
Predicting Cross-Architecture Performance of
Parallel Programs

Daniel Nichols†, Alexander Movsesyan†, Jae-Seung Yeom∗, Abhik Sarkar∗, Daniel Milroy∗,
Tapasya Patki∗, Abhinav Bhatele†

†Department of Computer Science, University of Maryland
∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

E-mail: †dnicho@umd.edu, †bhatele@cs.umd.edu

Abstract—A variety of hardware architectures, both CPUs
and GPUs, are used today to build supercomputers and parallel
clusters. Often times, users can choose which hardware platform
they want to run on. Modern scientific workflows have multiple
computational tasks, and each task may be better suited for a
different architecture in terms of performance. Deciding where
to run an application or workflow task is not straightforward
because of the complexity of applications, and hardware ar-
chitectures, which makes performance predictions challenging.
Hence, modeling the performance of scientific applications across
a variety of architectures is important for achieving the best
performance. In this paper, we present a machine learning
based methodology to model the relative performance of applica-
tions across multiple architectures using hardware performance
counters. Our machine learning model can predict the relative
performance of an application with a mean absolute error of
0.11, and can be used effectively to make performance-aware
and multi-architecture scheduling decisions, reducing makespan
by up to 20%.

Index Terms—performance modeling, architectures, machine
learning, multi-cluster scheduling

I. MOTIVATION

An increasing number of scientific workloads are being
expressed as workflows with sets of computational tasks
and dependencies between them [1], [2]. These workflows
typically involve ensembles of tasks (jobs) in a pipeline
that run different codes such as simulations, uncertainty
quantification analysis, and machine learning training. As
applications become more portable due to the emergence of
portable programming models [3], package managers [4], and
containerization techniques, different tasks or jobs might be
better suited for different hardware architectures. Given these
portable workflows and the increasingly heterogeneous set
of computing resources available to end users today, it is
important to develop capabilities to efficiently place these tasks
on the most efficient resources available.

Different tasks or applications in a workflow can be assigned
to different architectures if users have access to a variety of
compute nodes via a multi-resource job scheduler, which is
becoming increasingly common, both in data centers and HPC
facilities. As a result, the demand for such multi-resource
schedulers [5] is emerging. In an ideal setting, scheduler
can automatically decide the most suitable architecture for
different jobs in terms of performance. This can remove the

user from the decision making process and let a system
scheduler decide what hardware to run an application on.
However, in practice, this requires being able to predict the
performance of incoming jobs across diverse architectures.
This is a complex problem that would involve developing mod-
els for understanding the performance of scientific applications
across diverse architectures.

Cross-architecture performance modeling is a challenging
problem because application execution times are dependent on
several factors with non-trivial relationships to performance.
The performance depends on how well the application’s be-
havior aligns with the properties of the hardware it is running
on. These hardware properties, such as peak flop/s, memory
bandwidth, and cache sizes are easy to obtain, however, the
behavior of the application is non-trivial to model. Application
performance can depend on a number of characteristics such as
arithmetic intensity, memory loads/stores, branching behavior,
I/O, and many more. Characterizing these and using them
to model performance on a diverse set of architectures is
challenging due to the number of contributing factors and
complexity of the relationship.

In this paper, we propose a solution to the cross-architecture
performance modeling task by training a machine learning
model to predict the relative performance of an application
across a set of architectures given performance counters of
the application from one architecture. In order to accomplish
this, we collect a data set of application runs from four differ-
ent HPC systems with different architectures and measure a
hand selected set of performance counters. These counters,
along with the recorded execution times, are used to train
a regression model to predict relative performance vectors.
Additionally, we demonstrate the generalizability of our model
by evaluating it on a set of applications it has not seen before.
Finally, we demonstrate the makespan improvement from
using this model in a multi-resource scheduling simulation.

In this paper we make the following contributions:
• The Multi-Platform HPC (MP-HPC) dataset of hardware

performance counters for a wide variety of scientific
applications recorded on four different HPC systems.

• A regression model that can predict the relative perfor-
mance of an application across multiple systems with a
mean absolute error of 0.11.

• A qualitative comparison of the importance of different
counters in cross-architecture performance modeling.

• A demonstration of the potential makespan improvement
if our model is used to assist scheduling decisions in a
multi-resource scheduler.

II. BACKGROUND

In this section, we provide background on performance pro-
filing, relative performance vectors, and regression modeling.

A. Performance Profiling

When studying performance related aspects of an appli-
cation, performance profiling tools are often used to collect
data. These tools record profiling metrics such as wall time
during an application execution, and often attribute those
metric values to different regions of the application’s code.

A popular performance profiling tool for parallel programs
is HPCToolkit [6]. It is a sampling-based tool that can col-
lect numerous operating system and hardware counters and
attribute them to nodes on a calling context tree. It can
record counters such as cache misses, floating point operations,
branch instructions, etc. While many tools can record this
type of data, HPCToolkit has been demonstrated to be more
accurate than the others with relatively low overheads [7].

Typically, this analysis is done through HPCToolkit’s graph-
ical interface, hpcviewer, making studying trends in large
numbers of profiles very difficult [8]. The Python library,
Hatchet [9], solves this problem by providing a programmatic
interface to the profiles produced by HPCToolkit and other
popular profilers. Additionally, it provides extensive function-
ality for calling context tree pruning and analysis through
pandas Dataframe operations.

B. Regression Modeling

Traditional machine learning (ML) is often tasked as learn-
ing to predict some output given an input to the machine
learning model. When the output is discrete it is called clas-
sification. On the other hand, when the output is continuous
it is called regression. The latter of these training objectives
is used in the modeling in this paper.

When training a regression model, it is necessary to have a
dataset, D, of existing data where outputs are known. The
amount of data, |D|, needed is dependent on the model,
features, and problem complexity, however, typical regression
tasks can require thousands to tens of thousands of training
samples. This data, along with its corresponding outputs, is
used to optimize the model’s predictions respective to some
learning objective. Common learning objectives in regression
are to minimize mean absolute error, mean squared error,
coefficient of determination (R2), etc. on a testing data set. The
testing data set is separate from the data that the model was
trained on, so that reported values do not include overfitting,
i.e. the model does not memorize the data set. Often times
the function being minimized is additively combined with a
regularization term to reduce model complexity.

θ? = min
θ
L(x; θ) + Ω(θ)

Here L(x; θ) is the loss function at data sample x ∈ D
parameterized by θ. It is intended to model predictive capacity
of the model such as with mean absolute error. The second
term, Ω(θ), is the regularization term, which models the
complexity of the machine learning model. Penalizing model
complexity helps prevent overfitting of the data set.

III. RELATED WORK

Below, we present related work in the areas of machine
learning based performance modeling and cross-architecture
performance modeling. We further discuss how our work
differs from and builds on top of existing work.

A. Performance Modeling using Machine Learning

Performance modeling is a well studied research area with
lots of literature surrounding analytical and statistical models.
Recently, with the increase in machine learning innovations,
there has been a large focus on the latter. Machine learning
can help model complex relationships between applications
and their final performance. It has been used to model job
runtimes [10]–[13], variability [14]–[16], power consump-
tion [17], and many other things [18]–[20].

These models are often used to study and understand
complex relationships between applications and their perfor-
mance. Malakar et al. [18] compare the capability of various
different machine learning methods on modeling performance.
Furthermore, Zhou et al. [21] demonstrate how to extrapolate
models from small scale runs to larger scale runs. Many
works also use these models in downstream tasks to improve
performance. In [22] standard machine learning techniques
such as k-Nearest-Neighbors and XBoost are used to model
MPI collective performance and inform auto-tuning decisions.
This fits into the broader study of using machine learning
models to more efficiently explore the combinatorial search
space in auto-tuning [12], [23], [24]. Similar to this paper,
there are other works that use machine learning models to
make informed scheduling decisions on HPC systems such as
to reduce variability [15] or avoid IO bottlenecks [25].

B. Cross-Architecture Performance Modeling

Two works by Ardalani et al. [26], [27] focus specifically on
cross-architecture performance modeling. More specifically,
they consider predicting performance across architectures.
Like our work these use expert derived counters to model
the computational behaviour of an application. However, they
only focus on mapping sequential C code performance to GPU
performance. They do not look at a multiple architectures
or a wide variety of applications and they only consider
single functions rather than entire application binaries. Another
similar paper by Yang et al. [28] introduces a model for
predicting performance of parallel applications between two
architectures using cumulative averages and a filter model.
This work differs from ours in that it requires running the
application on both architectures to make predictions and it
only considers CPU architectures. These lines of work, [26],
[27] and [28], do not explore any potential uses of their models

in applications such as multi-resource scheduling. Some works
have used heuristics and machine learning models to do
resource placements for tasks in workflows [29], [30]. These
have used test runs and search space pruning to find optimal
resource sets. However, none of them use cross-architecture
predictive models to inform their resource selection.

IV. OVERVIEW OF OUR METHODOLOGY

We first provide an overview of our methodology to predict
the relative performance of an application across a set of
architectures given performance counters of the application
from one architecture. This includes two things – the data
collection phase and the model training phase (Figure 1).
In the first phase, we collect performance profiles for a
variety of applications running on N different HPC systems
with different architectures and record a hand-selected set of
performance counters. These counters, along with the recorded
execution times, are used to train a regression model to predict
relative performance in the second phase.

Fig. 1. Overview of data collection and machine learning pipeline. Ap-
plications are profiled on several architectures and performance counters
are collected for training the model. Model and feature selection are done
iteratively until the best set is selected.

Since our goal is to predict performance on other architec-
tures relative to a baseline on one architecture, we introduce
the term Relative Performance Vector (RPV) that encodes the
relative performance of an application across several archi-
tectures. To define RPV, let us consider a set of applications
A, corresponding input problems IA, and systems S. For a
particular application and input problem pair (a, i) ∈ A× IA
executed on N systems in S we can define the Relative
Performance Vector as rpv : (A, IA) × S 7→ RN such that
rpv(a, i, s) is the vector of the performance of (a, i) across
all platforms relative to that on system s. Here we assume that
(a, i) can run on all the systems in S. For example, consider
running an application-input pair (TestApp, “-s 5”) on systems
X , Y , and Z. If the application runs in ten minutes on system
X , eight minutes on system Y , and 21 minutes on system Z,
then the performance vector relative to X would be:

rpv(TestApp , “-s 5” , X) =

1.0

0.8

2.1

Time on X relative to X Time on Y

relative to X
Time on Z
relative to X

Application being run

Input Arguments

System run on

We also define rpv(·, ·,min) and rpv(·, ·,max) as the
performance vectors relative to the systems where lowest
and highest performance is obtained, respectively. The RPV
provides a concise, mathematical representation for relative
performance across systems that can be used in our further
downstream modeling tasks.

In order to model the mapping rpv : (A, IA) × S 7→ RN ,
we need a large number of input and output data to train on.
This requires a large number of samples in the (A, IA) × S
space. To collect these, we profile a variety of aplications
at several of their inputs on several architectures. These
runs provide hardware counters that may provide insight into
an application’s behavior for many application, input, and
architecture tuples.

We use the counters collected during profiling to form the
MP-HPC dataset and, in turn, use this dataset for the machine
learning (ML) component (second phase). The ML component
uses the profiled counters from a particular architecture to
predict the relative performance vector across a set of systems.
We try different ML models and feature sets to identify the
best performing model. This model is exported and used
in downstream relative performance prediction tasks such as
cross-architecture scheduling.

V. DATA COLLECTION AND PRE-PROCESSING

In this section, we provide details of how we generated
the MP-HPC dataset used for our modeling problem. We
describe the process of running and profiling the applications,
and collecting the performance metrics.

A. Scientific Applications

In order to model the relative performance of applications
run on an HPC machine, we need to collect performance data
from applications that are typically run on these machines. We
accomplish this by running a set of applications, benchmarks,
and proxy applications from the ECP Proxy Applications
Suite [31] and E4S Test Suite [32]. These are chosen because
they are designed to be representative of actual workloads
on HPC systems, but are simpler to build and run than full
scientific applications.

Table II lists the applications used in our data set. There
are twenty applications in total, and eleven of them have
GPU support. The GPU support comes from a variety of
libraries such as OpenMP, Kokkos [33], RAJA [3], and native
CUDA or HIP. Each application is paired with different input
configurations when run, in order to test different problems
and problem sizes. We build and install all of the applications
with their default build settings provided in their respective
Spack [4] packages.

B. Architecture Descriptions

We run each application-input pair on four different ma-
chines with different architectures. These are listed in Table I.
There are two Intel Xeon based, CPU-only machines and
two GPU-based machines. The first GPU machine uses IBM

TABLE I
OVERVIEW OF THE FOUR ARCHITECTURES WE COLLECT PERFORMANCE DATA ON. THERE ARE TWO CPU ONLY SYSTEMS AND TWO CPU+GPU

SYSTEMS. THE CPUS SPAN THREE VENDORS: INTEL, IBM, AND AMD, WHILE THE GPUS ORIGINATE FROM TWO VENDORS: NVIDIA AND AMD.

System CPU Type CPU CPU GPU Type GPUs/nodecores/node Clock Rate (GHz)

Quartz Intel Xeon E5-2695 v4 36 2.1 — —
Ruby Intel Xeon CLX-8276 56 2.2 — —
Lassen IBM Power9 44 3.5 NVIDIA V100 4
Corona AMD Rome 48 2.8 AMD MI50 8

TABLE II
THE APPLICATIONS USED IN OUR STUDY ALONG WITH A BRIEF

DESCRIPTION OF WHAT EACH APPLICATION DOES AND WHETHER IT
SUPPORTS RUNNING ON A GPU.

Application Description GPU

AMG Algebraic multigrid solver X

CANDLE Deep learning models for
cancer studies X

CoMD Molecular dynamics and materials
science algorithms

CosmoFlow 3D convolutional neural network
for astrological studies X

CRADL Multiphysics and ALE
hydrodynamics X

Ember Communication patterns
ExaMiniMD Molecular dynamics simulations X

Laghos FEM for compressible
gas dynamics X

miniFE Unstructured implicit FEM codes X

miniGAN Generative Adversarial Neural
Network training X

miniQMC Real space quantum
Monte Carlo algorithms X

miniTri Triangle based data
analytics algorithms

miniVite Graph community detection
DeepCam Climate segmentation benchmark X

Nekbone High-order, incompressible
Navier-Stokes solver

PICSARlite Particle-in-Cell simulation
SW4lite Seismic wave simulation X

SWFFT Distributed-memory
parallel 3D FFT

Thornado-mini Radiative transfer solver in
multi-group, two-moment estimations

XSBench Monte Carlo neutronics simulations

Power9 CPUs and NVIDIA V100 GPUs, while the second
uses AMD Rome CPUs and AMD MI50 GPUs.

On each of these systems the applications are run in three
configurations – on one core, on one node using all the
cores, and on two nodes. The one-core runs use one GPU if
applicable. MPI is used for the one and two node runs to make
use of all the cores and GPUs on the node. Some applications
only support run configurations with square or power of two
MPI processes and are, thus, run on the nearest number of
ranks possible to one or two nodes. If an application does not
support running on a GPU, we run it on the CPU only and
use comparable CPU counters. If an application does support
running on a GPU, then only GPU counters are collected.
During these runs, HPCToolkit [6] (with CUPTI [34] on

NVIDIA GPUs or rocProfiler [35] on AMD) is used to
record the application counters, and after the application run
is complete, Hatchet [9] is used to parse these counters from
the HPCToolkit output. For multi-process and multi-GPU runs,
we record the mean value of the counters across all processes.
The final results from all runs are then collected into a Pandas
dataframe for use in the later tasks.

C. Details of Recorded Hardware Counters

To understand the varied computational characteristics of
different applications in Table II, we record several hardware
counters during the application runs. Table III lists the counters
recorded on each architecture in our data set. Counter names
are not consistent across different architectures and they may
also represent slightly different data. However, we have tried
to identify similar counters that model the same underlying
performance characteristics that affect final performance. Most
of these counters fit into one of three categories: control
flow, data intensity, or I/O. These categories capture the main
performance characteristics of applications across different
architectures. Broadly speaking, applications with more com-
plex control flow will fair better on CPUs, which are geared
towards latency. On the other hand, applications with more
data intensity generally benefit on throughput-geared GPUs.

D. Preparing the Final Dataset

Using the counters listed on the right of Table III we
compute a set of derived values as the final features in the
data set. These features are detailed on the left of Table III.
The instruction related counters branch, store, load, single FP,
double FP, and integer arithmetic are all computed to be ratios
of the total number of instructions (note that the feature arith-
metic intensity refers to the ratio of arithmetic instructions,
not the conventional flop-to-bandwidth ratio). This normalizes
the values across runs, which may have drastically different
numbers of total instructions. The remaining eight features
are normalized by subtracting that feature’s mean to center
its values and dividing them by its standard deviation. We
additionally include whether the run was from a GPU or not,
how many nodes, and how many cores the run used. The
architecture feature is a one-hot-encoded vector encoding what
architecture the counters were collected on. In the context of
this paper, that is four separate features that are used to denote
whether the run is from Quartz, Ruby, Corona, or Lassen.

The final MP-HPC dataset has 21 columns and 11,312
rows. Each row represents a run of an application-input pair for

TABLE III
LIST OF FINAL FEATURES IN THE COLLECTED DATA SET AND THE SOURCE COUNTERS/VALUES THEY ARE DERIVED FROM. WE COMBINE DERIVED

VALUES FROM THE RECORDED COUNTERS AND META-DATA ABOUT THE RUN CONFIGURATION.

Feature Description Source Counters & Values
Quartz Ruby Lassen Corona

Branch Intensity Ratio of branch instructions
to total instructions PAPI BR INS PAPI BR INS cf executed –

Store Intensity Ratio of store instructions
to total instructions PAPI SR INS PAPI SR INS inst executed local stores,

inst executed global stores
LDSInsts,
GDSInsts

Load Intensity Ratio of load instructions to
total instructions PAPI LD INS PAPI LD INS inst executed local loads,

inst executed global loads
LDSInsts,
GDSInsts

Single FP Intensity Ratio of single precision FP
instructions to total instructions PAPI SP OPS PAPI SP OPS flop count dp VALUInsts,

SALUInsts

Double FP Intensity Ratio of double precision FP
instructions to total instructions PAPI DP OPS PAPI DP OPS flop count sp VALUInsts,

SALUInsts

Arithmetic Intensity Ratio of integer arithmetic
instructions to total instructions bdw ep::ARITH clx::ARITH inst integer –

L1 Load Misses L1 cache load misses PAPI L1 LDM PAPI L1 LDM local load requests,
local hit rate –

L1 Store Misses L1 cache store misses PAPI L1 STM PAPI L1 STM local store requests,
local hit rate –

L2 Load Misses L2 cache load misses PAPI L2 LDM PAPI L2 LDM gld efficiency TCC MISS sum,
TCC EA RDREQ

L2 Store Misses L2 cache store misses PAPI L2 STM PAPI L2 STM gst efficiency TCC MISS sum,
TCC EA WRREQ

IO Bytes Written Bytes written to IO IO IO IO IO
IO Bytes Read Bytes read from IO IO IO IO IO
Extended Page Table Extended page table size EPT EPT EPT EPT
Memory Stalls Memory stalls PAPI MEM SCY PAPI MEM SCY GINST:STL ANY MemUnitStalled
Nodes Number of nodes Run Configuration Run Configuration Run Configuration Run Configuration
Cores Number of cores Run Configuration Run Configuration Run Configuration Run Configuration

Uses GPU 1 if counters from GPU;
0 otherwise 0 0 1 if app uses GPU 1 if app uses GPU

Architecture
one-hot-encoded vector for what
architecture these counters were
recorded on

(1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1)

a specific number of MPI processes on a single architecture.
The columns are derived from the counters collected during
the run and meta-data about the run (see Table III).

VI. MACHINE LEARNING BASED MODELING

Next, we present our methodology for training the machine
learning models, evaluating their performance, and identifying
the best models and features.

A. Training the XGBoost Regression Model

Now that we have a data set of counters from applications
and the corresponding relative performance vectors across a set
of architectures, we want to use machine learning to predict
the relative performance vectors given counters from one of
the architectures. In order to learn how to predict relative
performance vectors, we use the XGBoost (eXtreme Gradient
Boosting) regression model [36]. This model is an ensemble
of decision trees that are additively combined to make final
predictions. If ŷi ∈ R is the predicted regression value of the
model, then it can be computed as,

ŷi =

K∑
k=1

fk (xi) where fk ∈ F

predicted value

number of trees

regression tree k

space of regression trees

As described in Section II-B, we can add a regularized
objective function to avoid over-fitting:

L (ŷi) =
∑
i=1

l (ŷi , yi) +
∑
k

Ω(fk) (1)

predicted value

training loss convex loss function

complexity of tree fk

Since this is parameterized by functions (fk ∈ F), it cannot
be optimized using typical optimization methods. Thus, gradi-
ent tree boosting greedily adds in the best functions throughout
training iterations by selecting the ft that minimizes Equa-
tion 1 the most. These ft can be additively combined into a
new loss function as,

L (t)
=
∑
i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ Ω(ft).

training iteration tree that minimizes L(t−1)

This can be optimized using second-order approximizations
and standard convex minimization methods. XGBoost imple-
ments this gradient tree boosting method alongside a number
of state-of-the-art techniques for tree splitting and pruning.
Additionally, it provides efficient implementations that can
scale to large numbers of data samples and run on GPUs.

It is a state-of-the-art machine learning algorithm for learning
on tabular data.

In order to train an XGBoost regressor, we use its publicly
available Python library at version 1.7.1 [36]. We train the
model on a CPU on the Ruby system. Training the XGBoost
model takes on the order of tens of seconds on average.
The model takes the features from Section V-D and predicts
the relative performance across all four architectures as a
vector. Mean absolute error (MAE) is used as the minimization
objective during training. During this training, 10% of the data
is set aside as a testing data set, while the other 90% is shown
to the model as a training data set. While training on the
training data set, the data is further split into five folds as part
of k-fold cross-validation. The model is trained on four out of
the five folds at a time, while the other is used as validation.
This is done for all five combinations and the average MAE
is reported.

We additionally train several other common machine learn-
ing regressors to compare the quality of the XGBoost model
to other state-of-the-art methods. For this, we include linear
regression and decision forests. These are implemented from
the scikit-learn Python library [37]. As with XGBoost these are
trained with a 90-10 train-test split and 5-fold cross-validation.
We also test against mean prediction as a baseline for the ML
models. This regressor guesses the mean RPV in the training
set for all samples in the test set.

B. Model and Feature Selection

To select the best model and feature set, we first train all the
models on all the features. After training we select the best set
of features using those reported by XGBoost and the decision
forest, since these models expose feature importances. These
features are then used to re-train all the models again.

In order to measure the feature importances of the trained
model, we use XGBoost to easily recover importance val-
ues. XGBoost, in its Python framework, computes feature
importances during training and exposes them in its model
interface. It calculates them based on the average gain across
all decision splits in the trees. During training a tree will add
splits on a feature to improve its predictive performance. The
improvement in performance from this split is called the gain.
When there are multiple regression targets the gain is averaged
over each output.

For any given feature if we average the gain from all the
splits on that particular feature in a tree, then we can compute
the importance of the feature for that tree. This includes all
the splits in XGBoost’s sets of trees. Finally, we can compute
this value for all of the features in the data set to retrieve a
feature importance vector.

With this method of calculating feature importances we can
expose the relative contribution of each feature to the model’s
predictions. A higher importance indicates that that feature
contributes more to the models performance than other lower
scored features. Decision tree feature importances can also be
calculated based on the frequency and coverage of splits for
a feature, however, these can be biased towards features with

a large number of unique values and numeric features. Both
of these are present in our data set, so we elect to use the
average gain.

Since the data set has a relatively small number of features,
the feature selection will likely have negligible impact on
model training time. However, discovering the most impactful
features gives insight into what is most necessary in predicting
cross-architecture performance. Additionally, it allows us to
collect less features in future implementations of this method-
ology. This is a considerable optimization as data collection is
the most time and resource intensive portion of our machine
learning pipeline.

C. Evaluation Metrics

We evaluate the model’s performance using two different
metrics: Mean Absolute Error (MAE) and Same Order Score
(SOS). The MAE encodes the average magnitude of error in
the relative performance predictions. This measure provides
a value that is easy to reason about regarding predictive per-
formance. An MAE of 0.1 means that the model predicts the
relative performance of applications within ±0.1 on average
across each vector.

MAE =
1

| Drpv |

| Drpv |∑
i=1

‖ rpvi − r̂pvi ‖1

d

data set of relative performance vectors

rpv for run i

predicted rpv for run i

number of architectures

The SOS metric denotes the fraction of samples where the
model predicts the relative performance vector in the correct
order. We define two vectors a and b as being in the same
order if the i-th elements ai and bi are both the n-th largest
in their respective vector, for all i. The SOS is then defined as
the fraction of predicted relative performance vectors that are
in the same order as their respective true relative performance
vector. This is shown in the equation below with the indicator
function being used to count the relative performance vectors
where the ordering is preserved.

SOS =
1

| Drpv |

| Drpv |∑
i=1

1{ ranks(rpvi) = ranks(r̂pvi) }

ordering of relative performance vectors

This metric shows how well the model understands the
ordering of performance on different architectures, but ignores
the magnitude of its predictions. Thus, the SOS combined
with MAE gives reasonable insight into how well the model is
predicting relative performance vectors. Both of these metrics
are computed over the testing set for data samples that the
model has not seen before.

VII. SCHEDULING EXPERIMENT

Once a model is trained to predict relative performance
vectors, it can be used to make informed cross-architecture
scheduling decisions. We test this capability in our trained
model by simulating a multi-resource scheduling environment.

We create a workload of 50,000 jobs randomly sampled from
our existing data set with replacement. These are sched-
uled using the First-Come-First-Serve with EASY backfilling
scheduling algorithm (FCFS+EASY) [38] presented in Algo-
rithm 1. This algorithm uses the Machine function to assign a
job to one of these machines: Quartz, Ruby, Lassen, or Corona.
If the machine cannot satisfy the resource requirement of a
job (the number of nodes it needs), then the job is reserved
at the earliest possible time or backfilled, otherwise, it is run
immediately. The function Start(j,m) represents running
job j on machine m. We use the observed run times on each
machine from the data set to determine how long the job would
run for simulation purposes.

Algorithm 1 Multi-resource Scheduling Algorithm using
FCFS+EASY. This standard algorithm queues jobs using pol-
icyR1 (FCFS in our case) and the EASY backfilling algorithm
parameterized by the policy R2 (FCFS in our case). The
function Machine is used to assign jobs to machines. The
symbol \ represents the set minus operation.
Input: Q← queue of jobs

R1 ← Queue ordering policy
R2 ← Backfill ordering policy
M ← Set of machines used for multi-resource schedul-

ing
Machine(j, i,M) ← Function that assigns jobs to ma-

chines
1: i← 0
2: sort Q according to R1

3: for job j ∈ Q do
4: if j can start now then
5: pop j from Q
6: Start(j, Machine(j, i,M))
7: i← i+ 1
8: else
9: Reserve j at earliest possible time

10: L← Q \ {j}
11: sort L according to R2

12: for job j′ ∈ L do
13: if j′ can start now without delaying j then
14: pop j′ from L and Q
15: Start(j′, Machine(j′, i,M))
16: i← i+ 1

We run this scheduling simulation with four different imple-
mentations of the Machine function that represent different
assignment strategies: Round-Robin, Random, User+RR, and
Model-based. These different strategies expose the common
interface for scheduling, Machine(j, i,M), where j is the
job to schedule, i is the index of j in the queue, and M is
the set of machines considered for multi-resource scheduling.
Depending on the algorithm, some of these arguments are
not used. The Round-Robin placement places jobs on ma-
chines in a round-robin fashion rotating between machines
for each consecutive job. The Random placement uniformly
selects a random machine among the four to run on. The

User+RR placement mimics typical user behavior by running
GPU-enabled applications on GPU systems and CPU-only
applications on CPU-only systems. A round-robin scheme is
used to decide which GPU system to use for GPU-enabled
applications, and likewise for CPU-only applications.

Finally, Algorithm 2 shows the Model-based assignment
strategy, which uses an ML-based model to pick the fastest
machine for each job and run it there. If the machine cannot
satisfy the resource requirement of the job, then the strategy
picks the next fastest and so on. We implement this scheduling
simulation in Python using our data set to get run time
information for jobs. The nodes available on each machine
reflect the number available on the actual machines. This is
not meant to substitute rigorous scheduling simulation studies
but only to demonstrate how such ML models can be used in
a production multi-resource job scheduler.

Algorithm 2 Model-based strategy to decide which machine
to assign a job to based on the predicted relative performance.
Input: j ← Job to schedule

i← Index of j in queue
M ← Set of machines used for multi-resource schedul-

ing
1: function MachineModel−based(j, i, M)
2: rpv ← Model(j)
3: m← argmaxs∈M rpv
4: if all s ∈M are full then
5: return m
6: else
7: M ′ ←M
8: while m is full do
9: M ′ ←M ′ \ {m}

10: m← argmaxs∈M ′ rpv

11: return m

A. Evaluation Metrics

When evaluating the efficiency of our scheduling algorithm
we are concerned with performance from the perspective of
individual jobs as well as the scheduler as a whole. Users will
hope to see a faster turnaround time from job submission to
completion for their jobs, while system administrators may
look at the job throughput of a given scheduler to measure
its performance. To quantify both of these metrics, we use
average bounded slowdown and makespan.

The average bounded slowdown represents the average
slowdown of a set of jobs with a fixed bound to prevent
overpenalizing extremely short jobs. Slowdown is the ratio
of the sum of execution time and wait time to the execution
time (not including the wait time). This provides a per-job
evaluation metric to see how much each job is affected by
the scheduling algorithm. The bounded slowdown can be
calculated as shown below:

Mean Pred. Linear Regr. Decision Forest XGBoost
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
A

bs
ol

ut
e

Er
ro

r
Mean Absolute Error of Models

Mean Pred. Linear Regr. Decision Forest XGBoost
0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

e
O

rd
er

 S
co

re

Same Order Score of Models

Fig. 2. The MAE (left) and SOS (right) of each machine learning model over the testing data set after training (Lower MAE is better, and higher SOS is
better.) XGBoost outperforms the other models with an MAE of 0.11.

BoundedSlowdown(j) = max

 wj + pj

max
(
pj , τ

) , 1
batch job

wait time of j run time of j

small time interval to
prevent overpenalizing short jobs

We use τ = 10 in our evaluation. Using the equation above,
we can compute the average bounded slowdown over a set of
jobs J as,

BoundedSlowdown(J) =
1

|J |
∑
j∈J

BoundedSlowdown(j)

set of jobs

Using the set of jobs J , we can also define the makespan as
the time from the first job submission to the time when the last
job finishes. This measures the amount of time it takes for a
scheduler to complete executing all the jobs in a workload, and
is commonly used to compared different machine assignment
algorithms over fixed workloads.

makespan(J) =

(
max
j∈J

(
wj + rj + pj

))
−
(

min
j∈J

rj

)
set of jobs

wait time of j

duration of j

start time of j

Both of these metrics are computed for each machine
assignment algorithm across our workload. We compare them
between all the machine assignment algorithms to observe
the benefit from cross-architecture performance modeling. For
each metric, a lower value indicates better performance.

VIII. RESULTS

In this section, we present the results from our training of
regression models and scheduling experiments.

A. Evaluation of ML Models

Figure 2 shows the mean absolute error and same-order-
score of each model on the testing data set. We observe that
XGBoost performs the best for both of these metrics.

The XGBoost model scores a MAE of 0.11 (see Figure 2,
left). This signifies that the model can use counter values for
a job recorded on one architecture and predict its relative
performance on other architectures within 0.11 on average.
This is an 81.6% improvement over guessing the mean relative
performance vector from the data. From this we can infer that
the model is not simply guessing according to the distribution
of the runtime data, but is rather correlating counter data with
its performance prediction.

The linear and decision forest models perform better than
guessing the mean, but obtain worse MAE values than XG-
Boost. Decision forest scores the closest to XGBoost likely
since they are both ensembles of decision trees. However,
XGBoost implements boosting alongside a number of other
pruning techniques that strengthen its prediction.

We observe similar performance from XGBoost on the SOS
metric where it is the best model (see Figure 2, right). It is
able to predict the relative performance vector in the correct
architecture order in 86% of samples in the testing set. This
means that XGBoost is able to predict the fastest and slowest
architectures for a particular application and input in a large
number of scenarios, which is a valuable result to a user
who is likely trying to avoid the slowest architecture and
run on the fastest. Additionally, if the system with the fastest
architecture is busy, then the user can select the next fastest
and so on. As with the MAE metric, the decision forest has
similar, but worse performance than XGBoost. Unlike with
MAE, the linear model performs the worst on the SOS metric.
This suggests that using the average machine order is a better
predictor than the linear model.

Quartz Ruby Lassen Corona

Mean Pred.

Linear Regr.

Decision Forest

XGBoost

Mean Absolute Error By Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Quartz Ruby Lassen Corona

Mean Pred.

Linear Regr.

Decision Forest

XGBoost

Same Order Score By Machine

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. The MAE (left) and SOS (right) of each model when predicting using counters data from one particular machine. For instance, the bottom right of
the left visualization represents the MAE when predicting relative performance vectors with XGBoost and counters data from Corona. Lower MAE, or more
blue, is better, and higher SOS, or more blue, is better.

B. Ablation Study
Here we study the effects on modeling performance when

removing certain features and/or data from the training set.
Figure 3 further details how well the models perform when
the counters for only one architecture are used for modeling
performance. In both visualizations in Figure 3, the “mean”
prediction row is constant, since the mean relative performance
vector is independent of the input features. Figure 3 (left)
shows the MAE scores for each ML model. Each cell in
the heatmap shows the MAE for one ML model and using
the counters from one specific architecture. For instance, the
bottom right of the left visualization represents the MAE when
predicting relative performance vectors with XGBoost and
counters data from Corona. We observe the same trends as
Figure 2 where XGBoost has the best MAE. However, we
notice that counters data from Ruby lead to a lower MAE
and, thus, better predicted relative performance vectors. In fact,
using counters from the two CPU systems, Ruby and Quartz,
generally leads to better MAE. This same trend continues for
the SOS metric in Figure 3 (right).

The fact that counters recorded on CPU machines lead to
better predictions on average is an important observation for
using this model in practice. CPU machines are generally less
expensive and more readily available. Users can run their code
on them and get predictions from the model for less available
or more expensive resources, such as GPUs. Additionally,
users can obtain an estimate of the speedup from running
on a given architecture without actually having access to or
being capable of running on that architecture. For instance, if
a particular application does not support AMD GPUs a user
could estimate the performance increase/decrease if they were
to implement AMD GPU support.

We hypothesize that the CPU performance metrics give
better predictions due to the maturity of CPU performance
counters and the profiling tools used to record them. CPU

performance counters have been used extensively and the dif-
ficulties in recording them accurately have been well studied.
On the other hand, GPU profiling, particularly for AMD, is
a relatively new feature in HPCToolkit and the counters may
not be as reliable as those recorded on a CPU.

1 Core 1 Node 2 Nodes
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n
A

bs
ol

ut
e

Er
ro

r

XGBoost Mean Absolute Error
with Different Node Counts as Test Set

Fig. 4. The MAE of XGBoost when data for a specific resource count is
removed from the training set and used for evaluation. The model performs
best at predicting 1 node performance when trained on 1 core and 2 nodes
data. Note that all scores are relatively low.

Figure 4 shows the performance of XGBoost when trained
on data from two of the three resources amounts (1 core, 1
node, and 2 nodes), and evaluated on the third. We observe
that predicting the one node relative performance vectors gives
the best MAE. It is unclear whether this is because modeling
the one node performance is easier or that the one core and
two node data is more representative. Regardless, all three
node counts score very close to 0.11 MAE, which is still a
significant result.

A
M

G
C

A
N

D
LE

C
oM

D
C

os
m

oF
lo

w
C

R
A

D
L

Em
be

r
Ex

aM
in

iM
D

La
gh

os
m

in
iF

E
m

in
iG

A
N

m
in

iQ
M

C
m

in
iT

ri
m

in
iV

ite
D

ee
pC

am
N

ek
bo

ne
PI

C
SA

R
lit

e
SW

4l
ite

SW
FF

T
T

ho
rn

ad
o

X
SB

en
ch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
M

ea
n

A
bs

ol
ut

e
Er

ro
r

XGBoost Mean Absolute Error
with Different Applications as Test Set

Fig. 5. The MAE of XGBoost when a specific application is removed from
the training set and used for evaluation. Results are generally strong (low
MAE values) across all applications.

Additionally, we can study the performance of XGBoost
when trained on all but one application and evaluated on the
removed application in Figure 5. Again, we see that the model
performs well across all applications. However, it does notably
perform worse for the ML and Python-based applications. This
is possibly due to more noise and/or complicated software
stacks involved in running each of these applications. These
applications also tend to depend on more libraries and have
more dependencies than the other applications.

C. Feature Importances

Figure 6 shows the feature importances for the XGBoost
model. The most important feature is the ratio of the number
of branch instructions to that of total instructions. This feature
captures the control flow complexity of a program as those
with more branch instructions have a more complex control
flow. Since programs with more control flow generally perform
worse on GPUs, the model likely uses this feature to make
CPU-GPU predictions.

Next we see that the ratio of integer and single precision
FP arithmetic to the total number of instructions are the next
most important features in prediction. These provide insight
into the data throughput of the model. In this case, applications
with higher data intensity are more likely to perform better
on the GPU as they are designed for high throughput data-
parallel computation. These two features combined with the
branching intensity make sense as the three most important
features as they help the model predict relative performance
between CPUs and GPUs, which is where we see the largest
performance differences in the data.

The next three most important features are Ruby, Lassen,
and Uses GPU, which detail where the counters were col-
lected. This is necessary for the model to predict the relative
performance vector and is likely why these are the next three
most important features. We also observe that the L2 store

Br
an

ch
 In

te
ns

ity

Sto
re

 In
te

ns
ity

Lo
ad

 In
te

ns
ity

Sin
gle

 FP
 In

te
ns

ity

Dou
ble

 FP
 In

te
ns

ity

Arit
hm

et
ic

Int
en

sit
y

L1
 Lo

ad
 M

iss
es

L1
 St

or
e M

iss
es

L2
 Lo

ad
 M

iss
es

L2
 St

or
e M

iss
es

IO
 B

yte
s R

ea
d

IO
 B

yte
s W

rit
te

n

Ex
te

nd
ed

 Pa
ge

 Ta
ble

Mem
or

y S
tal

ls

O
ve

rh
ea

d

Nod
es

Cor
es

Use
s G

PUru
by

qu
ar

tz
las

se
n

co
ro

na
0.00

0.05

0.10

0.15

0.20

Im
po

rt
an

ce

Feature Importances for XGBoost

Fig. 6. Importances of each feature in the XGBoost model. A higher feature
importance value suggests that it is more influential in the decision making
of the model. The branch instructions intensity is the most important feature
followed by the integer and single-precision floating point arithmetic intensity.

misses and extended page table features are not used in the
prediction, so we can remove these during feature selection.

Round-Robin Random User+RR Model-based
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ak

es
pa

n
(h

ou
rs

)

Scheduler Makespan

Fig. 7. The makespan of each machine selection algorithm in the scheduling
simulation. Lower is better.

D. Evaluation of Scheduling Simulations

Figures 7 and 8 show the results from the scheduling
simulation. Figure 7 lists the makespan for the scheduler
with each machine assignment algorithm. The Model-based
machine assignment method gives the lowest makespan at 0.87
hours meaning it is able to finish the job workload in a shorter
amount of time than the others. Placing jobs on the most
efficient resource helps improve the makespan by allowing
jobs to finish sooner. The next best method is the User+RR
placement algorithm. This method represents how users submit
jobs to the scheduler with only the limited knowledge of the
performance of their applications across machines. This is

followed by the Round-Robin and Random placement methods
that perform the worst.

Figure 8 shows the average bounded-slowdown for each
machine placement method. The slowdown measures the ratio
of wait time and run time to just run time. As with makespan,
the Model-based assignment performs the best compared to
the other algorithms.

Round-Robin Random User+RR Model-based
0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 B
ou

nd
ed

-S
lo

w
do

w
n

Scheduler Average Bounded-Slowdown

Fig. 8. The average bounded-slowdown of each machine selection algorithm
in the scheduling simulation. Lower is better.

IX. CONCLUSION

The convergence of traditional HPC and new simulation,
analysis, and data-science approaches provides unprecedented
opportunities for scientific discovery, but also creates work-
flows that are more complex than ever before. These workflows
often combine many applications with vastly different per-
formance requirements that are best handled by certain types
of computing hardware. Meanwhile, HPC centers and cloud
platforms offer various types of computing resources to satisfy
diverse needs. In this work, we study one of the many capabil-
ities workflow users need to effectively utilize such resources:
cross-architecture performance modeling. We collect the MP-
HPC dataset of hardware counters across several different
architectures for numerous scientific applications. We create
expert derived features from these counters and train a machine
learning model to predict relative performance vectors across a
set of architectures with a MAE of 0.11. We further showcase
how this can be used to efficiently schedule jobs across a
heterogenous set of resources.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 2047120. This
work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Labora-
tory (LLNL) under Contract DE-AC52-07NA27344 (LLNL-
CONF-855652). This work was supported in part by LLNL
LDRD projects 23-ERD-045 and 24-SI-005.

REFERENCES

[1] H. I. e. a. Ingólfsson, “Machine learning-driven multiscale modeling
reveals lipid-dependent dynamics of ras signaling proteins.” in Pro-
ceedings of the National Academy of Sciences of the United States of
America, vol. 119,1, 2022.

[2] D. H. Ahn, X. Zhang, J. Mast, S. Herbein, F. Di Natale, D. Kirshner,
S. A. Jacobs, I. Karlin, D. J. Milroy, B. De Supinski, B. Van Essen,
J. Allen, and F. C. Lightstone, “Scalable composition and analysis
techniques for massive scientific workflows,” in 2022 IEEE 18th In-
ternational Conference on e-Science (e-Science), 2022, pp. 32–43.

[3] R. D. Hornung and J. A. Keasler, “The RAJA Portability Layer:
Overview and Status,” Lawrence Livermore National Laboratory, Tech.
Rep. LLNL-TR-661403, Sep. 2014.

[4] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody,
B. R. de Supinski, and S. Futral, “The spack package manager:
bringing order to hpc software chaos,” in SC15: International
Conference for High-Performance Computing, Networking, Storage and
Analysis. Los Alamitos, CA, USA: IEEE Computer Society, nov
2015. [Online]. Available: https://doi.ieeecomputersociety.org/10.1145/
2807591.2807623

[5] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein,
J. Koning, T. Patki, T. R. W. Scogland, B. Springmeyer, and M. Taufer,
“Flux: Overcoming scheduling challenges for exascale workflows,”
in 2018 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS), 2018, pp. 10–19.

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[7] O. Cankur and A. Bhatele, “Comparative evaluation of call graph
generation by profiling tools,” in High Performance Computing, A.-L.
Varbanescu, A. Bhatele, P. Luszczek, and B. Marc, Eds. Cham: Springer
International Publishing, 2022, pp. 213–232.

[8] A. Bergel, A. Bhatele, D. Boehme, P. Gralka, K. Griffin, M.-A.
Hermanns, D. Okanovic, O. Pearce, and T. Vierjahn, “Visual analytics
challenges in analyzing calling context trees,” in Programming and
Performance Visualization Tools, ser. Lecture Notes in Computer
Science, vol. 11027, Apr. 2019. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-030-17872-7 14

[9] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the overgrowth
in parallel profiles,” in Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’19, Nov. 2019, lLNL-CONF-772402. [Online].
Available: http://doi.acm.org/10.1145/3295500.3356219

[10] L. Zhou, X. Zhang, W. Yang, Y. Han, F. Wang, Y. Wu, and
J. Yu, “Prep: Predicting job runtime with job running path on
supercomputers,” in Proceedings of the 50th International Conference
on Parallel Processing, ser. ICPP ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3472456.3473521

[11] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn,
and M. Taufer, “Prionn: Predicting runtime and io using neural
networks,” in Proceedings of the 47th International Conference
on Parallel Processing, ser. ICPP ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3225058.3225091

[12] H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning parameter choices
using bayesian optimization,” in Proceedings of the IEEE International
Parallel & Distributed Processing Symposium, ser. IPDPS ’20. IEEE
Computer Society, May 2020.

[13] A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J. Thiagarajan,
B. Kailkhura, J.-S. Yeom, B. Rountree, and T. Gamblin, “Performance
modeling under resource constraints using deep transfer learning,”
in Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser.
SC ’17. IEEE Computer Society, Nov. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126969

[14] A. Bhatele, J. J. Thiagarajan, T. Groves, R. Anirudh, S. A. Smith,
B. Cook, and D. K. Lowenthal, “The case of performance variability
on dragonfly-based systems,” in Proceedings of the IEEE International
Parallel & Distributed Processing Symposium, ser. IPDPS ’20. IEEE
Computer Society, May 2020.

[15] D. Nichols, A. Marathe, K. Shoga, T. Gamblin, and A. Bhatele,
“Resource utilization aware job scheduling to mitigate performance vari-
ability,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’22. IEEE Computer Society, May
2022.

[16] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T. Gamblin,
P.-T. Bremer, M. Schulz, and L. V. Kale, “Identifying the culprits
behind network congestion,” in Proceedings of the IEEE International
Parallel & Distributed Processing Symposium, ser. IPDPS ’15.
IEEE Computer Society, May 2015. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/IPDPS.2015.92

[17] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Predictive modeling for job power consumption in hpc systems,” in
High Performance Computing, J. M. Kunkel, P. Balaji, and J. Dongarra,
Eds. Cham: Springer International Publishing, 2016, pp. 181–199.

[18] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-
maran, “Benchmarking machine learning methods for performance
modeling of scientific applications,” in 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 2018, pp. 33–44.

[19] J. J. Thiagarajan, N. Jain, R. Anirudh, A. Giménez, R. Sridhar,
A. Marathe, T. Wang, M. Emani, A. Bhatele, and T. Gamblin,
“Bootstrapping parameter space exploration for fast tuning,” in
Proceedings of the International Conference on Supercomputing, ser.
ICS ’18, Jun. 2018. [Online]. Available: http://doi.acm.org/10.1145/
3205289.3205321

[20] J. J. Thiagarajan, R. Anirudh, B. Kailkhura, N. Jain, T. Islam,
A. Bhatele, J.-S. Yeom, and T. Gamblin, “PADDLE: Performance
analysis using a data-driven learning environment,” in Proceedings of the
IEEE International Parallel & Distributed Processing Symposium, ser.
IPDPS ’18. IEEE Computer Society, May 2018. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00088

[21] W. Zhou, J. Zhang, J. Sun, and G. Sun, “Using small-scale history data
to predict large-scale performance of hpc application,” in 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 787–795.

[22] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting mpi
collective communication performance using machine learning,” in 2020
IEEE International Conference on Cluster Computing (CLUSTER),
2020, pp. 259–269.

[23] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,
B. Norris, and R. Vuduc, “Autotuning in high-performance computing
applications,” Proceedings of the IEEE, vol. 106, no. 11, pp. 2068–2083,
2018.

[24] Y. Cho, J. W. Demmel, J. King, X. S. Li, Y. Liu, and H. Luo, “Harnessing
the crowd for autotuning high-performance computing applications,” in
2023 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2023, pp. 635–645.

[25] M. R. Wyatt, S. Herbein, K. Shoga, T. Gamblin, and M. Taufer,
“Canario: Sounding the alarm on io-related performance degradation,”
in 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2020, pp. 73–83.

[26] N. Ardalani, U. Thakker, A. Albarghouthi, and K. Sankaralingam, “A
static analysis-based cross-architecture performance prediction using
machine learning,” 2019.

[27] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu,
“Cross-architecture performance prediction (xapp) using cpu code to
predict gpu performance,” in Proceedings of the 48th International
Symposium on Microarchitecture, ser. MICRO-48. New York, NY,
USA: Association for Computing Machinery, 2015, p. 725–737.
[Online]. Available: https://doi.org/10.1145/2830772.2830780

[28] L. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction
of parallel applications using partial execution,” in SC ’05: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, 2005, pp. 40–
40.

[29] L. L. Nesi, L. M. Schnorr, and A. Legrand, “Multi-phase task-based
hpc applications: Quickly learning how to run fast,” in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2022, pp. 357–367.

[30] B. Tovar, B. Lyons, K. Mohrman, B. Sly-Delgado, K. Lannon,
and D. Thain, “Dynamic task shaping for high throughput data
analysis applications in high energy physics,” IPDPS International
Parallel and Distributed Processing Symposium. [Online]. Available:
https://par.nsf.gov/biblio/10356916

[31] “Ecp proxy applications,” https://proxyapps.exascaleproject.org/, ac-
cessed: 2023-09-30.

[32] “The extreme-scale scientific software stack,” https://e4s-
project.github.io/index.html, accessed: 2023-09-30.

[33] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[34] “Cupti,” accessed: 2023-09-30. [Online]. Available: https://docs.nvidia.
com/cuda/cupti/index.html

[35] “rocprofiler,” accessed: 2023-09-30. [Online]. Available: https://rocm.
docs.amd.com/projects/rocprofiler/en/latest/rocprof.html

[36] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 785–794.
[Online]. Available: https://doi.org/10.1145/2939672.2939785

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[38] J. Lelong, V. Reis, and D. Trystram, “Tuning easy-backfilling queues,”
in Job Scheduling Strategies for Parallel Processing, D. Klusáček,
W. Cirne, and N. Desai, Eds. Cham: Springer International Publishing,
2018, pp. 43–61.

