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Abstract—Large language models have rapidly taken over
software development tools and are now being used to generate
code, write documentation, and even fix GitHub issues. Despite
their success, many studies across various fields of computer
science have shown that these models often struggle to reason
about code properties, such as performance, security, etc. In
this paper, we demonstrate the limitations of text-based learning
for code properties and how structured code representations
are more effective for understanding some code properties.
We evaluate over several code benchmarks and demonstrate
the limitations of the internal code representation within large
language models.

Index Terms—Code Representations, LLMs, Code Properties

I. INTRODUCTION

Software development tools have rapidly adopted large
language models (LLMs) for coding tasks making full use
of their impressive code generation capabilities. Code LLMs
can generate code, write documentation, and even fix GitHub
issues. This is all powered by the success of transformer
models at understanding and generating text. These models
learn to predict new text based on preceding text, and they
have been shown to be highly effective at producing code.
Due to their success, the majority of code modeling tasks in
recent literature have focused on transformer-based models.

While incredibly powerful, code LLMs present many lim-
itations when it comes to modeling code and, in particular,
understanding code properties. Code properties are characteris-
tics of code that are not directly related to the code’s syntax or
semantics, such as its performance, security, or maintainability.
While code contains information about these properties, it is
a noisy and indirect signal. For example, LLMs can easily be
fooled about the performance of a snippet of code by adding
particular keywords or comments, such as fast or naive.
Furthermore, code LLMs, which are trained to predict missing
text, may not learn the important underlying properties of the
code as it is not necessary for the generation of text.

Even though code LLMs have been shown to be effective
at generating code, their inability to distinguish between code
properties limits their generative capabilities. If LLMs are to
be used for tasks that require understanding code properties,
i.e. writing efficient code, fixing security vulnerabilities, or
improving code readability, they must be able to reason about
these properties. That is, if the internal representation within

a code LLM cannot capture code properties, then it will not
be able to generate code that adheres to these properties.
Creating models that can internally understand and model
more complex code properties is crucial towards creating
better LLMs that can reason about complex code behaviors.

In this paper, we present results and analysis across a series
of benchmarks to demonstrate the limitations of the internal
representations within current state-of-the-art code LLMs. We
compare across several relevant tasks such as performance
mapping and algorithm classification. We further motivate the
need for more structured code representations to be combined
with text-based models to ameliorate these limitations.

We address the following research questions:
RQ1 How does code as text compare with structured code

representations for predicting code properties?
RQ2 Can LLM’s internal representations of code distinguish

between different code properties?

II. CODE REPRESENTATIONS

In this section we highlight three code representations that
can be used for learning code properties: abstract syntax
trees (ASTs), PrograML, and source code as text. While not
exhaustive, we select these three as PrograML is a state-
of-the-art structured code representation, source code text is
now the state-of-the-art for many code generation tasks via
transformers, and ASTs are a simple baseline for structured
code representations.

A. Abstract Syntax Trees (ASTs)

Abstract Syntax Trees, a tree-based representation of the
abstract syntactic structure of source code, are a popular code
representation used internally within compilers. Each node
in the AST corresponds to a programming construct, such
as a variable, expression, or control structure. ASTs abstract
away the source code’s syntactic details such as semicolons
and parentheses but still maintain its logical structure. ASTs
are a core dataset within compilers for representing source
code. After lexing the code into tokens a compiler will
construct an AST to use for further tasks like static analysis,
optimization, and code generation. However, another use case
for this code representation is statistical modeling. By utilizing
their inherent tree structure, ASTs can be transformed into



graph representations, with node types encoded using one-
hot encoding to serve as inputs for graph neural networks
(GNN). These GNNs can be used for downstream tasks
like code classification and vulnerability detection. Several
variations of ASTs have been used for code modeling [1],
[2] and shown success at predicting code properties using
only transformations of ASTs. Despite their success ASTs still
have several shortcomings. Natively, they do not incorporate
direct information about control and data flow and do not
represent semantic information about individual instructions.
Furthermore, they are language dependent, so a model trained
on ASTs of C/C++ code will not be useful for Fortran or
Python code.

B. Graph Representations of Compiler Intermediate Repre-
sentations

To solve many of the shortcomings of AST representations,
recent papers have looked into structured graph represen-
tations of compiler intermediate representations (IR). These
representations have many desirable properties such as being
language agnostic and insensitive to semantic-preserving code
transformations. A seminal graph IR code representation is
Program Graphs for Machine Learning (PrograML) [3], a
graph-based, compiler-agnostic approach built upon LLVM
IR. IR, such as LLVM IR and XLA IR, encodes low-level
program behavior in a language-agnostic format. PrograML
includes control, data, and call relations by serving as the
union between a call graph, control-flow graph, and data-flow
graph. A node represents an instruction, variable, or constant
while an edge represents a control flow relation, data flow re-
lation, or call relation. By integrating multiple dimensions of a
program into a single representation, PrograML captures more
intra-program relations compared to other representations such
as ASTs. This unified and expressive graph representation
provides an expressive, but flexible format for using code
representations for code-related downstream tasks such as
learning about program semantics. There are several other
similar graph-based program representations that make use
of IR and control/data flow graphs to represent code [4]–
[6], which all exhibit comparable performance across tasks.
We select PrograML as it is a seminal work in this area and
still state-of-the-art. However, we include results from these
papers, namely inst2vec [6] and perfograph [5], in our plots
for reference.

C. Source Code and Transformers

Since the introduction of the transformer architecture [7],
source code has become a predominant representation for
code-related modeling tasks, in particular for code generation.
This last code representation treats text as a sequence of tokens
and uses LLMs to predict new tokens based on their internal
representation of the code. To process an input sequence,
transformers leverage a mechanism called attention, which
enables them to dynamically focus on the most relevant parts
of the inputs. This attention mechanism allows transformers to

effectively model long-range dependencies, making them well-
suited for code-related tasks. LLMs are primarily designed for
causal language modeling, where the goal is to predict the
next token in a sequence given its context. This capability has
been adapted for code-focused LLMs such as CodeBERT [8],
DeepSeek-Coder [9], and Starcoder [10]. They have been
shown to be remarkably successful at various code generation
tasks [11]. Internally, each layer of the transformer applies
matrix transformations and attention mechanisms to a vector
representation of the code. At the final layer, the output is a
vector representation that encodes the model’s understanding
of the source code. This internal representation is passed
through a language modeling head, which maps the high-
dimensional representation back into the token space in order
to predict the next token in the sequence, which enables tasks
like code completion and generation. We can use the input
into the language modeling head as a vector representation of
the model’s internal code understanding.

III. BENCHMARKS

We use three different benchmark tasks to evaluate various
aspects of each code representation. In this section, we de-
tail the two device mapping benchmarks and the algorithm
classification benchmark that we use to evaluate each code
representation.

A. Criteria for Benchmark Selection

We specifically opt for non-generation benchmarks because
our experiments involve GNNs, which are not typically used
for generating text, as they aren’t inherently designed for
sequential data generation. More importantly, our focus is to
model more than just generative capabilities. Another consid-
eration is that these benchmarks need to utilize LLVM IR as
their native backend. For example, a C compiler like Clang
can translate C code into IR. Taking these requirements into
account, the two factors we want to model are performance
of code and algorithm classification. To benchmark these
effectively, we refer to commonly used datasets from the
literature: Heterogeneous Device Mapping for performance
and POJ-104 for algorithm classification.

B. Heterogeneous Device Mapping

The first downstream task is heterogeneous device map-
ping (devmap). We use the same benchmark as the one
presented in [3]. This benchmark contains information about
256 OpenCL kernels that were collected from seven different
sources, including Parboil, Rodinia, SHOC, NPB, NVIDIA
SDK, and AMD SDK. Each of these OpenCL kernels has
their corresponding runtimes from being run on Intel Core i7-
3820 CPU, NVIDIA GTX 970 GPU, and AMD Tahiti 7970
GPU. Devmap is split into two sets: AMD (devmap-amd)
and NVIDIA (devmap-nvidia). The NVIDIA set contains the
results of running each kernel on the Intel CPU and NVIDIA
GPU. The AMD set contains the results of running each
kernel on the Intel CPU and AMD GPU. The benchmark also
contains 680 LLVM IR instances that were collected from



these kernels. We select this task because it is widely used
as a benchmark in prior studies, allowing us to effectively
compare the performance of LLMs with existing code repre-
sentations. Furthermore, it allows us to evaluate how well code
representations can distinguish performance characteristics of
code.

C. Algorithm Classification

As the second benchmark, we test each code representation
on the task of algorithm classification. We utilize the POJ-
104 benchmark [1], which contains 104 algorithm classes and
approximately 500 C++ code samples per algorithm. Similar to
the previous task, we choose this task because of its popularity
among previous approaches in the literature. Additionally, this
task allows us to evaluate the code representations against their
ability to discriminate code semantic and algorithm proper-
ties. This is a separate problem from the device placement
benchmark and requires a different set of code properties to
be captured. Furthermore, it allows us to test for invariance to
code symmetry, i.e. is the representation sensitive to semantic
preserving code transformations. This is an important property
for a useful code representation to possess.

IV. EXPERIMENTAL SETUP

Using the device mapping and algorithm classification
benchmarks, we evaluate the three code representations across
two tasks: classification and embedding. In this section we
highlight how we train each model for classification and obtain
embeddings for each data point.

A. Experimental Justification

Inst2Vec [6] and perfograph [5] are state-of-the-art struc-
tured code representation models that have demonstrated
strong performance in tasks relating to understanding code
properties. Inst2vec defines an embedding space for individual
IR statements while perfograph builds upon PrograML by
adding numerical awareness. While these models are rele-
vant to our study, we encountered challenges in reproducing
their results and were unable to fully integrate them into
our experimental pipeline. Despite these challenges, we still
reported their results in our evaluation to to contextualize the
performance of our models relative to existing state-of-the-art
approaches.

B. Training the Models for Classification

When testing PrograML, we utilize different model architec-
tures for different benchmarks. For the algorithm classification
benchmark, we use a Relational Graph Convolutional Network
(R-GCN) designed for heterogeneous graphs with two graph
convolutional layers. This heterogeneous architecture is nec-
essary as PrograML defines multiple edge types. We use a
hidden layer size of 64 and a final linear layer of size 64,
and we train this model for 100 epochs. With the device
mapping benchmark, we opt for an R-GCN with one graph
convolutional layer. We use a hidden layer size of 32 and an
embedding size of 64, and we train this model for 100 epochs.

While this architecture deviates from the original one used in
the PrograML paper [3], we found it to give comparable or
even better results.

When testing ASTs, we utilize the same base model archi-
tecture but change the hyperparameters across different bench-
marks. We use a Graph Convolutional Network (GCN) with
two convolutional layers. For the device mapping benchmark,
we use a hidden size of 32 and an embedding size of 36, which
corresponds to the number of unique node types. We train the
model for 50 epochs for the NVIDIA set and 60 epochs for
the AMD set. For the algorithm classification benchmark, we
use a hidden size of 64 and an embedding size of 256. We
train the model for 200 epochs.

Across both benchmarks for PrograML and AST, the param-
eters that we tune are learning rate, hidden layer dimension,
and embedding size. We perform a grid search between these
parameters to see which combination yields the best results.
First, for the learning rate, we experiment with learning
rates ranging from 0.1 to 0.0001, initially decreasing by an
order of magnitude 0.1 at each step. Once we identify a
promising range through these larger adjustments, we perform
finer tuning by testing intermediate values, such as 0.0005,
to further optimize performance. For both the hidden layer
and embedding size, we experiment with values between 16
through 128, increasing the size by a factor of 2 at each step.
Additionally, all models are trained or fine-tuned on the same
amount of data.

When testing source code, we utilize DeepSeek Coder [9]
and Starcoder [10], [12], state-of-the-art code LLMs, across
all benchmarks. We use the following models: TinyStar-
CoderPy (164M parameters), StarCoderBase-1B, StarCoder-
3B, StarCoder2-7B, and DeepSeek-Coder-6.7B. We fine-tune
these language models for text classification. This is done by
replacing the language modeling head with a classification
head before doing fine-tuning. We initialize the rest of the
model weights using the pre-existing models. We utilize FP16
precision and an H100 GPU to accelerate fine-tuning. We train
the models for 10 epochs for the algorithm classification and
device mapping benchmarks.

For all the experiments above, we utilize an 80-10-10
train-test-validation split during training. Furthermore, cross-
entropy loss and the AdamW optimizer [13] are used across all
training runs. The number of epochs was chosen by monitoring
the loss and validation curves to stop training when the model
performance plateaued.

C. Retrieving Program Embeddings

In addition to evaluating the classification performance
we want to retrieve vector embeddings from each program
representation to further analyze. For both the ASTs and
PrograML representations this is fairly straightforward given
the GCN architecture used. We train over a number of AST
and PrograML IR graphs, respectively, and remove the final
classification layer from the GNN. Now we can use the
raw output logits from the GNN as the learned embeddings
for each code. Through experimentation, we found an ideal



embedding size of 256 for ASTs and 64 for PrograML IR
graphs.

For LLMs, embeddings are created for code samples using
a state-of-the-art embedding language model. Similar to the
graph representations we are able to retrieve the internal
representation the LLM uses to generate the code. We use
the final hidden state of the model as the embedding for each
code sample. For all three representations, we also reduce the
dimensionality of the embeddings to 2 dimensions using t-
SNE [14] for visualization purposes.

V. EVALUATION METRICS

In this section we present the metrics we use to evaluate
each representation across the benchmarks and tasks.

A. Classification Metrics

We first look at the classification accuracy of each trained
model on the devmap and algorithm classification benchmarks.
The accuracy is computed over the test dataset, which is a
10% split of the original dataset. The accuracy is reported
as the percentage of correctly classified samples over the
total number of samples in the test dataset. For the devmap
classification task, this is the percentage of times that the
model is correctly able to predict if an OpenCL kernel would
be faster on the CPU or GPU. For the algorithm classification
task, this is simply choosing the correct algorithm out of the
104 possible algorithms in the benchmark.

B. Embedding Metrics

For the embeddings we use the silhouette score to evaluate
the quality of embeddings. The silhouette score is a measure
of how similar the vectors within a label class are to each
other, compared to the vectors in other classes. For a given
sample x, the silhouette score is computed as:

s(x) =
b(x)− a(x)

max(a(x), b(x))

where a(x) is the average distance between x and all
other samples in the same class, and b(x) is the average
distance between x and all samples in the nearest class that
is not the same as x’s class. For classes we use the existing
labels, “faster on CPU or GPU” and “algorithm”, from the
devmap and algorithm classification tasks, respectively. The
final silhouette score of a representation is reported as the
average of the silhouette scores of all samples in the bench-
mark. This value ranges between -1 and 1 with higher values
indicating better embeddings. This metric is used to evaluate
the quality of the learned embeddings by how well their
internal representations can be separated along code properties.
Furthermore, for the algorithm classification samples, this will
show how invariant the internal representations are to code
symmetry.

We finally use visual embeddings to analyze the quality
and meaningfulness of the learned representations. While
embedding vectors themselves do not have inherent accuracy,
their effectiveness lies in how well they capture and preserve

semantic information. Visual presentations of the embeddings
can shed light into the quality of the learned representations.
This is exemplified when the data points belonging to the same
class to be close together in the embedding space. We use
t-SNE [14] to visualize two dimensional embeddings of the
samples with their color corresponding to their label. For the
algorithm classification task, we display a random subset of
five algorithms to reduce visual clutter.

VI. RESULTS

In this section we present our results across the classification
tasks and the embeddings. We further discuss the implications
of the LLMs performance on these tasks.

A. Classification

RQ1 How does code as text compare with structured
code representations for predicting code properties?

Figure 1 shows the classification accuracy for the different
representations across the benchmarks. We also include results
from inst2vec and perfograph on these tasks for reference. We
observe that the structured representations, namely PrograML,
inst2vec, and perfograph, have better performance than the lan-
guage models on all the prediction tasks. These representations
are better able to train a model to predict code properties. The
difference is largest for the performance prediction task, where
LLMs perform significantly worse.
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Fig. 1. Classification accuracy for the different code representations across
the three benchmarks. The structured representations outperform the LLMs
on all tasks with the largest advantage on the performance prediction task.

The picture is even bleaker for the LLMs when we consider
the number of parameters required to achieve these results.
Figure 2 shows the parameter efficiency of each representation
as accuracy per parameter. While not a readily interpretable
metric, it gives us insight into the scale of percentage points
accuracy improvement per parameter. We see that the struc-
tured representations are significantly more parameter efficient
than the LLMs. This is a huge upside to these models as they
can be used to model code properties and run in inference
with very low overhead.
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Fig. 2. Classification accuracy for the different code representations across
the three benchmarks. The structured representations are much more parameter
efficient than the LLMs. They significantly outperform the LLMs while having
several orders of magnitude less parameters.

B. Embeddings

RQ2 Can LLM’s internal representations of code
distinguish between different code properties?
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Fig. 3. Silhouette scores for the different code representations. Higher
is better. The structured representations, namely PrograML, are better at
encoding program properties within their internal representations.

Figure 3 shows the silhouette scores for the different
code representations. For the OpenCL kernels, the AST and
PrograML representations provide embeddings that are better
separated than the LLMs. This follows along with the trends
in the classification tasks. The LLM embeddings are near
zero, indicating that many of the embeddings for different
labels overlap. This further indicates that the LLM embed-
dings do not encode information about the code performance
well, while the structured representations do. The results for
algorithm classification are all similar. ASTs perform quite
poorly here, while PrograML and LLMs achieve similar near-
zero silhouette scores.

Finally, we can visualize the embeddings in Figures 4 and 5.
The first, Figure 4, shows the embeddings for the device
mapping benchmark. We first notice that all of the repre-
sentations produce smaller clusters within each label class.
However, the LLM has these smaller clusters intermingled
and less separated, which PrograML has better separation
between the classes. This trend is similar but less extreme

with the AST embeddings. The second, Figure 5, shows the
embeddings for the algorithm classification benchmark. Only
a subset of five random algorithms are displayed for clarity.
Each of the representations produces well-defined clusters with
the AST embeddings having slightly more overlap between
the classes. This lines up with the classification results, where
the structured representations are only slightly better than the
LLMs.

VII. THREATS TO VALIDITY

A key threat to validity arises from the inconsistent exper-
imental setup. The LLMs are fine-tuned specifically for the
downstream tasks, but the GNNs are trained from scratch. This
discrepancy in how the models are trained introduces an unfair
comparison. To address this bias and ensure a more rigorous
experimental design, one strategy is to pre-train GNNs using
a masked training objective similar to the masked language
modeling (MLM) used for LLMs. In this setup, the GNN
would be pre-trained on LLVM IR data by masking parts
of the intermediate representation and training the model to
predict the masked components. Alternatively, the LLMs could
be trained from scratch on the specific code property tasks, just
like the GNNs. This approach means initializing the LLMs
with random weights.

VIII. CONCLUSION

In this paper, we have evaluated three different program
representations on their efficacy for modeling code properties.
We found that structured representations tend to outperform
language models on tasks like performance modeling and
algorithm classification. Furthermore, they are able to do so
with significantly fewer parameters. Finally, we demonstrated
that the internal representations of LLMs are incapable of dis-
tinguishing between different code properties, while structured
representations are able to do so. This suggests that code as
text might not be enough to model code properties effectively.

Furthermore, if LLMs’ internal representations are inca-
pable of distinguishing code properties, then they will be
unable to effectively generate code with those properties. This
is a significant limitation of LLMs and will continue to limit
their capabilities for more complex coding tasks. With this
work, we aim to motivate future research into developing code
representations that are better able to model code properties
and generate code with those properties.
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