
A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize
Mixture-of-Experts Training

Siddharth Singh
ssingh37@umd.edu

Department of Computer Science,
University of Maryland

College Park, Maryland, USA

Olatunji Ruwase
olruwase@microsoft.com

Microsoft, Inc.
Redmond, Washington, USA

Ammar Ahmad Awan
ammar.awan@microsoft.com

Microsoft, Inc.
Redmond, Washington, USA

Samyam Rajbhandari
samyamr@microsoft.com

Microsoft, Inc.
Redmond, Washington, USA

Yuxiong He
yuxhe@microsoft.com

Microsoft, Inc.
Redmond, Washington, USA

Abhinav Bhatele
bhatele@cs.umd.edu

Department of Computer Science,
University of Maryland

College Park, Maryland, USA

ABSTRACT
Mixture-of-Experts (MoE) is a neural network architecture that
adds sparsely activated expert blocks to a base model, increasing
the number of parameters without impacting computational costs.
However, current distributed deep learning frameworks are limited
in their ability to train high-quality MoE models with large base
models. In this work, we present DeepSpeed-TED, a novel, three-
dimensional, hybrid parallel algorithm that combines data, tensor,
and expert parallelism to enable the training of MoE models with
4–8× larger base models than the current state-of-the-art. We also
describe memory optimizations in the optimizer step, and commu-
nication optimizations that eliminate unnecessary data movement.
We implement our approach in DeepSpeed and achieve speedups of
26% over a baseline (i.e. without our communication optimizations)
when training a 40 billion parameter MoE model (6.7 billion base
model with 16 experts) on 128 V100 GPUs.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
Natural language generation.

KEYWORDS
Parallel Deep Learning, Mixture-of-Experts, Tensor Parallelism,
Expert Parallelism

ACM Reference Format:
Siddharth Singh, Olatunji Ruwase, Ammar Ahmad Awan, Samyam Rajbhan-
dari, Yuxiong He, and Abhinav Bhatele. 2023. A Hybrid Tensor-Expert-Data
Parallelism Approach to Optimize Mixture-of-Experts Training. In 2023
International Conference on Supercomputing (ICS ’23), June 21–23, 2023, Or-
lando, FL, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3577193.3593704

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0056-9/23/06.
https://doi.org/10.1145/3577193.3593704

1 INTRODUCTION
Contemporary state-of-the-art AI algorithms have come to rely on
neural networks such as GPT-3 [4] andMT-NLG [34] with hundreds
of billion of parameters. However, training or running inference
on models of this size has become prohibitively expensive due to
their significantly large computational costs. To alleviate this is-
sue, deep learning researchers have turned their attention to the
Mixture-of-Experts (MoE) architecture [10, 18, 30], which offers
a way to increasing the parameter count of a model without in-
creasing computational costs. MoE models augment the layers of
a vanilla transformer [37] model (called the base model in MoE
parlance) with multiple “experts” or feedforward blocks and a pa-
rameterized routing function that uniquely maps each input token
to a unique expert. Figure 1 illustrates the forward pass of a single
MoE layer with two experts and an input batch of two tokens. Since
each token is only processed by one expert, the effective computa-
tion cost per token (and thus the total training cost) remains fixed
(in comparison to the base model) and is independent of the number
of experts.

Self Attention
w1
w2

Router

Feedforward 1

Feedforward 2

a1

a2

a1

f1
f2a2

a1

a2

f1

f2

Figure 1: A single Mixture-of-Experts (MoE) layer with two
“experts” or feedforward blocks. The input batch has two
tokens, w1 and w2. We use the prefixes ‘w’, ‘a’, and ‘f’ to
denote the input activations to the layer, output activations of
self-attention and feedforward blocks respectively. Similarly
we label each activation with an integer suffix corresponding
to its token. Note that each token is uniquely routed to a
single expert by a parameterized routing function.

Unfortunately, there is a limit to the improvements in model
quality that can be achieved by simply increasing the number of

https://orcid.org/0000-0002-2756-4290
https://orcid.org/0000-0002-5508-0728
https://orcid.org/0000-0002-6272-3760
https://orcid.org/0000-0002-0386-8759
https://orcid.org/0000-0003-0478-8854
https://orcid.org/0000-0003-3069-3701
https://doi.org/10.1145/3577193.3593704
https://doi.org/10.1145/3577193.3593704
https://doi.org/10.1145/3577193.3593704

ICS ’23, June 21–23, 2023, Orlando, FL, USA Singh et al.

experts [30]. For example, in an experiment that studied the effect
of adding experts to the T5 architecture [24] as the base model,
Fedus et al. observed diminishing improvements in the test set
accuracy beyond 64-128 experts [10]. In fact, for training high
quality Mixture-of-Experts models, it is imperative that the base
models’ size (number of parameters) is increased along with the
number of experts [17].

In this regard, current state-of-the-art distributed deep learn-
ing frameworks are inadequate for training such MoEs with large
base models. They either support limited-sized base models or
use inefficient parallel algorithms that lead to high communica-
tion costs. Hence, it is crucial to develop a distributed framework
that can support the training of MoEs with large base models on
multi-GPU clusters and do so efficiently, while keeping commu-
nication costs low. In this work, we present a three-dimensional,
hybrid parallel framework, DeepSpeed-TED, that combines ZeRO’s
data parallelism [26], MegatronLM’s tensor parallelism [32], and
DeepSpeed-MoE’s expert parallelism [25] to train MoE models that
are built using extremely large base models. We demonstrate how
the combination of these three dimensions of parallelism allows
our framework to train 4–8 × larger base models compared to
DeepSpeed-MoE [25], a state-of-the-art parallel framework that
employs only two of these dimensions (data and expert). To the
best of our knowledge, this is the first effort that combines these
three state-of-the-art parallel deep learning algorithms for training
MoEs on multi-GPU clusters.

We identify and resolve two bottlenecks that emerge with a
naive combination of these three forms of parallelism. The first
is a significant increase in memory usage in the optimizer, which
limits the base model sizes supported by our hybrid parallel ap-
proach. To alleviate this issue, we propose a tiled version of the
optimizer that processes model parameters in groups (or tiles) of
fixed size, and decreases peak memory consumption by reusing
GPU memory across the parameter tiles. The second bottleneck is
related to communication costs, where a considerable amount of
training time is spent in collective communication pertaining to ex-
pert and tensor parallelism. We identify two regions in this hybrid
training procedure where messages are communicated unnecessar-
ily among the worker GPUs, and propose novel communication
optimizations that resolve this problem. For a 40 billion parameter
MoE (6.7 billion base model with 16 experts) on 128 V100 GPUs
of Summit, our optimizations reduce the overall collective com-
munication time by 42% and lead to a significant improvement of
26% in the training time. DeepSpeed-TED is open source, and has
been integrated in DeepSpeed1, a state-of-the-art distributed deep
learning framework.

The main contributions of this paper are as follows:
• A highly scalable first of its kind three-dimensional, hy-
brid parallel framework that combines ZeRO’s data [26],
Megatron-LM’s tensor [32], andDeepSpeed-MoE’s expert [25]
parallelism to enable the training of Mixture-of-Experts with
large base models.

• A tiled version of an optimizer that alleviates a significant
memory spike in the optimizer step that arises from combin-
ing the three aforementioned forms of parallelism.

1https://github.com/microsoft/DeepSpeed

• Communication optimizations that eliminate unnecessary
communication in our hybrid parallel algorithm which sig-
nificantly reduce collective communication times.

2 BACKGROUND
In this section, we provide a background on Mixture-of-Experts
(MoE), and the three forms of parallelism used in this work – tensor
parallelism [32], expert parallelism [25], and data parallelism [26].

2.1 Mixture-of-Experts
Proposed by Shazeer et al. [30] in 2017, Mixture-of-Experts (MoEs)
are a family of neural network architectures with an interesting
property that their parameter set can be made arbitrarily large
without increasing their computational costs. This is achieved by
adding sparsely activated expert blocks to the layers of a dense
neural network (called the base model). A parameterized routing
function is added before these expert blocks that maps its input
tokens to a unique expert. Since each token is computed upon by
only one expert, the total computation cost of training remains
fixed (same as the base model) and is independent of the number
of experts. MoEs thus offer a unique way to increase the number of
parameters of a given base model, and thus its performance on any
task [16], without any increase in computational costs. Although
Shazeer et al. used LSTMs [12] as their base models, contemporary
work on MoEs largely employ the transformer architecture [37] as
the base models [1, 6, 9, 10, 17, 18, 29, 40, 43].

2.2 Data Parallelism and ZeRO
Under data parallelism, worker GPUs house a copy of the neural
network and work on mutually exclusive shards of the input batch.
After the backward pass they synchronize their local gradients via
an all-reduce function call. However, a major limitation of data
parallelism is that each GPU has to have enough memory to store
the entire parameter set of a neural network, and also its gradients
and optimizer states. To resolve this issue, Rajbhandari et al. pro-
posed the Zero Redundancy Optimizer or ZeRO which is aimed at
eliminating this redundant memory consumption in data parallel
GPUs [26]. Their method has three stages, which progressively
save more memory albeit at the cost of increased communication.
In this work, we consider the first stage of their optimization which
only shards the optimizer states across data parallel ranks.

2.3 Expert Parallelism and DeepSpeed-MoE
After routing, the computation of an expert block of in anMoE layer
is independent of other experts. Expert parallelism exploits this
property by placing unique expert blocks on each GPU and comput-
ing them in an embarrassingly parallel fashion. Tokens are mapped
to their corresponding experts by all-to-all communication within
the participating GPUs. Due to its simplicity and effectiveness, ex-
pert parallelism is used in many parallel frameworks for training
or running inference on MoEs [1, 10, 18, 23, 31]. In this work, we
use DeepSpeed-MoE’s implementation of expert parallelism [25].

2.4 Tensor Parallelism and Megatron-LM
Tensor parallelism involves partitioning the computation of a neural
network layer across GPUs. Shoeybi et al. introduce MegatronLM,

https://github.com/microsoft/DeepSpeed

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

a tensor parallel algorithm to parallelize the computation of layers
in a transformer neural network [32]. Their method is aimed at
parallelizing a pair of consecutive fully-connected layers, which
are found in the self-attention and feedforward blocks of the trans-
former [37]. Their algorithm has seen significant adoption for train-
ing many large language models like Megatron-Turing NLG 530B
[34], Bloom-176 B [3], Turing NLG [26] etc.

3 TED: A HYBRID TENSOR-EXPERT-DATA
PARALLEL APPROACH

By adding sparsely activated experts, the Mixture-of-Experts ar-
chitecture allows us to make a given neural network, i.e. the base
model, arbitrarily large while keeping its computation cost un-
changed. However, merely increasing the number of experts yields
diminishing returns in model generalization beyond 64–128 ex-
perts [10]. To build high quality MoEs, it is imperative that we
increase the base model sizes as well as the number of experts [17].
In this section, we provide an overview of TED, our hybrid parallel
approach which combines DeepSpeed-MoE’s expert [25], Mega-
tronLM’s tensor [32] and ZeRO’s data [26] parallelism, to enable the
training of such MoEs with extremely large multi-billion parameter
base models on multi-GPU clusters. In this work, we use the first
stage of ZeRO, which shards the optimizer states across data par-
allel GPUs. While further stages of their optimizations (stage-2, 3,
offload [28] and infinity [27]) can support training of larger models,
this happens at a cost to performance.

We use the terms non-expert and expert blocks interchangeably
with self-attention and feedforward blocks respectively. Note that
TED parallelizes the computation of expert and non expert blocks
in a different manner. This is because expert parallelism is only
applicable to the feedforward blocks of the transformer base model.
Thus, TED uses a two dimensional hybrid of tensor and data paral-
lelism to parallelize the non-expert blocks. Whereas, it utilizes all
three of tensor, expert, and data parallelism for the expert blocks.
Under TED, we organize available GPUs into two different virtual
topologies for the non-expert and expert blocks. We illustrate these
topologies in Figure 2.

Gtensor Gtensor

Gdata Gdata

Gexpert

exp

2D virtual topology for non-
expert blocks

nonexp

3D virtual topology for expert
blocks

Figure 2: TED uses a two dimensional hybrid of tensor and
data parallelism to parallelize the computation of non-expert
blocks. Whereas, it utilizes all three of tensor, expert, and
data parallelism to parallelize expert blocks.

For the non-expert blocks, we maintain a two dimensional (2D)
topology of GPUs, one dimension each for tensor and data paral-
lelism. In this topology, GPUs in a row implement tensor parallelism,
and we refer to a row of GPUs as a tensor parallel group. Similarly,
TED realizes data parallelism across columns of GPUs, and we refer
to these columns as data parallel groups. Likewise, for the expert
blocks, we maintain a three dimensional (3D) topology of GPUs,
one each for tensor, expert, and data parallelism. To form the tensor
parallel groups for the expert blocks, we reuse the tensor paral-
lel groups formed in the 2D topology for the non-expert blocks.
However, we further decompose the data parallel groups of the
non-expert blocks into a 2D topology to form groups for expert par-
allelism and data parallelism for the expert blocks. We defineGtensor
and Gnonexp

data as the size of the tensor parallel and non-expert data
parallel groups respectively. Similarly, we define Gexpert and Gexp

data
as the size of the expert parallel and expert data parallel groups
respectively. Following prior work [26], we always set Gexpert to
the number of experts in the model for performance considerations.
Note that given a number GPUs, G, the following relation always
holds true:

Gtensor × Gexpert × Gexp
data = Gtensor × Gnonexp

data = 𝐺 (1)

In Figure 3, we illustrate the forward pass of an MoE layer with
two experts on four GPUs. As mentioned previously, we set Gexpert
to the number of experts i.e. 2. The other degrees of parallelism are
Gtensor = 2, Gnonexp

data = 2, Gexpert = 2, and Gexp
data = 1. We partition

the parameters of the self-attention block (non-expert) and the two
feed forward blocks (experts) as per the semantics of MegatronLM’s
tensor parallelism and place the first partition on GPUs 0 and 2 and
the second partition on GPUs 1 and 3. GPUs (0,1) and (2,3) thus form
the two tensor parallel groups. GPU pairs (0,2) and (1,3) comprise
the data parallel groups for the non-expert parameters. The same
GPU pairs however comprise the expert parallel groups for the
expert parameters. The four GPUs individually form singleton data
parallel groups for the expert parameters.

Let us now discuss how our hybrid parallel algorithm computes
the forward pass of an MoE layer. As an example, we use an input
batch with four tokens (numbered 1-4) in Figure 3. The tensor
parallel group of GPUs 0 and 1 compute on tokens 1 and 2, whereas
the tensor parallel group of GPUs 2 and 3 compute on tokens 3 and
4. Each GPU first computes their partition of the self-attention block
(1) and then issues an all-reduce (2) to aggregate the complete
output activations (prefixed by ’a’) for their respective tokens. Now,
each GPU applies the MoE routing function to their local tokens
(3). We assume that the routing function maps tokens 1 and 3 to
the first expert i.e. feedforward 1, and tokens 2 and 4 to the second
expert i.e. Feedforward 2. (4) Now, an all-to-all communication
primitive is issued in expert parallel groups to route the tokens
as per the mapping decided by the routing function. Let us look
at the expert parallel group of GPUs 0 and 2 to understand this
all-to-all communication call. On GPU 0, token 1 has been mapped
to the first expert and token 2 has been mapped to the second
expert. Therefore, we want to retain a1 and send a2 to GPU 2 which
houses the second expert. Similarly, on GPU 2, we want to retain a4
and send a3 over to GPU 0. Note that this communication pattern
matches the semantics of an all-to-all communication primitive

ICS ’23, June 21–23, 2023, Orlando, FL, USA Singh et al.

a1
Self Attention

TP 1

Self Attention
TP 2

Self Attention
TP 1

Self Attention
TP 2

All-
Reduce

All-
Reduce

Router

Router

Router

Router

a1
a2

a1
a2

a3
a4

a3
a4

Feedforward 1
TP 1

Feedforward 2
TP 2

Feedforward 2
TP 1

Feedforward 2
TP 2

All-to-All

All-to-All

a3

a2
a4

w1
w2

w1
w2

w3
w4

w3
w4

a3
a1

All-to-All

All-to-All

f1
f3

f1
f3

f2
f4

f2
f4

f1
f2

f3
f4

f3
f4

1

2

3

4

5

6 7

Expert 2

Expert 1

GPU0

GPU1

GPU2

GPU3

a1
a2

a1
a2

a3
a4

a3
a4

a2

f2
f1

a4

All-
Reduce

All-
Reduce

Figure 3: Forward pass of an MoE layer with two experts on four GPUs using TED. We use a Gtensor × Gnonexp
data = 2 × 2 topology for

the non-expert self-attention blocks and Gtensor × Gexpert × Gexp
data = 2 × 2 × 1 topology for the expert feedforward blocks. We use

the prefixes ‘w’, ‘a’, and ‘f’ to denote the input activations to the layer, output activations of self-attention and feedforward
blocks respectively. Similarly we label each activation with an integer suffix corresponding to its token. Suffixes TP 1 and TP 2
denote the two tensor parallel partitions of the attention and feedforward blocks. The input batch consists of four tokens, with
tokens 1 and 3 routed to the first expert (colored blue), and tokens 2 and 4 routed to the second expert (colored yellow).

exactly. After the all-to-all has completed each GPU computes their
tensor-parallel partitions of the expert feed forward blocks (5)
and issue an all-reduce to aggregate the complete output (6). The
final all-to-all communication call in the expert parallel groups (7)
essentially inverts the first all-to-all (4) and brings back the tokens
to their original GPUs. This is how our three dimensional hybrid
parallel approach computes the forward pass of an MoE layer.

During the backward pass computation proceeds in the reverse
direction i.e. (7 - 1). The all-to-all communication at 7 and 4
calls are reversed. For example, consider 7 , wherein the input to
the all-to-all on GPU 0 would be gradients of the loss w.r.t. f1 and
f2. Similarly for GPU 2, it would be the gradients w.r.t. f3 and f4.
Now, after the all-to-all, the outputs on GPU 0 would be gradients
of the loss w.r.t f1 and f3, and on GPU 2 it would be gradients of the
loss w.r.t. f2 and f4. The all-reduce function calls (4 , 6) are applied
to the gradients w.r.t the input activations instead of the output.
For more details about this all-reduce call, we refer the reader to
Narayanan et al. [22]. Note that total amount of communication i.e.
two all-reduces and two all-to-alls is the same as that of the forward
pass. Finally, the data parallel groups synchronize their gradients
via another all-reduce call, which completes the backward pass.

3.1 A Model for Memory Consumption
We now derive the extent to which TED can increase the base
model sizes as compared to prior work like DeepSpeed-MoE [25],
which only employ data and expert parallelism. Following previous
work, we assume that every alternate layer has expert feedforward

modules [10, 17, 18]. Let NPbase denote the number of parameters
in the base model and 𝐸 denote the number of experts. Let𝐺 be the
number of GPUs. Note that two-thirds of the parameters in the base
model reside in feed-forward blocks, and the remaining one-third in
self-attention blocks [22]. Since only half of the feedforward blocks
are designated as experts, the total number of expert parameters,
NPexp , in an MoE model are:

NPexp = 𝐸 × 1
2
×

(
2
3
× NPbase

)
=
𝐸

3
× NPbase (2)

Now, the non-expert parameters are comprised of parameters
in all the self-attention blocks and half of the feed-forward blocks.
Thus, the total number of non-expert parameters, NPnonexp , is

NPnonexp =
1
2
×

(
2
3
× NPbase

)
+ 1
3
× NPbase =

2
3
× NPbase (3)

Rajbhandari et al. [26] prove that the lower bound of memory
consumption per GPU with ZeRO stage-1 is

(
4 + 12

Gdata

)
× NPgpu ,

where Gdata is the degree of data parallelism and NPgpu is the num-
ber of parameters of the model per GPU. Now, we use this formula-
tion to derive a lower bound on memory consumption per GPU for
TED as follows:

Mgpu ≥
(
4 + 12

Gnonexp
data

)
× NPnonexpgpu +

(
4 + 12

Gexp
data

)
× NPexpgpu (4)

Here, NPnonexpgpu and NPexpgpu are the number of expert and non
expert parameters per GPU. As discussed previously, Gnonexp

data and

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

Gexp
data are the degrees of data parallelism for the non-expert and

expert blocks respectively. Now, let us try to derive the values of
NPnonexpgpu andNPexpgpu , starting with the former. MegatronLM’s tensor
parallelism divides the parameters of a model equally among the
GPUs in a tensor parallel group. Since the size of a tensor parallel
group in TED is Gtensor , we can write NPnonexpgpu =

NPnonexp
Gtensor

. However,
the expert parameters are divided within both the tensor parallel
and expert parallel groups. As discussed previously, we use a degree
of expert parallelism equal to the number of experts i.e. Gexpert =

𝐸. Thus, NPexpgpu =
NPexp

Gtensor×𝐸 . Also, it follows from Equation 1 that
Gnonexp
data = G

Gtensor
and Gexp

data = G
Gtensor×Gexpert

= G
Gtensor×E . Substituting

these values in Equation 4, we get

Mgpu ≥
(
4 + 12Gtensor

𝐺

)
×
NPnonexp
Gtensor

+
(
4 + 12Gtensor𝐸

𝐺

)
×

NPexp
Gtensor𝐸

≥ 4
Gtensor

(
NPnonexp +

NPexp
𝐸

)
+ 12
𝐺

(NPnonexp + NPexp)

Now substituting from Equation 2 and 3, we get

Mgpu ≥ 4
Gtensor

(
2
3
NPbase +

NPbase
3

)
+ 12
𝐺

(2
3
NPbase +

𝐸

3
NPbase)

≥ 4NPbase
Gtensor

+ 4(𝐸 + 2)
𝐺

NPbase

≥ 4NPbase ×
(

1
Gtensor

+ 𝐸 + 2
𝐺

)
(5)

Equation 5 can be used to derive an upper bound on the largest
possible basemodel size that our framework can train, given enough
number of GPUs. Note that as we increase the number of GPUs
involved in training, the second term becomes negligible compared
to the first. This gives us,

Mgpu ≥ 4NPbase
Gtensor

=⇒ NPbase ≤
Gtensor

4
×Mgpu (6)

Note that substituting Gtensor = 1 in Equation 6 gives us the base
model upper bound for Rajbhandari et al. [25], the current state-of-
the-art for training MoEs. Thus, we have shown that our system
enables the training of Gtensor× larger base models compared to
the previous state-of-the-art. Note that the maximum degree of
tensor parallelism is limited to the number of GPUs in a node due
to performance considerations [22]. Nevertheless, our framework
can still support 4×, 6× and 8× larger base models on Perlmutter,
Summit and an NVIDIA-DGX-A100 machine respectively.

4 MEMORY SAVINGS VIA TILING
In the previous section, we provided an overview of how TED dis-
tributes the parameters and the computation of the forward and
backward passes across the GPUs. However, a naive combination
of tensor, expert, and data parallelism leads to significant spikes in
memory usage during the optimizer step. Interestingly, the mag-
nitude of this spike becomes worse as we increase the number of
experts and/or the base model sizes. Note that it is important to
resolve this issue so that we are able to fit MoEs with large base
models in memory. Below, we discuss this phenomenon in detail
and outline our solution to resolve this issue.

To demonstrate the aforementioned memory usage spike, we
profile the memory consumed per GPU during various phases of
training (forward pass, backward pass, optimizer step) for an MoE
model with a 2.7B parameter base model and 32 experts, and show
the results in Figure 4. We run this experiment on 32 GPUs of an
NVIDIA DGX-A100 cluster with eight GPUs per node. We set the
degree of tensor and expert parallelism to 1 and 32 respectively.
This results in degrees of data parallelism as 32 and 1 for the non-
expert and expert blocks respectively. We observe that memory
consumption peaks during the optimizer step with a very signifi-
cant spike of around 4.5 GB. An intermediate step in the optimizer
phase in mixed precision training is the up-casting of 16-bit gradi-
ents to 32-bit gradients before the optimizer updates the weights.
This requires the creation of a temporary buffer to store the 32-
bit gradients and is exactly the reason why there is a significant
increase in memory consumption. In fact, this problem becomes
worse with increasing base model sizes and/or expert counts. Let
us now understand why.

Forward Pass Backward Pass Optimizer Step
Training Phase

0

10

20

30

40
M

em
or

y
H

ig
h

W
at

er
m

ar
k

(G
B)

Memory Consumption of a 2.7B Base Model with 32 Experts

Without Tiling

With Tiling

Figure 4:Memory consumption in the various phases of train-
ing for an MoE with a 2.7B parameter base model and 32
experts on 32 GPUs of an NVIDIA DGX-A100 (40 GB) cluster.
We observe a large spike of an additional 4.5 GB in memory
usage during the optimizer step (red), which is significantly
reduced to around 1.5 GB by our tiled optimizer (green).

TED uses ZeRO stage-1 which reduces memory consumption
by sharding the optimizer states and computation across the data
parallel groups. Greater the degree of data parallelism, the greater
the reduction in memory consumption [26]. From the discussion
in Section 3, we know that TED employs different degrees of data
parallelism for the expert parameters and non-expert blocks. In
fact, it follows from Equation 1 that

Gtensor × Gexpert × Gexp
data = Gtensor × Gnonexp

data

Gexpert × Gexp
data = Gnonexp

data

E × Gexp
data = Gnonexp

data

ICS ’23, June 21–23, 2023, Orlando, FL, USA Singh et al.

Gexp
data =

Gnonexp
data
E

(7)

From Equation 7, we can conclude that the degree of data paral-
lelism for the expert blocks is E× less than that for the non-expert
blocks. Therefore, ZeRO provides lesser memory savings for the
expert blocks than the non expert blocks. This is because the opti-
mizer states for the expert blocks are sharded over E× lesser GPUs.
Thus, as E increases each GPU has to process increasing number
of parameters in the optimizer step. This leads to an increase in
the size of the temporary 32-bit gradient buffer required to up-cast
the expert parameter gradients. Increasing the base model size also
worsens this problem as the size of the expert parameter group
is directly proportional to the base model size. This is why it is
imperative to resolve this issue such that we can train MoEs with
large base models and/or large number of experts.

In this work, we propose a tiled formulation of the optimizer that
strives to alleviate the aforementioned issue. Instead of processing
the entire expert parameter group at once, we propose partitioning
these parameters into “tiles” of a predefined size and iteratively pro-
cessing these tiles. This ensures that at any given time, temporary
32-bit gradients are only produced for parameters belonging to a
given tile. The temporary memory used to store these gradients
can in fact be reused across tiles. For a tile size ts, we now only
need 4× ts bytes of memory to materialize the 32-bit gradients. This
makes the optimizer memory spike independent of the number of
experts and the base model sizes! In our experiments, we fix the
tile size to 1.8 million parameters, which essentially caps the spike
in the optimizer step to 1 GB. We observed that this tile size is
large enough to not cause any performance degradation due to the
latency of multiple kernel launches. In Figure 4, we demonstrate
how our tiled optimizer reduces the per GPU peak memory con-
sumption for the aforementioned MoE with a 2.7B parameter base
model and 32 experts by 3 GB. In fact, on another MoE with 6.7B
parameters and 16 experts on 32 GPUs, our framework ran out of
memory without tiling. Whereas, with tiling enabled, we were able
to successfully train this model with a peak memory consumption
of 31.3 GB. Since the maximum memory capacity of these GPUs is
40 GB, optimizer tiling provides a significant memory savings of
more than 21.75%!

5 PERFORMANCE OPTIMIZATIONS
In the preceding sections, we focused on increasing the maximum
possible size of MoEs that are supported by our framework. While
the memory savings provided by expert and tensor parallelism con-
tribute to this, they also result in a significant portion of the batch
time being spent in expensive collective communication. In Figure
3, we can observe that the forward pass includes two all-reduce calls
within the tensor parallel groups, and two all-to-all calls within
the expert parallel groups. During the backward pass, these calls
are repeated again. Also, large model training almost always uses
activation checkpointing [5], which significantly reduces activation
memory at the expense of a duplicate forward pass per layer. Thus,
overall we end up with six all-to-all and six all-reduce commu-
nication calls, which become a significant bottleneck in training.
We empirically demonstrate this in Figure 5 (leftmost bar titled

Baseline), wherein we observe that almost half of the batch time is
spent in the all-to-all and all-reduce communication calls. We will
now describe two performance optimizations that seek to reduce
the time spent in these communications and are extremely critical
to the performance of our framework.

Baseline DTD DTD+CAC
0

10

20

30

40

50

60

70

T
im

e
(s

)

Performance Profile of a 6.7B Base Model with 16 Experts on Summit

All-gather

All-to-all

All-reduce

Other

Figure 5: Impact of our communication optimizations on
the batch time of an MoE model with a 6.7B parameter base
model and 32 experts on 128 GPUs of Summit (batch size:
1024). Our optimizations result in significant reductions of
64.12% and 33% in the all-to-all and all-reduce time respec-
tively, thereby improving the overall training time by 20.7%.

5.1 Duplicate Token Dropping (DTD) for
Reducing Communication Volume

MegatronLM’s tensor parallelism for partitioning self-attention
and feed forward blocks involves issuing an all-reduce on local
partial outputs to materialize the full outputs on each rank [32]. For
example, in Figure 3, GPUs 0 and 1 issue an all-reduce (2) after the
self-attention block to assemble the full self-attention outputs for
tokens 1 and 2. While, this leads to duplication of activations across
the tensor parallel ranks, it is not an issue for training regular
transformer models (i.e. without experts) as the tensor parallel
blocks under MegatronLM’s algorithm require a complete set of
input activations on each tensor parallel rank. Thus the duplicate
activations output by a tensor parallel block serve as the required
input for its successor. However, for MoEs, an unwanted side effect
of this design choice is the presence of redundant tokens in the
all-to-all communication calls. For example consider the first all-
to-all in Figure 3 (4). Self-attention output activations, a1 and
a2, are communicated by both GPUs 0 and 1. Similarly, GPUs 2
and 3 both communicate a3 and a4. In general, the amount of
unnecessary data in the all-to-all communication calls for a given
token is proportional to the degree of tensor parallelism. Thus,
naively combining expert and tensor parallelism can lead to the all-
to-all communication becoming a significant bottleneck, especially
as we try to increase the base model sizes (larger base models need
more tensor parallelism). For example, in Figure 5, 32% of the batch
time is spent in the all-to-all (leftmost bar titled baseline)! The
degree of tensor parallelism and thus the degree of redundancy in
the all-to-alls is four here.

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

To resolve this bottleneck, we propose duplicate token dropping
(DTD), a communication optimization geared towards eliminating
unnecessary data in the all-to-all communication. We illustrate the
working of DTD in Figure 6 for the first all-to-all communication
in an MoE layer (4 in Figure 3). Before the all-to-all is issued,
GPUs within tensor parallel groups participate in a “drop” operation
(1 in Figure 6). The drop operation ensures that the there is no
redundancy in the output activations across the tensor parallel
ranks. For instance, GPU 0 drops the activation of a2 whereas GPU 1
drops the activation a1, thereby completely eliminating redundancy
within their tensor parallel group. Similarly, GPUs 3 and 4 drop a3
and a4 respectively. The drop operation thus reduces the all-to-all
message sizes by two times in this example, and in general the
reduction is equal to the degree of tensor parallelism. However,
after the all-to-all, the GPUs do not have the full input activations
to commence the computation of the expert feed forward blocks.
For instance, GPU 0 has the input activations for the token 1, but
not for token 3 and vice versa for GPU 1. Therefore, to assemble
the full input activations, we issue an all-gather call (2 in Figure 6)
between the tensor parallel GPUs. The all-gather ensures that the
input dependencies for the expert feedforward blocks are met.

Feedforward 2
TP 1

Feedforward 2
TP 2

Feedforward 1
TP 1

Feedforward 1
TP 2

Router

Router

Router

Router

All-to-
All

a1
a2

a3
a4

GPU0

GPU1

GPU2

GPU3

Drop

Drop

Drop

Drop

a1

a2

a3

a4

a2

a3

a4

All-
Gather

a1
a3

a2
a4

a2
a4

a3
a1

1

Expert 2

Expert 1

All-
Gather

2

a1
a2

a3
a4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

a1

a2

a1

a2

a4

a3

a3
a4

All-to-
All

a1

Figure 6: Duplicate token dropping (DTD) in the first all-
to-all communication of an MoE layer (Steps 3–5 in Figure
3). Before the all-to-all, we apply the drop operation, which
eliminates redundant tokens across tensor parallel ranks,
and reduces the all-to-all message sizes by the degree of ten-
sor parallelism. After the all-to-all, GPUs reassemble the full
input to the feed forward blocks by issuing an all-gather be-
tween the tensor parallel ranks.

During the backward pass the all-gather call is replaced by a drop
operation and the drop operation is replaced by an all-gather call.
For the MoE model in Figure 5, we observe that DTD reduces the
all-to-all communication time by 48%. While the inclusion of DTD
leads to an additional all-gather operation (shown in red on top of
the second bar), this overhead is outweighed by the improvement
in the all-to-all communication timing. Overall, DTD results in an
improvement of 13.21% in the batch time.

5.2 Communication-aware Activation
Checkpointing (CAC)

We now turn our attention to a second source of redundant commu-
nication in large model training, namely activation checkpointing

[5]. Intermediate activations in a neural network generated during
the forward pass need to be stashed in memory as they are required
during the backward pass for the gradient computation. However,
for large model training, storing all the activations can lead to
tremendous memory overhead. Activation checkpointing allevi-
ates this issue by storing only a subset of the activations, which are
essentially just the input activations of every layer. During the back-
ward pass of a layer, the remaining activations are re-materialized
from its stashed input activation by doing a local forward pass for
that layer. Thus, activation checkpointing saves activation memory
at the expense of a duplicate forward pass for every layer, and is
almost always used for training large neural networks. For more
details, we refer the reader to Chen et al. [5].

We know from Section 3 that the forward pass of an MoE layer in
TED involves two all-to-alls and two all-reduce calls in the forward
pass and two all-to-alls and two all-reduce calls in the backward
pass. Since activation checkpointing involves repeating the forward
pass of a layer, we now end up with two additional all-to-all and
all-reduce calls, thereby increasing communication volume by 1.5×
and making the training process inefficient.

To this end, we propose communication-aware checkpointing
(CAC), a communication optimization that eliminates the additional
communication in the second forward pass induced by activation
checkpointing. During the first forward pass, CAC stashes the out-
puts of each all-reduce and all-to-all communication call along with
the data stashed by standard activation checkpointing. Now, during
the second forward pass, we bypass these communication calls and
instead return the outputs for these communication calls stashed
during the first forward pass. CAC thus reduces the communication
volume by 33% at the expense of using extra GPU memory. For
the MoE model in Figure 5, CAC indeed reduces the all-to-all and
all-reduce communication times by 33% (compare second and third
bars). In combination with DTD, the reductions in the all-to-all and
all-reduce communication times are 64.12% and 33% respectively,
amounting to a speedup of nearly 20.7% over the baseline version
of DeepSpeed-TED.

6 EXPERIMENTAL SETUP
This section provides an overview of the empirical evaluation of
DeepSpeed-TED. Our framework is open source, and has been
integrated in DeepSpeed, a state-of-the-art framework for parallel
deep learning. We conduct our experiments on the Summit and
ThetaGPU supercomputers. Summit has six 16 GB NVIDIA V100
GPUs per node, each having a peak half precision throughput of 125
Tflop/s. Each node has two 22-core Power 9 CPUs. The peak intra-
node and inter-node GPU bidirectional communication bandwidths
are 50 GB/s (NVlink) and 25 GB/s (Infiniband) respectively. On
the other hand, ThetaGPU is a NVIDIA DGX A100 machine with
eight 40 GB NVIDIA A100 GPUs per node, each having a peak half
precision throughput of 312 Tflop/s. On this machine, the peak intra-
node and inter-node GPU bidirectional communication bandwidths
are 600 GB/s (NVlink) and 200 GB/s (Infiniband) respectively.

6.1 Neural Network Architectures and Datasets
Table 1 lists the various base model architectures used in this study.
All MoEs used in our empirical experiments are constructed by

ICS ’23, June 21–23, 2023, Orlando, FL, USA Singh et al.

adding expert blocks to every alternate layer of one of these base
models (this is in linewith previouswork [10, 17, 18]). The basemod-
els and their corresponding hyperparameters are taken from Brown
et al. [4]. We use the Pile dataset to generate input tokens [11]. We
use the AdamW optimizer [20], which is the standard practice for
large language model training. We implement the layers of our
transformer models using MegatronLM’s GPU kernels [32].

Table 1: Architectural details and batch sizes for the various
transformer base models used to build the MoEs used in
this study. All hyperparameters including the batch sizes are
taken from Brown et al. [4].

Parameters # Layers Hidden
Size

Attention
Heads Batch Size

1.3B 24 2048 16 512
2.7B 32 2560 32 512
6.7B 32 4096 32 1024
13.0B 40 5140 40 2048

First, we establish the correctness of our implementation by
training a 2.6B parameter MoE model (1.3B parameter base model
and 4 experts) to completion on the BookCorpus dataset [42], on
8 GPUs, and present the validation loss curves. For reference, we
also train this model using DeepSpeed-MoE [25], the current state-
of-the-art framework for training MoEs and compare the two loss
curves. Then, we demonstrate the maximum MoE model sizes that
our framework can support for a given number of GPUs and com-
pare it with DeepSpeed-MoE [25]. Next, we conduct strong scaling
studies using MoEs built from the 1.3B, 2.7B and 6.7B parameter
transformer models in Table 1 on 32 to 256 GPUs. At 32 GPUs, we
add as many experts as the system memory permits. We strong
scale a model in two ways, first increasing the number of GPUs
while keeping the number of experts constant, and second by vary-
ing the number of experts proportional to the number of GPUs.
Note that even though the latter experiment increases the model
size with scale, it is still considered strong scaling as adding experts
to a base model does not change the total number of floating point
operations in training. For our weak scaling runs, we fix the number
of experts to 16 and use base models of increasing sizes from Table
1 as we go from 32 to 256 GPUs. Note that this is weak scaling,
because the number of floating point operations are proportional
to the base model size.

6.2 Evaluation Metrics
We illustrate the results of our experiment using the average time
per iteration (or batch). To calculate this, we first run a given model
with 100 batches sampled from the Pile dataset [11] and take the
average of the last 90. We do not include the first 10 batches because
PyTorch issues expensive mem-alloc calls to the CUDA runtime in
the initial iterations to reserve enough memory for training. We
also derive the percentage of peak half-precision throughput from
the average batch time using Narayanan et al.’s formulation[32].
Note that this an analytical formulation of the total number of
flop/s (and thus the percentage of peak half-precision throughput).
Since Narayanan et al.’s formulation is a lower bound on the total

floating point operations, we expect empirically measured flop/s to
be higher.

7 RESULTS
In this section, we discuss the results of the empirical experiments
outlined in Section 6.

7.1 Validating Our Implementation
To verify the correctness of DeepSpeed-TED, we train an MoE
with a 1.3B parameter base model and 4 experts on 8 GPUs of
ThetaGPU and present the validation loss curve in Figure 7. We set
Gtensor = 2, expert = 4, Gnonexp

data = 4, and Gexp
data = 1. This allows us to

test the correctness of our framework in a scenario where all three
dimensions of its hybrid parallel approach are active.We also enable
the communication optimizations discussed in Section 5 i.e. DTD
and CAC. We observe that our framework is able to successfully
train the model to convergence, and produces identical loss curves
to DeepSpeed-MoE, a system that has been previously used to
train state-of-the-art MoE models. In this way, we establish the
correctness of our implementation.

0 1000 2000 3000 4000 5000
Iteration #

2

4

6

8

10

Va
lid

at
io

n
Lo

ss
Validation Loss for a 1.3B base model with 4 experts

DeepSpeed-TED

DeepSpeed-MoE

Figure 7: Validation loss for an MoE with a 1.3B base model
and four experts on eight GPUs of ThetaGPU on the Book-
Corpus dataset [42]. We use a batch size of 128 and sequence
length of 2048. We set Gtensor = 2, Gexpert = 4, Gexp

data = 1,
Gnonexp
data = 4.

7.2 Comparison of Supported Model Sizes
Figure 9 illustrates the results of our experiment in which we bench-
mark the largest MoE models that our framework and DeepSpeed-
MoE [25] can train without running out of memory for various
GPU counts ranging between 32 and 512. We use the base models
in Table 1. To make sure that the experiment is fair to both the
frameworks we do two things. While our proposed approach can
in theory support arbitrarily large base models by increasing the
degree of tensor parallelism, it is well known that tensor parallelism
is extremely inefficient when used across nodes. Therefore, we only
allow our framework to use a maximum tensor parallel degree of

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

32 64 128 256
GPUs

2

4

8

16

T
im

e
pe

r
ite

ra
tio

n
(s

)

E=16

E=32

E=64
E=128

Strong Scaling of a 1.3B Base Model with Varying # Experts

DeepSpeed-TED (baseline)

DeepSpeed-TED

32 64 128 256
GPUs

4

8

16

32

T
im

e
pe

r
ite

ra
tio

n
(s

)

E=8

E=16

E=32

E=64

Strong Scaling of a 2.7B Base Model with Varying # Experts

DeepSpeed-TED (baseline)

DeepSpeed-TED

32 64 128 256
GPUs

16

32

64

128

256

T
im

e
pe

r
ite

ra
tio

n
(s

) E=4

E=8

E=16
E=32

Strong Scaling of a 6.7B Base Model with Varying # Experts

DeepSpeed-TED (baseline)

DeepSpeed-TED

Figure 8: Strong scaling (with varying number of experts) of MoEs with the 1.3B, 2.7B and 6.7B parameter models in Table 1
used as base, on V100 GPUs of Summit. We annotate the plot with the number of experts used at each GPU count. We sample
input batches of sizes 512, 512 and 1024 respectively, from the Pile dataset[11].

32 64 128 256 512
GPUs

0

100

200

300

400

500

#
 M

od
el

 P
ar

am
et

er
s

(in
 b

ill
io

ns
)

Largest Trainable MoE Models on Summit

DeepSpeed-TED

DeepSpeed-MoE

Figure 9: Largest MoE model sizes supported on various GPU
counts on Summit. We construct MoEs using base models
from Table 1 and number of experts in the range of 4 to 128.
Compared to DeepSpeed-MoE [25], our framework supports
1.09-4.8× larger MoE models, with the ratio increasing with
increasing number of GPUs.

six, which is the number of GPUs on a node of Summit. Second, we
limit the largest possible number of experts to 128 as prior work
has demonstrated limited improvements in the statistical efficiency
of a model beyond this number [10].

Across the range of GPUs used in this experiment, we observe
that DeepSpeed-TED supports 1.09 − 4.8× larger MoE models than
DeepSpeed-MoE. We also observe that this ratio increases as we
increase the number of GPUs. This can be explained by Equation
5, which states that the memory consumption of our approach
decreases with increasing number of GPUs.We observe that beyond
128 GPUs, our proposed framework can train MoEs with hundreds
of billion of parameters on Summit, which is not possible with
DeepSpeed-MoE. Thus, we have empirically demonstrated how our
DeepSpeed-TED can enable the development of high quality MoE
models, the parameters of which have been scaled along the base
model dimension as well as the expert dimension.

7.3 Strong Scaling Performance
We now discuss the results of our strong scaling experiments, start-
ing with the runs that varied the number of experts proportional
to the number of GPUs. We demonstrate the results for the 1.3B,
2.7B and 6.7B base models in Figure 8. To demonstrate the efficacy
of the communication optimizations discussed in Section 5, we
also benchmark the baseline version of our framework i.e. with
DTD+CAC disabled, and call it DeepSpeed-TED (baseline). Across
all the figures, we observe that augmenting the training procedure
with DTD and CAC indeed improves the hardware efficiency of
training. However, while the speedups for the 2.7B and 6.7B parame-
ter base models are significant: 19 to 23% and 25 to 29% respectively,
our communication optimizations seem to be less effective for the
smallest 1.3B base model providing modest speedups of around 4 to
7%. This is because at the given GPU counts and number of experts,
ZeRO’s memory optimizations and expert parallelism are able to
fit this model in memory without the aid of tensor parallelism.
Without tensor parallelism there is no redundancy in the all-to-all
communication (see Section 5.1) and thus the DTD communication
optimization is of no use in this scenario. Similarly, without tensor
parallelism there is no all-reduce communication (2 and 6 of Fig-
ure 3). Thus, CAC only eliminates the unnecessary all-to-all calls,
and is only partially applicable to this scenario. This explains the
reduced effectiveness of our optimizations for the 1.3B base model.

Unlike the 1.3B base model, the 2.7B and 6.7B model require a
tensor parallel degree of 2 and 4 to fit in available GPUmemory. The
ensuing redundancy in the all-to-all messages and the introduction
of tensor parallelism thus makes our communication optimizations
quite effective. Again, we observe larger speedups for the MoEs
using the 6.7B base model (25–29% versus 19–23%) as a higher
degree of tensor parallelism implies more redundancy in the all-
to-all messages, which our optimizations successfully eliminate.
It also implies a larger proportion of time spent in tensor parallel
all-reduces which is significantly reduced by CAC.

In our strong scaling runs with fixed number of experts, we
observed very similar absolute times per iteration and relative
speedups for all the three models. For brevity, we only include the
results for the 6.7B parameter base model, and illustrate them in

ICS ’23, June 21–23, 2023, Orlando, FL, USA Singh et al.

Figure 10. We have thus verified that our optimizations are effec-
tive at improving performance in two strong scaling setups across
various base model sizes.

32 64 128 256
GPUs

16

32

64

128

256

T
im

e
pe

r
ite

ra
tio

n
(s

)

Strong Scaling for a 6.7B Base Model with 4 Experts

DeepSpeed-TED (baseline)

DeepSpeed-TED

Figure 10: Strong scaling (with number of experts fixed to
four) of a MoE with a 6.7B parameter model in Table 1 used
as base, on V100 GPUs of Summit. We sample input batches
of size 1024 from the Pile dataset[11].

7.4 Weak Scaling Performance
As discussed in Section 6, we conduct a weak scaling experiment
by fixing the number of experts to 16 and varying the base model
size in proportion with the number of GPUs. We demonstrate the
time per iteration (or batch) and percentage of peak half-precision
throughputs for this experiment in Figure 11 and Table 2 respec-
tively. Again, we observe a minor speedup of 6% for the 1.3B base
model, and significant speedups of 20%, 25% and 36% for the 2.7B,
6.7B and 13B base models respectively. Just like the previous section,
the progressively increasing effectiveness of our communication
optimizations for larger base models can be explained by the corre-
spondingly increasing degrees of tensor parallelism - 1, 2, 4, and 8.
This creates more redundancy for the larger models in the all-to-all
and increases the net communication volume of the all-reduces.
Note that while the speedups for the 13B parameter model is sig-
nificant (36%), the hardware utilization for this model is extremely
low. Even with our optimizations, we are only able to achieve 11.7%
of the peak half-precision flop/s, which is significantly lower than
the 1.3B (37% of peak), 2.7B (30% of peak) and 6.7B (27% of peak)
base models. The explanation for this observation is that a tensor
parallel degree of 8 for this model is greater than the number of
GPUs on a Summit node. This experiment corroborates prior work
which has observed that Megatron-LM’s algorithm does not scale
well beyond the confines of a node [22, 33].

8 RELATEDWORK
Due to the increasing computational costs of training state-of-the-
art neural networks, several frameworks and algorithms have been
proposed that can train these networks in parallel on networked

32
(1.3B)

64
(2.7B)

128
(6.7B)

256
(13B)

GPUs
(# Parameters in Base Model)

0

40

80

120

160

T
im

e
pe

r
ite

ra
tio

n
(s

)

Weak Scaling with Fixed # Experts - Average Iteration Time

DeepSpeed-TED (baseline)

DeepSpeed-TED

Figure 11: Average time per iteration (left) for a weak scaling
study ofMoEmodelswith 16 experts on Summit. Basemodels
and batch sizes are taken from Table 1.

Table 2: Percentage of peak half precision throughput for a
weak scaling study ofMoEmodelswith 16 experts on Summit.
Base models and batch sizes are taken from Table 1.

Base Model Size Throughput
GPUs (# Parameters) (% of peak)

32 1.3B 36.7
64 2.7B 30.0
128 6.7B 26.2
256 13.0B 11.7

multi-GPU clusters. These can broadly be divided intro three cat-
egories - data, tensor, and pipeline parallelism. Under data paral-
lelism, participating GPUs are assigned a full copy of the neural
network. The parallelism comes from the fact that each GPU works
on a equal sized shard of the input batch at every iteration. Perhaps
due to its simplicity of implementation, data parallelism has been
the most widely adopted algorithm and can be found in popular
deep learning frameworks like PyTorch (as Distributed Data Paral-
lel [19]). However, a major limitation of data parallelism is that it
requires the full neural network to fit on each GPU. To resolve this
issue, Rajbhandari et al. propose the Zero Redundancy Optimizer
(ZeRO) which shards the parameters, gradients, and/or optimizer
states of the model across participating GPUs [26], and enable train-
ing of much larger models that far exceed the memory capacity
of a single GPU. PyTorch also natively offers Fully Sharded Data
Parallelism (FSDP), which is based off a similar idea [41].

Tensor parallel algorithms like MegatronLM [32] divide the pa-
rameters and computation of each layer of a neural network across
participating GPUs and can thus also be used to train neural net-
works that do not fit on a single GPU. Other examples of tensor
parallel frameworks and algorithms are [2, 38, 39] for fully con-
nected layers, [7, 8] for convolution layers, and [36] for graph neural

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

networks. On the other hand, pipeline parallelism involves assign-
ing the parameters and computation of a contiguous subset of layers
to each GPU [14, 21, 22, 33, 35]. Parallelism is achieved by break-
ing a batch into microbatches and processing the microbatches in
a pipelined fashion (akin to pipelining in computer architecture).
Narayanan et al. show how combining tensor, pipeline, and data
parallelism can be an extremely efficient strategy to train large
multi-billion parameter models at scale [22]. As future work, we
plan to integrate pipeline parallelism in DeepSpeed-TED to further
enhance its performance.

To combat the rising computation costs of training state-of-the-
art neural networks like Chinchilla [13], GPT-3 [4], and Megatron-
Turing NLG [34], the machine learning community has recently
turned its attention to the Mixture-of-Experts (MoE) architecture
to train large compute efficient transformer models for natural lan-
guage processing and computer vision [9, 10, 18, 29]. Subsequently,
a number of parallel deep learning frameworks have been proposed
for training or running inference on MoEs on multi-GPU clusters.
These frameworks usually combine the aforementioned parallel
deep learning algorithms with expert parallelism, which entails
computing expert blocks in an embarrassingly parallel manner on
multiple GPUs. Rajbhandari et al. present DeepSpeed-MoE [25], a
state-of-the-art system for training and running inference on MoEs
that combines expert parallelism with ZeRO’s data parallelism. Nie
et al. combine develop highly optimized kernels for routing and
all-to-all communication in their framework called HetuMoE [23].
In SE-MoE, the authors combine expert parallelismwith out-of-core
training, wherein they store model data on the CPU memory and
SSDs to enable training of extremely large MoEs [31]. Artetxe et
al. employ Pytorch’s Fully Sharded Data Parallelism (FSDP [41]) to
training MoEs with trillions of parameters [1]. In their framework
called Tutel, Hwang et al. propose several optimizations for training
MoEs at scale such as optimized kernels for the routing function,
an efficient 2D hierarchical algorithm for all-to-all communication,
and adaptive parallelism for dynamic MoE workloads [15].

9 CONCLUSION
Deep learning researchers have recently started exploring Mixture-
of-Experts (MoE) to combat the increasing computational demands
of large neural networks. Prior state-of-the-art for parallelizing
MoE architectures combined data and expert parallelism but not
tensor parallelism. In this work, we presented a novel, hybrid paral-
lel algorithm that combines tensor, expert, and data parallelism to
enable the training of MoE models with 4 − 8× larger base models
than the current state-of-the-art, DeepSpeed-MoE. We identified
an abnormal memory spike in the optimizer that only occurs for
MoEs and proposed a tiled implementation of the optimizer to al-
leviate this problem. We also showed that a naive combination of
tensor and expert parallelism results in significant redundancy in
collective communication, and proposed communication optimiza-
tions to solve this issue. Finally, we conducted a thorough set of
empirical experiments to validate the effectiveness of our proposed
framework. Future work involves the addition of pipelining as a
new dimension of parallelism in order to scale our framework to
base models that cannot fit on a single node.

ACKNOWLEDGMENTS
This work was supported by funding provided by the University of
Maryland College Park Foundation. This research used resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy (DOE) under Contract No. DE-
AC05-00OR22725. This research also used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract No. DE-AC02-06CH11357.

REFERENCES
[1] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam

Shleifer, Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri
Anantharaman, Xian Li, Shuohui Chen, Halil Akin,Mandeep Baines, LouisMartin,
Xing Zhou, Punit Singh Koura, Brian O’Horo, JeffWang, Luke Zettlemoyer, Mona
Diab, Zornitsa Kozareva, and Ves Stoyanov. 2021. Efficient Large Scale Language
Modeling with Mixtures of Experts. https://doi.org/10.48550/ARXIV.2112.10684

[2] Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. 2021. Maximizing
Parallelism in Distributed Training for Huge Neural Networks. https://doi.org/
10.48550/ARXIV.2105.14450

[3] BigScience. 2022. BigScience Large Open-science Open-access Multilingual
Language Model. https://huggingface.co/bigscience/bloom.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
CoRR abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. arXiv:1604.06174 [cs.LG]

[6] Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and
Furu Wei. 2022. StableMoE: Stable Routing Strategy for Mixture of Experts.
arXiv:2204.08396 [cs.LG]

[7] Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir, and Brian
Van Essen. 2019. Improving Strong-Scaling of CNN Training by Exploiting
Finer-Grained Parallelism. https://doi.org/10.48550/ARXIV.1903.06681

[8] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Marc Snir, and Brian
Van Essen. 2019. Channel and Filter Parallelism for Large-Scale CNN Training.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Association for
Computing Machinery, New York, NY, USA, Article 10, 20 pages. https://doi.
org/10.1145/3295500.3356207

[9] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin,
Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang,
Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen Meier-Hellstern, Toju
Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng Chen, and
Claire Cui. 2022. GLaM: Efficient Scaling of Language Models with Mixture-of-
Experts. arXiv:2112.06905 [cs.CL]

[10] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch Transformers:
Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. https:
//doi.org/10.48550/ARXIV.2101.03961

[11] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and
Connor Leahy. 2021. The Pile: An 800GB Dataset of Diverse Text for Language
Modeling. CoRR abs/2101.00027 (2021). arXiv:2101.00027 https://arxiv.org/abs/
2101.00027

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (nov 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[13] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den
Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich
Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. 2022. Training Compute-
Optimal Large Language Models. arXiv:2203.15556 [cs.CL]

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),

https://doi.org/10.48550/ARXIV.2112.10684
https://doi.org/10.48550/ARXIV.2105.14450
https://doi.org/10.48550/ARXIV.2105.14450
https://huggingface.co/bigscience/bloom
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2204.08396
https://doi.org/10.48550/ARXIV.1903.06681
https://doi.org/10.1145/3295500.3356207
https://doi.org/10.1145/3295500.3356207
https://arxiv.org/abs/2112.06905
https://doi.org/10.48550/ARXIV.2101.03961
https://doi.org/10.48550/ARXIV.2101.03961
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2203.15556

ICS ’23, June 21–23, 2023, Orlando, FL, USA Singh et al.

Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
093f65e080a295f8076b1c5722a46aa2-Paper.pdf

[15] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong
Wang, Rafael Salas, Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang,
Mao Yang, and Yongqiang Xiong. 2022. Tutel: Adaptive Mixture-of-Experts at
Scale. arXiv:2206.03382 [cs.DC]

[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. https://doi.org/10.48550/ARXIV.2001.
08361

[17] Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Sali-
nas, Liyang Lu, Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan
Awadalla. 2021. Scalable and Efficient MoE Training for Multitask Multilingual
Models. https://doi.org/10.48550/ARXIV.2109.10465

[18] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding.
https://doi.org/10.48550/ARXIV.2006.16668

[19] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
Proc. VLDB Endow. 13, 12 (Aug. 2020), 3005–3018. https://doi.org/10.14778/
3415478.3415530

[20] Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight Decay Regularization in
Adam. CoRR abs/1711.05101 (2017). arXiv:1711.05101 http://arxiv.org/abs/1711.
05101

[21] Microsoft. 2021. 3D parallelism with MegatronLM and ZeRO Redundancy Opti-
mizer. https://github.com/microsoft/DeepSpeedExamples/tree/master/Megatron-
LM-v1.1.5-3D_parallelism.

[22] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie
Bernauer, Bryan Catanzaro, Amar Phanishayee, andMatei Zaharia. 2021. Efficient
Large-Scale Language Model Training on GPU Clusters. CoRR abs/2104.04473
(2021). arXiv:2104.04473 https://arxiv.org/abs/2104.04473

[23] XiaonanNie, Pinxue Zhao, XupengMiao, Tong Zhao, and Bin Cui. 2022. HetuMoE:
An Efficient Trillion-scale Mixture-of-Expert Distributed Training System. https:
//doi.org/10.48550/ARXIV.2203.14685

[24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. https:
//doi.org/10.48550/ARXIV.1910.10683

[25] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani
Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-
MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-
Generation AI Scale. https://doi.org/10.48550/ARXIV.2201.05596

[26] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimizations toward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 20, 16 pages.

[27] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale
Deep Learning (SC ’21). Association for Computing Machinery, New York, NY,
USA, Article 59, 14 pages. https://doi.org/10.1145/3458817.3476205

[28] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-
Offload: Democratizing Billion-Scale Model Training. CoRR abs/2101.06840 (2021).
arXiv:2101.06840 https://arxiv.org/abs/2101.06840

[29] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe
Jenatton, André Susano Pinto, Daniel Keysers, and Neil Houlsby. 2021. Scaling
Vision with Sparse Mixture of Experts. arXiv:2106.05974 [cs.CV]

[30] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer. https://doi.org/10.48550/ARXIV.1701.
06538

[31] Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai, HuaChao
Wu, Xinxuan Wu, Haoyi Xiong, Dianhai Yu, and Yanjun Ma. 2022. SE-MoE: A
Scalable and Efficient Mixture-of-Experts Distributed Training and Inference
System. https://doi.org/10.48550/ARXIV.2205.10034

[32] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv:1909.08053 [cs.CL]

[33] Siddharth Singh and Abhinav Bhatele. 2022. AxoNN: An asynchronous, message-
driven parallel framework for extreme-scale deep learning. In Proceedings of the
IEEE International Parallel & Distributed Processing Symposium (IPDPS ’22). IEEE
Computer Society.

[34] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas,
Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie

Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston, Saurabh
Tiwary, and Bryan Catanzaro. 2022. Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. https:
//doi.org/10.48550/ARXIV.2201.11990

[35] Masahiro Tanaka, Kenjiro Taura, Toshihiro Hanawa, and Kentaro Torisawa. 2021.
Automatic Graph Partitioning for Very Large-scale Deep Learning. In 35th IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2021, Portland,
OR, USA, May 17-21, 2021. IEEE, 1004–1013. https://doi.org/10.1109/IPDPS49936.
2021.00109

[36] Alok Tripathy, Katherine Yelick, and Aydin Buluc. 2020. Reducing Communica-
tion in Graph Neural Network Training. https://doi.org/10.48550/ARXIV.2005.
03300

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[38] Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. 2022. Tesseract: Paral-
lelize the Tensor Parallelism Efficiently. In Proceedings of the 51st International
Conference on Parallel Processing. ACM. https://doi.org/10.1145/3545008.3545087

[39] Qifan Xu, Shenggui Li, Chaoyu Gong, and Yang You. 2021. An Efficient 2D
Method for Training Super-Large Deep Learning Models. https://doi.org/10.
48550/ARXIV.2104.05343

[40] Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, and Yang You. 2021. Go
Wider Instead of Deeper. arXiv:2107.11817 [cs.LG]

[41] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min
Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmai-
son, Can Balioglu, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, and Shen
Li. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel.
arXiv:2304.11277 [cs.DC]

[42] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning Books and Movies: Towards
Story-like Visual Explanations by Watching Movies and Reading Books. In arXiv
preprint arXiv:1506.06724.

[43] Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang,
Tuo Zhao, and Jianfeng Gao. 2022. Taming Sparsely Activated Transformer with
Stochastic Experts. arXiv:2110.04260 [cs.CL]

https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://arxiv.org/abs/2206.03382
https://doi.org/10.48550/ARXIV.2001.08361
https://doi.org/10.48550/ARXIV.2001.08361
https://doi.org/10.48550/ARXIV.2109.10465
https://doi.org/10.48550/ARXIV.2006.16668
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://github.com/microsoft/DeepSpeedExamples/tree/master/Megatron-LM-v1.1.5-3D_parallelism
https://github.com/microsoft/DeepSpeedExamples/tree/master/Megatron-LM-v1.1.5-3D_parallelism
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://doi.org/10.48550/ARXIV.2203.14685
https://doi.org/10.48550/ARXIV.2203.14685
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.2201.05596
https://doi.org/10.1145/3458817.3476205
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2106.05974
https://doi.org/10.48550/ARXIV.1701.06538
https://doi.org/10.48550/ARXIV.1701.06538
https://doi.org/10.48550/ARXIV.2205.10034
https://arxiv.org/abs/1909.08053
https://doi.org/10.48550/ARXIV.2201.11990
https://doi.org/10.48550/ARXIV.2201.11990
https://doi.org/10.1109/IPDPS49936.2021.00109
https://doi.org/10.1109/IPDPS49936.2021.00109
https://doi.org/10.48550/ARXIV.2005.03300
https://doi.org/10.48550/ARXIV.2005.03300
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3545008.3545087
https://doi.org/10.48550/ARXIV.2104.05343
https://doi.org/10.48550/ARXIV.2104.05343
https://arxiv.org/abs/2107.11817
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2110.04260

	Abstract
	1 Introduction
	2 Background
	2.1 Mixture-of-Experts
	2.2 Data Parallelism and ZeRO
	2.3 Expert Parallelism and DeepSpeed-MoE
	2.4 Tensor Parallelism and Megatron-LM

	3 TED: A Hybrid Tensor-Expert-Data Parallel Approach
	3.1 A Model for Memory Consumption

	4 Memory Savings via Tiling
	5 Performance Optimizations
	5.1 Duplicate Token Dropping (DTD) for Reducing Communication Volume
	5.2 Communication-aware Activation Checkpointing (CAC)

	6 Experimental Setup
	6.1 Neural Network Architectures and Datasets
	6.2 Evaluation Metrics

	7 Results
	7.1 Validating Our Implementation
	7.2 Comparison of Supported Model Sizes
	7.3 Strong Scaling Performance
	7.4 Weak Scaling Performance

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

