then
11 AverageDown()
12 end if
13 end for
14 end for

B. Implementing AMR using AMReX

We adapt block-structured AMR into CRoCCo using the
AMReX library [8] which allows for near-seamless integration
of Fortran numerical kernels into a Cartesian AMR framework.
This allows for the testing of integrating AMR into the
numerical methods without the development costs of creating
AMR and load balancing algorithms from scratch.

The AMReX framework divides the domain into rectangular
patches of grid points, which can have varying degrees of
refinement, in order to implement adaptive mesh refinement
(AMR). Patches at more refined levels represent the corre-
sponding physical region with a larger number of grid points,
while patches at more coarse levels represent the region with
a smaller number of grid points. How AMReX carries out
this decomposition can be controlled using various input deck
parameters, including the number of points in each direction in
the domain (at the coarsest level) and the blocking factor. The
size of the particular problem determines the number of points
in each direction, while the blocking factor, a per-direction
setting, must be at least the number of ghost points required
in our numerics in each direction, so we set it to 8. Here, we



mean “ghost points” to refer to cells beyond the bounds of a
patch that must be retrieved from other patches.

Implementing the large number of ghost points and con-
straints of CRoCCo numerical methods into grid refining
and message passing was straightforward due to the simple
nature of AMReX source kernels. AMReX also allows for
the addition of custom interpolators, time integrators, and
refinement routines that allowed our team to develop curvi-
linear coordinate AMR despite the library’s intended use on
Cartesian grids. In addition, the library and underlying data
structures built into AMReX are GPU-portable and architec-
ture independent that reduced the time of the development
cycle to offload CRoCCo to GPUs. Other AMR frameworks
will be discussed in Section VII-B.

The Fill_Patch method handles ghost exchange
between patches, as described in Section III-A. The
FillPatch method employs two functions provided
by AMReX’s FillPatchUtil to fill ghost cells:
FillPatchSingleLevel for patches at the coarsest
level, and FillPatchTwoLevels for patches at finer
levels. FillPatch also passes our custom WENO
interpolation method to be described in Section III-C
into FillPatchTwoLevels. AMReX carries out load
balancing of the patches across MPI ranks at each level
independently, in sequence. The default load balancing
algorithm, which we use, is a space-filling Z-Morton curve.
Since AMReX has demonstrated excellent scaling results on
modern GPU-based supercomputers, including Summit, with
similar workloads to CRoCCo, we are confident in relying on
their provided parallelization and load balancing methods to
interface with MPI [8], [15].

The FillPatchSingleLevel function only involves
point-to-point MPI communication between neighboring
patches to receive ghost points. There are two additional
parallel communication calls within the code that involve
global communication calls. The first is found within the
ComputeDt routine which checks each grid point’s solution
to determine the most effective next timestep that adheres
to the CFL criteria introduced in Section 3. Since every
patch must iterate using the same timestep, dt, which must
be computed using the global minimum derivative of time,
there is a global MPI_Reduce call using an AMReX wrapper
function ReduceRealMin(dt).

The second global communication call is an AMReX
function ParallelCopy in our custom curvilinear inter-
polator, which is called from FillPatchTwoLevels in
FillPatch. This copies the coordinates from the main grid
MultiFab to a temporary one with additional ghost points
to perform curvilinear interpolation.

C. Enabling curvilinear coordinates in AMR

CRoCCo has always supported curvilinear grids as they
are necessary for gathering HiFi datasets of hypersonic flows
around compression corners, re-entry vehicles, and other com-
plex geometries. Our numerical kernels contain full curvilinear
support, regardless of the grid type. However, most AMR

libraries (including AMReX) natively support Cartesian grids
and cylindrical coordinate transforms, so we undertook a large
development effort to adapt the AMReX framework itself to
handle the demanding needs of a fully curvilinear solver.

Data management: Curvilinear solvers require more data
to solve the governing equations. The non-linear mapping
of the physical domain x, y, z onto the computational block
coordinates i, j, k makes it necessary to track grid metrics.
Both the Cartesian and curvilinear implementations use a type
amrex::MultiFab to store the primitive variables used
in the compressible Navier-Stokes equations. An additional
amrex::MultiFab stores the five components of the con-
servative update variable dU at each grid point. For a uniform
Cartesian solver, the grid spacing is constant and thus an
inexpensive analytical mapping function can be used to pull
coordinates such as x(i) = (i−1)∗dx making it not necessary
to store grid coordinates in large arrays. Curvilinear grids are
often generated using combinations of complex hyperbolic and
trigonometric functions that justify storing coordinates rather
than calculating them on the fly. Therefore the curvilinear code
adds a three-component coordinates amrex::MultiFab. In
addition, solving the curvilinear metrics requires first and
second order grid metrics. These are the high-order recon-
structions of the first and second derivatives of each i, j, k
with respect to x, y, z. In total, we use a 27-component
amrex::MultiFab to store the metrics. The end result is
roughly a three-fold increase in memory usage per core or
GPU for the curvilinear code.

Interpolation: The default trilinear interpolation method in
AMReX considers the solution at eight vertices surrounding a
fine point on a uniform Cartesian grid (see Sec. II-B). Under
the constraint of uniform Cartesian coordinates, fine points are
always physically located halfway between coarse points and
therefore the interpolation coefficients are always a multiple
of 1/2. To adapt this to generalized curvilinear grids, bringing
physical coordinates and local grid metrics into the optimized
interpolation computations required extra data management.
Our custom interpolation scheme accurately weighs interpola-
tion coefficients by spacing in physical curvilinear space. The
end result has been sufficient for the double-Mach reflection
case tested in this work in Sec. VI, but lacks conservation of
quantities across interfaces.

As we move to hypersonic turbulent flows, a higher-fidelity
interpolation method will be needed to guarantee conservation
across interfaces and mitigate spurious noise introduced across
the fine/coarse boundary. As mentioned in Section II-B, we
are developing a high-order, bandwidth optimized WENO
interpolation scheme, nearly identical to the method Martı́n et
al. use to reconstruct convective fluxes [9]. As the dissipation
and order-of-accuracy introduced by the interpolation method
will be the same as the numerical methods being employed,
there will theoretically be minimal error introduced by a
WENO-SYMBO conservative interpolation method.

Regridding: For regridding refinement criteria, CRoCCo’s



WENO-SYMBO numerics do not require high grid density
near shocks. Thus, CRoCCo includes the option to depart
from momentum-based refining criteria (see Sec. II-B) and
use AMR exclusively as a turbulence resolving tool.

In terms of implementation, the need to store grid coor-
dinates in memory for curvilinear AMR imposes a set of
challenges at large problem scales. The first issue is that when
regridding dynamically in AMR, new portions of the domain
will be initialized and need their respective coordinates. The
first implementation of the code included file I/O at each
regrid. A newly formed AMR patch would serially read from
a binary file using std::iostream. On CPU this added no-
ticeable overhead. For GPU, this approach would be expected
to add even more overhead since I/O routines would need to
stage data in CPU memory and then copy grid coordinates
back to GPU memory. The current implementation allows for
the option to read the entire AMR grid into a stored variable.
As regrid creates new patches, a simple getCoords() call
retrieves the data from memory instead of a binary file.

IV. EXPERIENCES PORTING TO MODERN HARDWARE

Preparing the numerics kernels in CRoCCo for modern
exascale systems with GPUs required a two-step process –
converting Fortran kernels to C++, and then porting the C++
CPU kernels to GPUs. We describe these steps below.

A. Converting Fortran kernels to C++

CRoCCo’s core numerics kernels, WENOx, WENOy, WENOz,
and Viscous (see Algorithm 2), were originally written and
optimized for CPU-only systems in Fortran. A C++ AMReX
interface with the rest of CRoCCo called these sequential
Fortran kernels. We decided to convert these Fortran kernels
to C++ in order to maximize compatibility with our existing
AMReX-based C++ code. This conversion process required
addressing some challenges to preserve readability and the
general structure of the code, specifically regarding zero-based
indexing and array slicing syntax. During this conversion
process, we were able to identify and carry out a number of
minor optimizations, with varying impact. Cumulatively, these
optimizations help to minimize the observed 1.2x slowdown
of the C++ kernels over the Fortran kernels on the IBM
POWER9 CPU, as will be presented in Section VI-A.

A particular concern in the translation of our complex
numerics kernels from Fortran to C++ was ensuring that
no significant floating-point accuracy was lost. Even with
apparently-identical code, the differences in information ex-
posed to the compiler in each language lead to different
optimizations and order-of-execution, and therefore different
floating point results. To assess this, we compared the results
of both the C++ and Fortran via the L2-norm of the difference
in each flow variable of interest. This value plateaued at 1E−7
for velocity, density and temperature, which is within machine
precision differences given the quantity of operations required
to solve for each flow variable.

B. Porting to GPUs

The addition of GPUs to CRoCCo with AMReX adds
another level of parallelism below MPI. We compute all major
computational steps on the GPU, including the WENO kernels
in x, y, and z directions, the Viscous kernel, the RK Update
kernel, the interpolation across interfaces in FillPatch, and
the time step estimation ComputeDt at the beginning of each
RK3 stage. All of these kernels contain triple-nested for loops
over the three dimensions of a patch, and we parallelize them
in each of these dimensions.

We aimed to iteratively offload kernels to the GPU, in order
to make development and debugging simpler. We initially
explored the use of OpenMP 4.0 directives. However, as de-
velopment progressed on converting CRoCCo’s core structure
to AMReX, the built-in GPU support provided by the AMReX
framework became a more appealing option. We encountered
difficulty in copying complex custom data types to the GPU
with OpenMP, particularly with C++ standard library types,
as well as some poor initial performance results. For these
reasons, we decided to focus on porting to GPUs using the
AMReX GPU API, while planning to explore the performance
of other GPU programming models in the future. Therefore,
we implement both our inter-node parallelism (described in
Sec. III-B) and intra-node GPU parallelism using the AM-
ReX framework’s communication and kernel launch functions,
which completely handle our interfacing with MPI and CUDA.

In porting our kernels to the GPU, we primarily rely
on the amrex::launch function, which allows portability
of user-defined functions between CPU and GPU. In some
cases, this required replacing one- and two-dimensional local
arrays used for intermediate result storage between outer
loop iterations with three-dimensional arrays to avoid data
races, as the AMReX GPU API automatically parallelized the
kernels in all three dimensions. Additionally, to avoid dynamic
memory allocation inside the GPU kernel, which is a major
performance impediment, we allocated all of these arrays in
GPU global memory from the host code, before kernel launch.

However, this solution was not sufficient for a handful
of more complex loop patterns in the kernels. Our higher-
order kernels depend on computing large stencils in a few
key loops. When we ported these loops to the GPU directly
using the amrex::launch function, data races resulted,
since the threads would write to the same indexes of the
scratch arrays in global memory. To resolve this, we moved
these more complex stencil loops into dedicated GPU kernels
using the amrex::ParallelFor function, allowing one
thread to compute exactly one cell of the array, including
the exterior ghost points needed to provide a complex stencil
for each interior cell. Later kernels are therefore able to read
in the needed array stencils from global memory without
issue. Finally, we employed a reduction pattern using the
amrex::ReduceData type for computing the explicit time-
stepping according to the CFL constraint (see Section II-B).



C. Maintaining correctness

Throughout development our team relied on regular valida-
tion runs to ensure code changes did not impact correctness.
This procedure was extremely valuable for identifying and
triaging several correctness bugs. The shifting of memory
buffers and re-structuring of numerics led to large layout
and factoring changes in the complex numerical kernels.
We thoroughly tested the correctness of these routines by
comparing the same L2-norm of the difference in each flow
variable. We observed no change in accuracy when running on
GPUs and maintained the accuracy reported in Section IV-A.

V. EXPERIMENTAL SETUP

In this section, we describe the platform, test case problem,
and problem sizes used for the performance evaluation.

A. Platform used

For all runs, we use the Summit supercomputer at Oak
Ridge National Laboratory (ORNL). Summit nodes have six
NVIDIA V100 GPUs and two 22-core IBM POWER9 CPUs,
and the nodes are interconnected using a fat-tree network.

B. The double Mach reflection test case

Our test is the double Mach reflection (DMR) case of
Woodward and Colella [16], which has been used extensively
in the literature to assess numerical schemes and procedures.
The flow is an unsteady planar Mach 10 shock incident on
a 30° inviscid compression ramp, depicted in Figure 2. It
features a moving shockwave and regions of both turbulence
and freestream flow. These are important test elements as they
are critical features of hypersonic flows. This case does not
require additional elements such as unsteady inflow data from
an auxiliary simulation. The problems is statistically homo-
geneous but locally unsteady along the span. We do not fix
the spanwise dimension when scaling calculations. Although
unnecessary for this problem, we use general curvilinear
coordinates to assess and report AMR savings. The DMR
case is easy to run and verify and serves as a representative
surrogate including key components of flow environments in
hypersonic science applications. We solve the flow in 3D.

C. Weak and strong scaling setup

We use version numbers for easy reference to the different
stages of improvements. CRoCCo 1.0 refers to the version
with C++ AMReX framework and Fortran numerics kernels,
with AMR disabled and no GPU support. We obtain CRoCCo
1.1 by swapping out the Fortran kernels in 1.0 for new C++
kernels. We obtain CRoCCo 1.2 by enabling AMR in 1.1. We
obtain CRoCCo 2.0 by adding GPU support to 1.2. Note also
that we do not present results for the GPU version of CRoCCo
with AMR disabled, as the non-AMR cases will not fit into the
GPU memory of the Summit NVIDIA V100s if the number
of nodes is not adjusted.

Section VI presents strong and weak scaling results. In
strong scaling mode, we run code versions 1.1, 1.2, and 2.0 on
16 to 1024 nodes with 1.27×109 grid points. In weak scaling

Fig. 2. Density contour of the canonical DMR problem from CRoCCo code
using three-level curvilinear AMR.

mode, we run the cases listed in Table I. For AMR, the number
of active grid points is dynamic and dependent on time step
and flow unsteadiness. Here, we report AMR grid sizes that
are the same as those for the AMR-disabled CRoCCo v1.1.
AMR demonstrates a 89-94% reduction in actual grid points
relative to the AMR-disabled solution.

TABLE I
WEAK SCALING CONFIGURATIONS USED FOR EVALUATING PERFORMANCE

Code Versions # of Nodes # of GPUs # of equivalent grid points

1.1, 1.2, 2.0 4 24 1.64E8
1.1, 1.2, 2.0 16 96 6.55E8
1.1, 1.2, 2.0 36 216 1.47E9
1.1, 1.2, 2.0 64 384 2.62E9
1.1, 1.2, 2.0 100 600 4.10E9
1.1, 1.2, 2.0 256 1536 1.05E10
1.1, 1.2, 2.0 400 2400 1.64E10
1.1, 1.2, 2.0 1024 6144 4.19E10

For accurate grid size scaling, we alter the refinement
scheme so that grid size scales with the equivalent problem
size. For all scaling experiments we ran 100 iterations and
present average walltime per iteration for the last 80 iterations,
removing the input from the initial, slower iterations. Data for
plots in Sec VI are from single runs, but in practice we observe
low variability between runs of the same configuration.

A physical grid aspect ratio of 2 : 1 in x and z constrains
the DMR problem. Accuracy is independent of y resolution,
thus we arbitrarily choose y grid spacing to target grid size
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Fig. 3. Comparison of time spent in the WenoX (left) and Viscous (right) kernels per iteration between Fortran on CPU, C++ on CPU, and C++ offloaded
to GPU on one 22-core IBM POWER9 processor and one NVIDIA V100 GPU on Summit.

scaling. Through all experiments, the resolution was sufficient
such that the load balancer and decomposition remained 3D.
To ensure proper gridding, the number in each direction must
be divisible by the input blocking factor, which we set to four.
Table I lists the weak and strong scaling cases we run, in terms
of number of nodes and grid points.

In testing, we found that grid point counts beyond 2.0E5
spilled out of the 16GB of memory available on Summit
V100s. Therefore, we selected the strong scaling problem
size to approach this limit for the smallest 16-node case. We
determined the weak scaling problem using a similar approach,
aiming to maximize GPU utilization without exceeding the
available memory. To ensure the large runs would not exceed
GPU memory, we set the target number of grid points per GPU
at 1.2E5. The scaling pattern of nodes for weak scaling breaks
from perfect doubling (at 4, 36, 100, and 400) to allow for
linear problem size scaling while also adhering to the blocking
factor and physical 2 : 1 point distribution requirements of the
AMR and DMR problem physics. We use lightly hand-tuned
AMR parameters of 8 for blocking factor in each direction
and 128 for maximum grid size in each direction.

VI. RESULTS AND DISCUSSION

We first present our performance results of the individual
kernels, then present scaling results for the DMR problem, and
conclude with performance profiling and analysis.

A. Kernel performance results

To evaluate the performance impact of our Fortran to C++
kernel translation, and our porting of those kernels to the GPU,
we measured the time spent in these numerics kernels per
CRoCCo iteration. Figure 3 presents the time per iteration
spent in the WENOx and Viscous kernels. We scale the
kernels over a range of problem sizes run on a single Summit
IBM POWER9 22-core processor and NVIDIA V100 GPU,
and measure problem size on the x-axis in total coarse grid
points in the domain.

First, we observe that the performance impact of our For-
tran to C++ kernel translation, described in Section IV-A,
is minimal. The C++ versions of the kernels demonstrate a
consistent minor slowdown (∼1.2×) over Fortran on the IBM
POWER9 CPU architecture. Second, we also observe a very
strong performance benefit in porting the kernels from the
CPU to the GPU – from a 2.5× speedup on the smallest
problem size for Viscous to a 15.8× speedup on the largest
size for WENOx, where GPUs are most efficient.
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kernel on a Summit NVIDIA V100 GPU.

To more closely examine our GPU kernel performance, we
evaluate our key numerical kernels using the roofline model,
as described by Yang et al. [17]. Figure 4 presents the results
of our roofline evaluation of the WENOx kernel, gathered using
the NVIDIA Nsight Compute profiler. We choose to omit
the roofline plots for the WENOy, WENOz, and Viscous
kernels as they are similar to the plot for WENOx. All of our
numerics kernels, WENOx, WENOy, WENOz, and Viscous,
achieve about 300 Gflop/s in double-precision (DP). This is
approximately 4% of the peak double-precision performance,
7.8 Tflop/s, available on the NVIDIA V100 GPU. The primary
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cause for our low achieved flop/s, as revealed by profiling
with Nsight Compute, is low theoretical occupancy (12.5%)
due to very high register usage arising from the complexity
of the physics involved in these high-fidelity kernels. All of
our kernels are bandwidth-bound, rather than compute-bound,
for L1 cache, L2 cache, and DRAM. Future directions for
improving kernel performance include reducing the number of
division operations and experimenting with mixed-precision.

B. Scaling performance on the DMR problem

We conducted strong and weak scaling experiments on the
three versions of CRoCCo discussed in this paper, as described
in Section V-C. Figure 5 presents the performance (time per
iteration) for strong and weak scaling of CRoCCo. In strong
scaling of the 1.27E9 grid point case, presented in Figure 5
(left), we observe moderate speedups of the AMR-enabled
version 1.2 of CRoCCo over the non-AMR version 1.1, and
significant speedups of the GPU version 2.0 over the CPU
+ AMR version 1.2. Speedup from AMR over non-AMR on
CPU ranges from 4.6× at the lowest node count to a 1.1×
slowdown at the highest, due to the emergence of communi-
cation bottlenecks from the AMR procedure. Speedup from
GPU over the AMR on CPU case ranges from 44× at the
lowest node count to 6× at the highest. Cumulatively, GPU
and AMR provide speedups from 201× at the lowest node
count to 5.5× at the highest.

We also note that the performance of the GPU version of
CRoCCo stops improving with additional nodes around 128
nodes in strong scaling, while the CPU version scales well up
to 1024. The AMR + CPU version 1.2 also degrades in scaling
performance after 512 nodes. Strong scaling an AMR-enabled
code on GPUs is associated with a number of challenges,
summarized by Katz et al. [15]. Most importantly, due to
the high degree of kernel speedup we obtain from moving
to the GPU (see Figure 3), the performance bottleneck in
CRoCCo switches from computation (which is what binds
the CPU performance) to communication. Due to global
communication in the form of an amrex::ParallelCopy

in the FillPatch routine, our communication costs increase
with the number of nodes, which explains why our scaling
benefit ends earlier in the GPU version of CRoCCo. The end
of good scaling behavior at 128 nodes corresponds to when
the problem size per GPU becomes too small for the benefit
of additional GPUs to outweigh the communication costs of
additional nodes. A larger problem size for strong scaling
would likely scale further, but would exceed the available
GPU memory at lower node counts, massively degrading
performance for those runs.

Figure 5 (right) presents weak scaling for the problem sizes
set out in Table I. As demonstrated by our strong scaling
experiments, the addition of AMR to the CPU version of
CRoCCo gives moderate speedups while the addition of GPU
to the CPU AMR code gives significant speedups. Note that
all versions of CRoCCo demonstrate slight improvement in
walltime per iteration from four to sixteen nodes. This is due
to suboptimal load balancing behavior in AMReX at low node
counts for certain problem configurations.

We observe in our weak scaling experiments that while the
CPU runs demonstrate steady walltime per iteration as node
count increases, the GPU version of CRoCCo experiences
increasing walltime per iteration. Weak scaling efficiency for
the GPU + AMR version 2.0 from 4 nodes to 400 nodes is
about 54%, and from 4 nodes to 1024 nodes is about 40%. As
discussed above, the high degree of speedup obtained by our
numerics kernels when moving to GPU results in a strongly
communication-bound application, with global communication
costs in the FillPatch routine increasing with node count.

To quantify the impact of the ParallelCopy operation on
performance, we present an additional line in Figure 5 (right)
in which we swap out our custom curvilinear interpolator
scheme (which contains the ParallelCopy operation) for
AMReX’s simpler built-in nodal trilinear interpolator. We
name this version CRoCCo 2.1. This AMReX trilinear interpo-
lator does not have any global MPI communication. CRoCCo
2.1 improves performance and the weak scaling trend of
CRoCCo 2.0, increasing weak scaling efficiency from 4 nodes



to 400 to about 70%. We are exploring options to remove this
ParallelCopy from our custom curvilinear interpolator,
which we expect would enable weak scaling more akin to
this improved result. This would primarily entail keeping the
entire curvilinear grid in memory from the beginning of the
simulation run, eliminating the need for a ParallelCopy
but at a high memory cost. We finally note that degraded weak
scaling behavior in an AMReX-based code when moving to
the GPU with high kernel speedup is consistent with results in
previous work, including Myers et al. [18] and Katz et al. [15],
the former of which also shows degraded scaling efficiency
below 60% at large node counts on Summit.

C. Understanding performance of the final implementation

In order to better understand what components of CRoCCo
other than the curvilinear interpolator are impacting scaling
performance, we profile the performance of CRoCCo 2.1
(GPU + AMR + Default Interp), presented in Figure 5 (right)
as the purple line and discussed in Sec. VI-B. This version
lacks the expensive ParallelCopy operation which occurs
in our custom curvilinear interpolator.

Figure 6 presents the profiling results on Summit for the 2.1
version of CRoCCo with this interpolator swap. The profiles
depict time spent in each major code region of CRoCCo for
various node counts. The problem sizes for these experiments
follow our weak scaling scheme, described in Table I in
Section VI-B. Some smaller sections of the profiles have
runtimes too short to be easily visible in the plot. We used the
AMReX TinyProfiler tool to collect this data, which provides
timer macros to track time spent in code regions. Note that the
Advance region includes Fill_BC physical boundary appli-
cation as well as the WENOx, WENOy, WENOz, and Viscous
numerics kernels. The remaining regions correspond to those
described in Sec. III-A.

After porting to GPU, CRoCCo is strongly communication-
bound, as evidenced by the increasing portion of time spent in
the FillPatch routine. FillPatch demonstrates roughly
a 40% increase in time spent in FillPatch from 4 to
100 nodes, and a 65% increase from 100 nodes to 1024.
Conversely, the time spent in Advance presented in Figure 6
stays steady as CRoCCo scales. This suggests that the GPU
kernels are scaling well, and not responsible for the scaling
behavior observed in Figure 5 (right).
Regrid and ComputeDt are the other two regions of

CRoCCo in which significant MPI communication occurs,
and Regrid in particular also takes longer as node count
increases. ComputeDt is a consistently very small portion of
runtime, suggesting that the MPI reduction which takes place
within it is not a significant bottleneck. While the execution
time of the FillPatch routine still increases with node
count, its scaling is improved compared to what would be
observed when using our custom curvilinear interpolator.

Since the remaining performance bottleneck in this faster
CRoCCo version still lies in FillPatch, we present a profile
of how CRoCCo spends time within FillPatch in Figure 7.
ParallelCopy carries out global communication, while
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FillBoundary carries out boundary cell exchange between
neighboring patches using point-to-point MPI messages. The
_finish and _nowait tags in the legend refer to the
asynchronous and synchronous versions of each function, re-
spectively. This lower-level profile provides additional insight
into the impact of the ParallelCopy_finish operation,
which increases in execution time as node count goes up.
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VII. RELATED WORK

In this section we present related work on adaptive mesh
refinement on curvilinear grids for high-order methods and
porting such applications to exascale software and hardware.

A. Hypersonic flow numerics

Many works have focused on accelerating flow simulations
using adaptive mesh refinement and/or GPUs. Atkins and
Deiterding [19] present a hypersonic code that makes use of
Cartesian AMR with an overset near-body solver to allow for
complex geometries. The work of Browne et al. [20] similarly



discusses the pairing of high-fidelity modeling with Cartesian
AMR coupled to a near-body solver. Both of these approaches
avoid curvilinear AMR by creating a fine, unstructured mesh
around a complex geometry and interpolating data between it
and a coarse Cartesian grid that then performs AMR.

B. Libraries and frameworks for AMR at scale
A number of libraries and frameworks exist which imple-

ment adaptive mesh refinement [8], [21], [22]. We selected
AMReX for CRoCCo for reasons described in Section III-B.
Zhang et al. [8] recently introduced AMReX for doing block-
structured adaptive mesh refinement. It includes many state-
of-the-art methods for exchanging ghost regions, moving
computation to GPUs, and grid I/O. SAMRAI [21], [23]
and Chombo [22] also both provide structured adaptive mesh
refinement. SAMRAI employs the RAJA and Umpire libraries
for GPU support and has similar functionality to AMReX.
Chombo is an offshoot from AMReX’s precursor library,
BoxLib [24]. As of its most recent release (3.2.7), it does
not have built-in support for GPU offloading [22].

C. Experiences preparing simulations for exascale
Several other works examine preparing particular scientific

applications for future exascale systems [15], [18], [25]–
[27]. Many of these similarly focus on adding GPU support
to fully utilize the hardware on systems like Summit and
Perlmutter. They also address parallelization and data handling
for their problems that can be scaled to large node counts,
focusing on particular algorithmic and engineering decisions
pertinent to their domain problem. The most similar of these is
Myers et al. [18], who port the WarpX application to Summit
using AMReX. WarpX is an electromagnetic particle-in-cell
code, and Myers et al. discuss the benefits of optimizing
communication, GPU memory usage, and cache utilization for
performance on Summit. The WarpX team specifically cites
the relative difficulty in scaling the FillBoundary routine
in AMReX as a the cause for scaling efficiency loss, similar
to what we encounter in Sec. VI.

Katz et al. [15] also perform similar work, discussing
experiences porting code to GPU systems using AMReX for
two applications in the astrophysics domain, Castro and MAE-
STROeX. Once again, similar to our work, the Castro/MAE-
STROeX team documents the domination of communication-
bound portions of their AMReX-based simulation at large
node counts. Mullowney et al. [25] prepare an incompressible-
flow simulation, Nalu-Wind, for exascale in the wind energy
domain. Kronbichler et al. [27] demonstrate scaling results
for a CPU-only version of their lung airflow simulation for
the pre-exascale Fugaku system, which resolves the incom-
pressible Navier-Stokes equations at scale. Finally, Bertagna
et al. [26] use the Kokkos programming model to scale
the nonhydrostatic atmosphere dynamical core of E3SM on
Summit, resolving the compressible Navier-Stokes equations.

VIII. CONCLUSION

We have described our approach and experiences in porting
CRoCCo, originally a Fortran-based MPI-only code optimized

for CPUs, to extreme-scale GPU platforms with the addition of
adaptive mesh refinement (AMR) capabilities. Our approach
leverages the high-level GPU API offered by AMReX along
with careful conversion of Fortran to C++ to productively
prepare complex high-fidelity kernels for GPUs. We have also
described modifications to the AMReX framework to support
a curvilinear flow solver, a previously-unsupported capability.
We maintain a high degree of accuracy between the validated
Fortran code and the new GPU port, along with speedups
ranging from 44× to 6× relative to CPU performance.

We offer the following insights from our work:

• When comparing the performance of AMR and non-
AMR code versions, ensuring that the refinement of grid
points at the finest level for AMR cases is equivalent to
the overall refinement of grid points in non-AMR cases
allows for a good approximation of relative performance
while keeping accuracy as constant as possible.

• Scaling performance is likely to degrade on large node
counts for a GPU port of an AMR code due to the relative
increase in the ratio of time spent in communication to
time spent in computation.

• Parallel copy operations in AMReX can be a communica-
tion bottleneck, particularly when global communication
is necessary as in curvilinear grids.

• GPU kernels are likely to run with moderate to low
utilization of the device when high-fidelity numerics have
high register usage, limiting the theoretical occupancy of
the streaming multiprocessors.
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