
Pandemics In Silico: Scaling an Agent-Based
Simulation on Realistic Social Contact Networks

Joy Kitson∗, Ian Costello∗†, Jiangzhuo Chen‡, Diego Jiménez§ Stefan Hoops‡, Henning Mortveit‡,
Esteban Meneses¶, Jae-Seung Yeom∥, Madhav V. Marathe‡, Abhinav Bhatele∗

∗Department of Computer Science
University of Maryland

College Park, USA

‡Biocomplexity Institute and Initiative
University of Virginia
Charlottesville, USA

§Max Planck Computing and Data Facility
Garching, Germany

†Google, Inc
Mountain View, USA

¶National Advanced Computing Collaboratory
National High Technology Center

San José, Costa Rica

∥Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, USA

Abstract—Preventing the spread of infectious diseases requires
implementing interventions at various levels of government and
evaluating the potential impact and efficacy of those preemptive
measures. Agent-based modeling can be used for detailed studies
of epidemic diffusion and possible interventions. Modeling of
epidemic diffusion in large social contact networks requires the
use of parallel algorithms and resources. In this work, we present
Loimos, a scalable parallel framework for simulating epidemic
diffusion. Loimos uses a hybrid of time-stepping and discrete-
event simulation to model disease spread, and is implemented on
top of an asynchronous, many-task runtime. We demonstrate that
Loimos is to able to achieve significant speedups while scaling to
large core counts. In particular, Loimos is able to simulate 200
days of a COVID-19 outbreak on a digital twin of California in
about 42 seconds, for an average of 4.6 billion traversed edges
per second (TEPS), using 4096 cores on Perlmutter at NERSC.

Index Terms—high performance computing, agent-based mod-
eling, epidemiology, social network graphs

I. INTRODUCTION

The COVID-19 pandemic has demonstrated that while we
have made significant progress in controlling infectious disease
outbreaks, such outbreaks will continue to pose a threat. Com-
putational models played a critical role during the COVID-
19 pandemic in various response efforts – to forecast the
trajectory of the pandemic, evaluate various what-if scenarios,
and support economic and logistical planning problems such as
vaccine allocation and distribution [1]–[4]. Several challenges
have also emerged as a result of these efforts, including: (1)
running these models in real time, (2) scaling models to larger
regions and incorporating a range of social, behavioral, eco-
nomic and immunological considerations, and (3) managing
limited data and the resulting uncertainty regarding conditions
on the ground.

Traditional modeling techniques for the spread of infectious
diseases often rely on coupled rate equations – systems of
differential equations relating the number or fractions of
people who are susceptible, exposed, infected, and recovered
(SEIR) [5]. While such approaches are effective at capturing

statistical trends like the rate at which people are infected,
they fail to fully capture the complexity of human social
networks and the interactions that serve as a mechanism for
disease spread. As many interventions function by changing
this network of interactions, their impact on a disease’s spread
can only be modeled indirectly under this paradigm.

In contrast, agent-based models simulate the epidemic pro-
cess on social contact networks that capture the dynamics
of human interactions. While more flexible, this approach
is much more computationally expensive, requiring agent-
based models to be parallel and highly scalable. The first
reason for this is that it is important to be able to simulate
epidemic dynamics over national and global scale networks.
A realistic social contact network for the U.S. would have
∼335 million agents, and a global scale network would have
∼8 billion agents. Second, interventions are an important
component of any epidemic simulation that seeks to study
the impact of government planning and response. However,
interventions complicate interaction networks that are already
highly irregular by allowing them to change over time, which
can slow simulations down considerably.

The stochasticity of this class of agent-based models also
poses challenges when it comes to evaluating a scientific
workload. Complex experiments that study several possible
scenarios require many runs, whether for sensitivity analysis,
uncertainty analysis, or comparing model projections for a
wide range of different scenarios. A typical design with
20 scenarios, each with 100 slight perturbations on model
parameters for uncertainty analysis, each with 30 replicates
to account for the stochasticity of the model, can yield 60,000
simulation experiments. Performing this many experiments
in a short amount of time requires a highly scalable code.
Running such large workflows means pushing the limits of
performance, and motivates the development of a parallel
program capable of scaling to meet these demands.

Design and implementation of parallel simulations for con-
tagion modeling is challenging for two main reasons: (1)

the underlying social contact networks on which infectious
diseases spread are highly unstructured (see [6], [7] for an in-
depth discussion), and (2) the dynamics over such networks
are stochastic in nature; the nodes which participate in the
spreading process may differ. This complicates partitioning
and load balancing, as one cannot predict the inter-process
communication and workload on each processor a priori.

Our primary objective in this work is to develop a scal-
able, parallel simulation framework for modeling contagion
processes over large relational and time-varying networked
systems. Toward this end, we present Loimos, a highly
scalable parallel code for agent-based simulations on real-
istic social contact networks, written on top of Charm++,
an asynchronous, many-task runtime system. Loimos utilizes
a combination of discrete-event simulation (DES) and time
stepping to model the spread of diseases on these networks.

Our key contributions are as follows:
• Designing and implementing a parallel agent-based sim-

ulator for modeling contagion processes and intervention
scenarios at an individual level.

• Identifying three major performance bottlenecks in
Loimos and introducing optimizations addressing them.

• Evaluating the scalability of the code on an HPC platform
both in strong and weak scaling scenarios.

• Validating the simulator against EpiHiper [12], an exist-
ing model used by the CDC COVID-19 scenario model-
ing hub [13].

II. RELATED WORK

Bissett et al. [14] identify five components of agent-based
techniques for modeling epidemics: (1) a theory component,
(2) synthetic population construction, (3) social contact net-
work generation from such synthetic populations, (4) construc-
tion of idealized social contact networks, and (5) simulation
of epidemic diffusion across both types of contact networks.
We focus on this last component, as the other components
generally represent one-time costs for an outbreak response.

Several recent publications focus on modeling the spread
of COVID-19. Many of these are national or regional com-
partmental models built using data from outbreaks in the
simulated area, and account for interventions in different ways.
The SIQR (Susceptible Infectious Quarantined Recovered)
[15] and SIDARTHE (Susceptible Infected Diagnosed Ailing
Recognized Threatened Healed and Extinct) [16] models have
been used to simulate the progression of the pandemic in
India and Italy, respectively, using new disease states and
adjustments to the values of disease parameters to capture
the impact of interventions. An age-segmented SIRD (Sus-
ceptible Infectious Recovered Dead) model using synthetic
contact matrices for interventions [17], and a SIRD model
using an optimization algorithm to estimate the infection rate
based on empirical data [18] have also been used to model
COVID-19. Metapopulation models are commonly used to
capture international disease spread. These models segment the
simulated population into subpopulations representing coun-
tries or regions and build a compartmental model for each

subpopulation with flows connecting them. One such model
has been used to estimate the impact of travel restrictions
on the early spread of COVID-19 [19]. There are also some
efforts to build small-scale agent-based models to simulate
the spread of the virus within small communities or within
single buildings. Although these models range in complexity
– COVID-ABS [20] incorporates both economic and epidemi-
ological models within a single simulation whereas Cuevas’s
model [21] of spread within a building only requires two rules
to guide its agents’ behavior – most of these models are quite
small, only simulating a few hundred agents.

Several parallel agent-based epidemic simulators have been
developed for HPC systems, including several that operate
on national scales. However, any performance comparison
between existing models is hampered by the lack of detailed
information on the parameters and HPC systems used in
the runs. No single ground truth dataset exists to test raw
computational speed in this domain, so we instead seek to
compare simulations which operate on a similar scale, namely
that of the population of the United States. Note that most
prior work considers 280-290 million agent populations to be
U.S.-scale, as shown in Table I.

With this limitation in mind, there are a number of ap-
proaches to developing high-performance agent-based disease
simulations. The Framework for Replication of Epidemiologi-
cal Dynamics (FRED) [8] is an OpenMP based simulation that
uses US census data to model disease spread. FRED’s disease
models are fixed to a configurable SEIR model (susceptible,
exposed, infectious, and recovered), resulting in much less
flexibility in terms of input, compared to codes which support
a tunable arbitrary disease model, such as Loimos. Seal et
al. [22] implement an agent-based model involving a gener-
alization of Conway’s Game of Life, instead of dynamics on
realistic contact networks. However, this simulation is notable
for its use of GPU offloading, which most of the simulations
surveyed – along with Loimos – do not support. Germann
et al. [9] develop EpiCast by adapting the SPaSM molecular
dynamics simulation, using cells as an analog for communities
and particles as an analog for individual agents. EpiCast lies
halfway between a meta-population model with its spacial
distributed interaction groups and a fully-fledged agent-based
model, placing each agent in multiple interaction groups at
once, representing where they live, work, and travel. Parker et
al. [23] introduce a novel approach that models how human
behavior changes due to a pandemic (e.g. increased social
distancing) but is limited to an SEIR model and requires
creating new populations to model different sets of behaviors.
Machin et al. [12] and the EpiHiper team [7] present an agent-
based simulator embedded in an end-to-end pipeline which
runs the gauntlet from model calibration to simulation output
analysis. While this represents a mature production simulation,
used by the CDC COVID-19 scenario modeling hub [13], their
work focuses more on the orchestration of the overall pipeline
than the optimization of individual application runs.

Perumalla et al. [24], and the EpiSimdemics team [11],
[25], [26] perform some of the fastest epidemic simulations.

TABLE I
SUMMARY OF RESULTS FOR PRIOR AGENT-BASED EPIDEMIC SIMULATORS. EPIHIPER RESULT IS AN ENSEMBLE SPANNING TWO SYSTEMS.

Simulator No. of Agents No. of Days Simulated Machine No. of Cores Runtime Runtime/Day

FRED [8] 289 million Unknown Blacklight at PSC 16 4 h Unknown
EpiCast [9] 281 million 180 2.4 GHz Intel Xeon 256 8-12 h 160 s

EpiHiper* [10] 288 million 72,000 Bridges-2 at PSC,
Rivanna at UVA

6,400
1,200 32 h 42 m 0.141 s

EpiSimdemics [11] 280.4 million 180 Blue Waters at NCSA 655,360 10.41 s 0.0578 s

EpiSimdemics shows impressive scaling, presenting a zip-
code based partitioning scheme similar to the one employed
by Loimos. They show orders of magnitude difference in
performance compared to previous work. Table I summarizes
the performance of some of the more performant models
discussed above.

III. ALGORITHM FOR CONTAGION DIFFUSION

We develop our epidemic simulator, Loimos, by using a
combination of network theory, discrete event simulations,
and agent-based modeling. We model both individuals in the
population and interactions between pairs of these agents. This
allows us to simulate the dynamics of epidemic diffusion on
a sufficiently granular level to directly model the changing
dynamics of disease spread due to a variety of public health
intervention strategies.

A. Serial Algorithm

In order to expose parallelism across people and locations,
we iterate over discrete time steps. Each time step requires:

1) Identifying overlapping visits to each location.
2) Calculating the likelihood that each overlap resulted in

an infection, then determine which infections occur.
3) Updating each person’s disease state to reflect any

infections and the progression of the disease.

Disease Model and Finite State Automaton: We assign
each person, p, a disease state, xp, managed using a finite
state automaton (FSA) which specifies how – once infected
– people move through various disease states representing
different stages in the progression of a disease. We require
that each state have an associated susceptibility, σ(xp), and
infectivity, ι(xp), which we use to determine how to treat
them in the simulation; we consider p to be susceptible when
σ(xp) > 0 and infectious when ι(xp) > 0. Transitions between
states are stochastic both in terms of the state transitioned to
and how long a person remains in a given state. Throughout
this paper we use an expanded version of the Susceptible,
Exposed, Infectious, and Recovered (SEIR) model [27].

Discrete-event Simulation: The discrete event simulation
(DES) determines which people are at a location, ℓ, at the
same time and for how long, based on the set of visits to ℓ
during a given simulation day. The DES splits each visit into
two events – an arrival and a departure – and orders them in a
queue, Qℓ, based on when they occur. The DES then processes

events from this queue, as shown in Algorithm 1, identifying
all of the corresponding exposure events.

While processing an event, e, we maintain lists of all
susceptible and infectious people currently at the location,
Vs and Vi respectively. When processing an event, we use
the disease state, xpe

, of the corresponding person, pe, to
select the appropriate list, V , skipping immune and exposed
people (lines 3-5), adding a person when they arrive (line
7) and removing them when they depart (line 9). When a
person leaves, we consider everyone in the opposite list, V ′,
as potential contacts with a fixed probability, cℓ, based on the
location (See (1); lines 10-12). If a contact occurs between
an infectious person and a susceptible person, we store the
propensity of the resulting exposure to cause an infection
(See (2); lines 13-15).

Algorithm 1: Computing exposures at a location, ℓ
1 ComputeExposures (event queue Qℓ, disease states Xℓ):
2 foreach event e ∈ Qℓ with corresponding visitor pe do
3 if pe is susceptible then V = Vs, V ′ = Vi;
4 else if pe is infectious then V = Vi, V

′ = Vs;
5 else continue;
6 if e is an arrival then
7 Add pe to visitor list V corresponding to pe’s disease state;
8 else
9 Remove pe from corresponding visitor list V ;

10 foreach p′ currently in the opposite visitor list V ′ do
11 cℓ = ContactProbability(ℓ);
12 if pe and p′ make contact with probability cℓ then
13 Compute propensity of infection for pe and p′

during the period of co-occupancy T using Xℓ;
14 if pe is susceptible then add exposure to list Epe ;
15 else add exposure to list Ep′ ;
16 end
17 end
18 end
19 end

Contact Model: The contact model operates at each location,
ℓ, independently, and determines whether or not a pair of
overlapping visits to ℓ result in a contact. Here we adopt
the min/max/α model formulation of Chen et al. [28]. In
this model, we compute the contact probability, cℓ, for any
pair of people simultaneously present at ℓ as a function of its
maximum occupancy, Nℓ. This serves as a proxy for its size.
In order to compute cℓ, we select a minimum value, A, where
if Nℓ < A everyone will make contact, and a maximum value,
α, where if Nℓ > α someone visiting at the peak occupancy
of the location will make about B contacts; a person visiting a

given location during peak occupancy should expect to make
between A and B contacts during that visit. pℓ is given by

cℓ = min
{
1,
[
A (B − A)(1− e

− Nℓ / α
)
]
/[Nℓ − 1]

}
(1)

contact prob min contacts

max contacts max occupancy

threshold

for Nℓ ≥ 2.
We use the values A = 5, B = 40 and α = 1000 below,

based on social contact patterns in the POLYMOD data [29].

Transmission Model: The transmission model determines
whether or not a given contact between susceptible and in-
fectious individuals (pi and pj , respectively) results in disease
transmission. As in Chen et al. [28], transmission probabilities
depend on a personal and a disease state susceptibility, βσ(pi)
and σ(xpi

) respectively, and infectivity, βι(pj) and ι(xpj
), the

contact duration, T , and a transmissibility, τ .
The infection propensity, ρ, of such a contact is given by

ρ (pi, pj , T) = T · τ · βσ(pi) · σ(xpi
) · βι(pj) · ι(xpj

)
(2)

overlap duration

transmissibility

susceptibility infectivity

where τ is a tuning parameter proportional to the likelihood of
infection from a one-second contact with an infectious agent.

In order to determine whether or not a transition occurs for
a given susceptible person, pi, at the end of a time step, we
sum the propensities from all m contacts pi had with infectious
people during the time step

A(pi) =

m−1∑
j=0

ρ (pi , pj , Ti,j) (3)

see (2)

susceptible infectious

overlap duration

where Ti,j is the duration of the pi’s j-th contact. We then
sample a ∼ − log(uniform(0, 1))/A and infect pi if a < 1.

Intervention Model: Interventions have three main compo-
nents: a trigger, a selector, and an action. The trigger activates
the intervention at the end of a time step in response to
some global condition, such as the population passing a
case threshold. Once the intervention is active, its selector
determines which people or locations it will apply its action
to, based on their individual attributes and health states. This
action will then either (1) add or remove some edges incident
to the person or location in question or (2) adjust the values of
attribute(s) of the person or location, which may be either used
in later interventions or transmission propensity calculations.
Most actions can also be reversed when the intervention no
longer applies to the person or location in question.

B. Parallel Algorithm

The parallel algorithm, shown in Algorithm 2, operates on
a bipartite graph – with people and locations as nodes, and
weekly visit schedules as edges – along with an assignment
of people and locations to partitions. This algorithm is based
on that originally proposed by Yeom et al. [25], [26].

Algorithm 2: Parallel control flow in Loimos
1 Partition P into people partitions P = {Pi};
2 Partition L into location partitions L = {Lj};
3 foreach person partition Pi ∈ P pardo
4 foreach location partition Lj ∈ L do
5 Compute the set Vi,j of people on Pi who visit some

location on Lj ;
6 end
7 end
8 foreach simulation day d ∈ {1, . . . , dmax} do
9 foreach person partition Pi ∈ P do

10 foreach person p ∈ Vi,j do
11 Send disease state update message (p, xp);
12 end
13 end
14 foreach location partition Lj ∈ L pardo
15 foreach disease state update message (p, xp) to Lj do
16 Store p’s disease state, xp, in Xℓ;
17 end
18 foreach location ℓ on Lj do
19 foreach visit v to ℓ do
20 Put an arrival and departure event into Qℓ;
21 end
22 Reorder Qℓ by the time of event in ascending order;
23 ComputeExposures(Qℓ, Xℓ);
24 foreach susceptible person p with exposure(s) at ℓ do
25 Send exposure message m to p’s person partition;
26 end
27 end
28 end
29 foreach person partition Pi ∈ P pardo
30 foreach person p on Pi do
31 foreach exposure message m destined for p do
32 Put the exposures into the exposure list Ep;
33 end
34 if IsInfected(p, xp, Ep) then
35 Update p’s disease state xp;
36 end
37 end
38 end
39 Evaluate intervention triggers;
40 end

Prior to the main loop, we partition the person and location
data (P and L, respectively; lines 1-2), and identify which
people, Vi,j , from each person partition, Li, visit each location
partition, Lj , (lines 3-7).

On each simulated day, each person partition sends a
message with the current disease state, xp, of each person,
p, it holds to each location partition they visit (lines 9-13).
This update is performed in lieu of the full visit message
exchange from Yeom et al. [25], and is discussed in more
depth in Section V-D. Once all the update messages have been
received and the updated disease state stored in Xℓ (lines 15-
17), arrival and departure events for each visit are created and
placed in a time-ordered queue, Qℓ (lines 19-22). Locations
currently selected by an active intervention may have altered
visits. Each process performs a DES for each of its locations,
as described in Algorithm 1, determines whether each pair
of people whose visits overlap come into contact, and then
computes the propensity of any contacts based on their disease
states. Once these calculations have been performed, we send
exposure messages to people with at least one exposure (lines
24-26). Each person’s exposure messages are then gathered

in Ep and processed to determine whether or not a given
exposed person was infected (line 34). If a susceptible person
is infected or an infected person makes a timed transition, their
disease state will be updated to reflect this at the end of the
simulation day (line 35). Finally, we evaluate the triggers of
any interventions deployed in the current scenario (line 39).

For simplicity, we primarily refer to the three phases of
the main loop in later performance analysis, namely (1)
person state communication (PSC; lines 9-17), (2) exposure
computation and communication (ECC; lines 18-33), and (3)
person state update (PSU; lines 34-36).

IV. IMPLEMENTATION IN LOIMOS

We present a parallel epidemic modeling framework,
Loimos, that implements the parallel algorithm described
above. Loimos is written on top of the Charm++ [30], [31]
parallel runtime. In this section, we discuss salient details
regarding the design of its parallel implementation.

A. Inputs to the Simulator

Three core components define an epidemic simulation:
1) A population, consisting of people, locations, and visits
2) A disease, represented as an FSA (see Section III-A)
3) An (optional) set of interventions, capable of modifying

visit schedules and disease transmission likelihoods
We use two different types of populations for the simula-

tions described in this paper: realistic digital twin populations
mirroring several U.S. states, and purely synthetic populations.

Generating Realistic Populations: We generate these realistic
datasets from a range of data sources through an exten-
sion of the pipeline developed by Chen et al [28]. For a
given state, we begin by constructing a collection of people
with demographics (including age, gender, and occupation
codes [32]) and partitioning these people into households. We
refine these partitions at a block group level through iterative
proportional fitting to match the demographic distributions
found in American Community Survey (ACS) data [33].

Next, we assign each person a set of activities, using
National Household Travel Survey data through random forest
methods conditioned on demographics and calibrated against
time-use surveys [34]. We then construct home and activity
locations, integrating building [35], and school [36] data.
Finally, we assign people to home locations, and activities to
activity locations. We constrain this assignment to match ACS
commute flow and demographic data (ex: to ensure teachers
work at schools). We use these techniques to generate the
datasets shown in Table II.

Purely Synthetic Population Generation: We generate our
purely synthetic datasets on the fly, using a structured grid
of locations to maintain epidemic locality. Given an average
number of visits per person per day, λvisits, we assign each
person, p, to a home location uniformly throughout the grid,
then generate n ∼ Pois(λvisits) visits for each person on
each day, where Pois(λ) is the Poisson distribution with
expected rate λ. Here, the i-th visit is to a random location

TABLE II
DIGITAL TWIN DATASETS USED FOR STRONG SCALING STUDIES.

INTERACTION AND VISIT COUNTS GIVEN PER DAY.

Dataset Name # Interactions # Visits # People # Locations

Arkansas (AR) 63.65M 12.81M 2.749M 13.17M
Iowa (IA) 68.41M 14.24M 2.967M 13.68M
Michigan (MI) 226.5M 44.39M 9.342M 16.33M
New York (NY) 525.6M 88.28M 18.11M 17.97M
California (CA) 955.7M 164.6M 35.51M 24.49M

di ∼ Pois(λhops) hops away in the grid from p’s home
location. We use the average visits per person in the CA data,
λvisits = 4.6, and λhops = 5.2 to generate the flexible datasets
shown in Table III.

TABLE III
PURELY SYNTHETIC POPULATIONS USED IN WEAK SCALING STUDIES.

Relative Size # People/core # Locations/core

1x 280k 70k
2x 560k 140k
4x 1.120M 280k

B. Task-based Decomposition

Loimos is implemented in Charm++ [30], [31], a parallel
language focused on asynchronous, message-driven programs.
When writing Charm++ programs, the programmer organizes
code and data into a combined object called a chare. Chares
are in turn organized into chare arrays, indexable collections
of chares. When the code is run, the Charm++ runtime is re-
sponsible for assigning chares to processors and for scheduling
the execution of code on the various chares assigned to a given
processor. This code is usually run in response to a message
received from another chare. In Loimos, we use two chare
arrays: one for people and one for locations, with each chare
containing a partition of the appropriate data.

The other main Charm++ object we use in Loimos is a node
group. Node groups have a single instance for each node the
program is run on, allowing us to avoid keeping redundant
copies of shared information in memory on one node, while
also minimizing inter-node communication.

C. Implementation of Different Models

We implement the various models described in Section III-A
modularly to increase the flexibility of the codebase.

Disease Model: At the start of a simulation, we load the FSA
representing the simulated disease from an input file which
specifies its states and transitions. A Charm++ node group then
stores a single copy of this information on each node, in order
to afford each person and location chare efficient read-only
access to these data. We store other read-only data describing
the input scenario in a similar fashion.

When initializing the simulation, people begin in one of
(potentially) several entry disease states, as determined by
their individual attributes, such as age, specified in the input

file. They remain in this state until they are infected by an
infectious person or chosen to seed the outbreak. For this work,
we select a small sample of people to infect during the first
few days of the simulation. For the runs in this paper, we
infect 2 people per day, chosen uniformly at random, for the
first 10 days of the simulation, and use a FSM representing
COVID-19 with 5 age-based entry states, each with 18 distinct
reachable states.

Discrete-event Simulation: On each simulation day, we start
the DES after the conclusion of the person state communi-
cation (PSC), when updates to interventions (and thus visit
schedules) are also guaranteed to have completed. We use
Charm++’s quiescence detection mechanism1 – a soft barrier
which ensures no messages are in flight or being processed
before continuing – to determine when this phase is done,
as the number of visits a given location will receive is both
not known a priori and non-deterministic in the presence of
any intervention which changes visit schedules, such as school
closures. Once triggered, each location chare independently
executes the DES for each of its assigned locations.

In implementing the DES algorithm, we made three key
optimizations: (1) we only keep track of co-occupancy – and
thus interactions – between susceptible people and infectious
people, (2) we only ever send exposure messages to suscepti-
ble people who had at least one exposure occur during a time
step, and (3) exposure messages are sent as soon as we finish
processing a susceptible individual’s departure event. Note
that we are able to make this first change without affecting
the results of the simulation because only contact between
a susceptible person and an infectious person constitutes
an exposure (and thus can cause an infection). The second
optimization is especially helpful as in most iterations only a
small fraction of visits will result in an exposure. The third
optimization allows us to significantly overlap computation
and communication during this phase.

Contact Model: We implement two different types of contact
model in our code. The first is the min/max/α model (see
Section III-A). Since this requires knowledge of the maximum
occupancy of each location, we use a pre-processing script
to compute this based on the visit schedules file and save
each location‘s maximum occupancy to the locations file. At
the start of a run, we read in this value for each location,
compute the appropriate contact probability, and store it as
a new location attribute. Since this cannot be computed in
advance for the purely synthetic datasets, we also provide a
second contact model with a single, global contact probability.

Transmission Model: After each exposure is identified, we
compute the corresponding propensity and batch it with the
other exposure messages for the susceptible person involved.
We send the exposure messages for each person immediately
after processing the departure event for their visit in the DES.
We do not compute actual infections until after the DES is

1We chose quiescence detection over a similar mechanism in Charm++,
competition detection, which is incompatible with other Charm++ features.

complete and all exposure messages received. We again use
Charm++ quiescence detection to determine when this has
occurred, as the number of exposure messages each person
chare will receive is highly non-deterministic, depending on
the mixture of infectious and susceptible people as well as the
contact model. Once all messages are received, each person
chare sums the propensities for each person in their partition
in order to identify infections.

Intervention Model: Similar to the disease model, the spec-
ifications for the interventions to be used in a given run
are provided in an input file and stored on a node group.
Unlike the disease model, we store and update some state for
each intervention via the main chare over the course of the
simulation. In particular, at the end of each simulation day,
we perform a reduction across all person chares to compute
the number of total infectious people, and pass this value
along with the current day to the triggers for each specified
intervention to determine which interventions should be active.
The ids for each active location-based intervention are then
passed to all location chares. These chares then access the
local copy of the intervention objects on their node and filter
the locations assigned to that chare using the selector for the
intervention, and apply the action to the relevant locations.
We use a separate class for each intervention, each of which
extends a shared interface with methods for testing whether
a location should be selected, making arbitrary changes to
a location’s state via an action – including changing its
visit schedule – and undoing the changes wrought by the
action. Some interventions, like vaccination, have a trivial
undo method as the changes persist after the initial intervention
ends. We use a similar scheme for person-based interventions.

V. ADDITIONAL PERFORMANCE CONSIDERATIONS

After implementing Loimos’ core features, we explored sev-
eral avenues to further optimize our code’s performance. The
four directions we found most beneficial are: (1) considering
different combinations of processes and threads per node, (2)
static load balancing, (3) short-circuit evaluation of the DES
at each location, and (4) storing visit data on location chares.

A. Impact of Using Processes vs. Threads

The Charm++ suite includes support for different machine
layers as well as abstractions that enable the programmer to
adapt to the underlying hardware to improve performance and
scalability. All these components make Charm++ codes highly
tunable. In particular, we are interested in analyzing how run-
ning Loimos with symmetric multiprocessing (SMP) support
in Charm++ performs relative to the non-SMP alternative.

Enabling the Charm++ SMP mode is analogous to adding
OpenMP or another threaded programming model to an MPI
code, in that it runs multiple threads per process instead of
the usual single thread. Users can specify how many worker
threads are spawned per process, along with an optional
mapping from threads to cores, but one thread per process is al-
ways dedicated to communication. This communication thread

manages inter-node messages whereas intra-node communica-
tion is managed through the shared memory address space
common to all threads on the same node. The requirement of
allocating one communication thread per process could be a
disadvantage for compute-intensive applications since compute
cores have to be sacrificed. However, for communication-
intensive applications, the use of a dedicated communication
thread to manage messaging might lead to better performance.

We compare six different ratios of processes to nodes, using
8 processes per node (p/n) with 15 or 14 worker threads per
process (t/p) and 16 p/n with 7 or 6 t/p in SMP mode, and
126 processes per node in non-SMP mode. We performed a
strong scaling experiment, running three replicates of each
configuration for 200 days on the MI data (see Table II) with
all optimizations enabled. All scaling experiments in this paper
were conducted on the Perlmutter Cluster at NERSC, a HPE
Cray EX cluster with two AMD EPYC 7763 CPUs per node,
each with 64 cores, and a HPE Slingshot 11 interconnect [37].

Figure 1 shows the experimental results of this SMP vs non-
SMP comparison. The non-SMP configuration consistently
out-performs the SMP configurations, achieving a speedup of
about 3.25× when going from 128 cores to 4096. Note that
some SMP configurations suffer from fatal runtime errors on
larger core counts. On 4096 cores, the 126 p/n configuration is
1.19× faster than the best SMP configuration, with 16 p/n and
6 t/p. As a result, we use the 126 p/n non-SMP configuration
for all runs described in subsequent sections.

 0.1

 1

128 256 512 1024 2048 4096

SMP: 8p/n, 15t/p
SMP: 8p/n, 14t/p
SMP: 16p/n, 7t/p
SMP: 16p/n, 6t/p

Non-SMP: 126p/n

E
xe

cu
ti

o
n
 T

im
e
 (

s/
d
a
y
)

Number of Cores

SMP vs Non-SMP Performance on Perlmutter (MI)

Fig. 1. Performance comparison of different SMP configurations, pairs of
processes per node (p/n) and worker threads per process (t/p) vs. a non-SMP
configuration using one process per core (126 p/n), with the latter performing
best across all core counts. One chare per thread used in all cases. Times
averaged over three runs, with extrema in error bars.

B. Static Load Balancing

During initial runs of Loimos on the realistic datasets, we
found that some processes ran much slower than others, as
shown in the left of Figure 2. We set out to minimize this
load imbalance by improving the assignment of locations and
people to chares.

Toward this end, we present a simple static partitioning
scheme meant to preserve geographical locality. First, we sort
all locations in the population by the id of their state, county,

Fig. 2. Processor usage in three iterations of Loimos on two Perlmutter nodes
with MI data shows much more idle time with no optimizations (left), than
with static load balancing only (right).

census tract, and census block group, in that order. This is
intended to ensure that nearby locations are placed on the same
chare if possible. Using the number of visits to a location, λj ,
as a proxy for its load, we compute the average load per chare,
Λ, as the ratio of visits to location chares, for a given number
of chares. If any locations have a load λj > Λ, we assign
them their own chare and recompute Λ for the remaining
chares, until no such locations remain. We then compute the
cumulative load for each location, fixing λj = Λ for those
heavy locations already assigned to a chare, and assign each
location to chare

⌊(∑j−1
i=0 λi

)
/Λ

⌋
.

We then partition the person data, identifying the location
chare, Lj , containing a person’s home location and placing
them on person chare Pj . Applying this scheme drastically
decreases the idle time on most processes, as shown in the right
of Figure 2, although a much lower degree of imbalance still
remains. Figure 5 shows how Loimos‘s performance improves
(no-opts vs static) when using this load balancing scheme. This
leads to a speedup of 5.55× and 3.55× for the MI data on
128 and 4096 cores, respectively.

C. Optimizing the Interaction Computation

Our next optimization was inspired by observing significant
variations in the time we spent in one of the three main
simulation phases over the course of a run. We initially
expected the time spent in the exposure computation and
communication (ECC) phase to roughly track the number of
infections, due to our use of separate queues for infectious and
susceptible visitors. Instead, we observed that ECC dominates
the runtime for the first half of the simulation, but falls after the
peak of the infection curve has passed, as shown in Figure 3.
This corresponds to an increasing number of immune people in
the population, who are ignored when identifying exposures.

As a result, we realized that we spend significant time
computing exposures for every location even when no infec-
tious individuals are present, as we still process all susceptible
arrival and departure events in the DES. In order to avoid
this, we add a check to skip the DES entirely on locations
with no infectious people visiting them on a given day. As
shown in Figure 3, after implementing this “short-circuit”

0

0.1

0.2

0.3

0.4

 0 20 40 60 80 100 120 140 160 180 200
0

0.3M

0.6M

0.9M

1.2M

Ex
ec
ut
io
n
T
im
e
(s
)

In
fe
ct
io
n
C
ou
nt

Simulation Day

static tECC
static+sc tECC
infections

ECC Phase Runtime and Infection Count by Day (MI)

Fig. 3. A 200-day simulation of Loimos on two Perlmutter nodes with MI
data: time spent computing and communicating exposures is much greater
without (static tECC) than with (static+sc tECC) short circuit evaluation of
interactions, and corresponds to infection counts (infections) in the latter case.

computation of the DES, the ECC runtime corresponds more
closely to the number of infectious people, peaking near the
first inflection point of the epidemic curve. Figure 5 shows
the benefits of using this scheme (static+sc) on top of the
previous optimization (static), which results in about a 1.67×
and 1.21× speedup for the MI data on 128 and 4096 cores.

D. Storing Visits on Location Chares

Finally, we had observed that the runtime of the simulation
was dominated by sending visit data from person to location
chares, which initially began each iteration, as shown in the
left of Figure 4. This was due to the fact that the visit data
was stored on person chares, as in Yeom et al. [38], despite
primarily being used in the DES performed on location chares.

Fig. 4. Breakdown of time spent in three iterations of Loimos on two Perl-
mutter nodes with MI data shows we spend most of our time communicating
visits (dark blue and light pink) with only static load balancing and short
circuit evaluation of interactions (left), but negligible time doing so when
storing visits on location chares (right).

We hypothesized that we could reduce the amount of com-
munication by storing the visit data where it is used and only
communicating data that changes between iterations, namely
updated disease states and modified per-person susceptibility
and infectivity values. Visit schedule changes resulting from
interventions could then be evaluated on location chares based
on a cache containing the relevant person state data. After

implementing this change, we found we spend minimal time in
the new person state communication (PSC) phase, as shown in
the right of Figure 4, which previously dominated simulation
runtimes. As a side effect, however, we spend more time
evaluating the DES, as we can no longer overlap the queueing
of arrival and departure events with communicating visit
data. Figure 5 shows the overall effect of this optimization
(static+sc+loc-visits). This results in a 2.46× and 1.34×
speedup on 128 and 4096 cores.

 0.1

 1

 10

 100

128 256 512 1024 2048 4096

no-opts
static

static+sc
static+sc+loc-visits

E
xe

cu
ti

o
n
 T

im
e
 (

s/
d
a
y
)

Number of Cores

Optimization Comparision on Perlmutter (MI)

Fig. 5. Performance comparison of combinations of different performance
optimizations: (1) static load balancing (static), (2) short circuit evaluation
of interactions (sc), and (3) storing visit data on location chares (loc-visits),
with each added optimization reducing runtimes. Execution times averaged
over three runs, extrema shown in error bars.

When all optimizations are combined together, we achieve a
significant 31.03× speedup on 128 cores and a 5.83× speedup
on 4096 cores compared to the baseline with no optimizations.

VI. EXPERIMENTAL SETUP

We begin by performing extensive scalability studies using
the 128 cores per node non-SMP configuration (See Sec-
tion V-A) on Perlmutter. All scaling experiments were run
with Protobuf version 3.21.12 and Charm version 7.0.0. All
scaling runs used the same random seed, and thus had identical
epidemiological results. Values shown were the average of five
replicates, with the error bars representing the minimum and
maximum runtimes. We use the realistic datasets shown in
Table II for strong scaling and those in Table III for weak
scaling. We additionally use a similar dataset with 5.513 mil-
lion people and 2.896 million locations representing Maryland
(MD) to validate Loimos‘s simulation output against that of
an established epidemiological simulation, EpiHiper [12]. See
Section IV for a more detailed description of these datasets.

Table II describes the number of people, locations, and total
visits for all these datasets. Note that interactions (person-
person edges) are given on average, due to the stochasticity of
the contact model. We run the realistic datasets for 200 days
total, processing a total of about 21 and 191 billion interactions
for the AR and CA datasets, respectively, over the course of
the simulation. In order to ensure a representative workload,
the transmissibility of the simulated outbreaks were tuned so

 0.1

 1

128 256 512 1024 2048 4096

Ex
ec
ut
io
n
T
im
e
(s
/d
ay
)

Number of Cores

CA
NY
MI
IA
AR

Runtime per Day for Strong Scaling Runs (Perlmutter)

 1x108

 1x109

 1x1010

128 256 512 1024 2048 4096

T
EP
S

Number of Cores

CA
NY
MI
IA
AR

TEPS for Strong Scaling Runs (Perlmutter)

Fig. 6. Strong scaling performance of Loimos on Perlmutter for five different datasets in terms of execution time (left) and traversed edges per second (TEPS,
right). Both show modest but consistent linear speedups for larger datasets. Execution times averaged over three runs, with extrema shown in error bars.

that the number of infectious people peaked about halfway
through the simulations.

Next, we performed a weak-scaling experiment. We ran
three fixed problem sizes per process, as shown in Table III.
These datasets were generated using the on-the-fly synthetic
population generation method outlined in Section IV.

We evaluated the performance of all scaling runs by calcu-
lating the average execution time per simulation day, excluding
data loading and application startup time.

Lastly, we performed a distributional docking study
(see [39]) to validate Loimos against EpiHiper using the MD
dataset, for which we developed versions that can run in both
models. For 30 runs we varied the random seed to capture
the distribution of potential epidemiological outcomes. These
results were then compared against runs of the existing Epi-
Hiper simulation using the same input visit network and simple
SIR disease model. Note that EpiHiper used the visit data
differently than Loimos: a preprocessing script determined the
list and duration of contacts for each person in the population,
producing a fixed contact network which the disease then
diffused over. Each EpiHiper run was on a separate contact
network. In contrast, Loimos determined a person’s contacts
separately on each day, effectively resulting in a dynamic
contact network, even in the absence of interventions. For all
validation runs, the transmissibility was fixed at τ = 0.05.

VII. PERFORMANCE RESULTS

We now present scaling results from benchmarking Loimos
using various inputs on Perlmutter.

A. Strong Scaling Performance

In order to understand how Loimos would enable large
scale simulations we perform the classical scaling analysis
shown in Figure 6. For reference, EpiSimdemics takes 2.67
seconds per day on 192 cores of Blue Waters to simulate
their California population [26], where Loimos takes 1.21
seconds per day on 128 cores. For the average runtime
(left), all five datasets have their best performance on 4096
cores. Notably, the smallest states scale inconsistently, with

performance remaining roughly flat from 256 to 1024 and 512
to 2048 cores for the AR and IA data, respectively. The larger
datasets, however, display consistent, if modest, linear scaling.
In terms of traversed edges per second (TEPS, right), Loimos
performs best on NY through 1024 cores, and on CA for high
core counts, peaking at about 4.6 billion TEPS on 4096 cores.

Execution Time Breakdown on Perlmutter (MI)

 0

 0.5

 1

 1.5

 2

stat
ic

stat
ic+
sc

stat
ic+
sc+
loc
-vis
its
stat
ic

stat
ic+
sc

stat
ic+
sc+
loc
-vis
its
stat
ic

stat
ic+
sc

stat
ic+
sc+
loc
-vis
its
stat
ic

stat
ic+
sc

stat
ic+
sc+
loc
-vis
its
stat
ic

stat
ic+
sc

stat
ic+
sc+
loc
-vis
its
stat
ic

stat
ic+
sc

stat
ic+
sc+
loc
-vis
its

Ex
ec
ut
io
n
T
im
e
(s
/d
ay
)

PSU
ECC
PSC

128 256 512 1024 2048 4096

Number of Cores

Fig. 7. Breakdown of total time spent in Loimos into the person state update
(PSU, negligible in all cases), exposure computation and communication
(ECC, reduced by second optimization), and person state communication
(PSC, negligible after last optimization) phases with the static load balancing
(static), short circuit interaction computation (sc), and location chare visit data
storage (loc-visits) optimizations incrementally applied.

Figure 7 shows the breakdown of total time spent in Loimos
into the three simulation phase identified in Algorithm 2:
(1) the person state communication (PSC, lines 6-15), (2)
exposure commutation and communication (ECC, lines 17-
27), and (3) the final person state updates (PSU, lines 29-30),
when the different optimizations are applied. We observe that
without the short circuit interaction optimization (static), PSC
takes slightly more time than ECC on all core counts, with the
difference growing as the core count increases, whereas with
that optimization (static+sc), ECC consistently takes a fraction
of the time of PSC. When we store visit data on location chares
(static+sc+loc-visits), PSC takes negligible time, and ECC is
somewhat slower (as queueing arrival and departure events can

no longer be overlapped with PSC). In all cases, the time spent
in PSU is negligible.

B. Weak Scaling Performance

We also perform weak scaling tests to see how well Loimos
handles datasets of increasing size. Figure 9 displays Loimos’
relatively flat weak scaling performance up to 4096 cores. For
all configurations, there is a noticeable increase in runtime
from 128 to 256 cores. For all datasets, this change is relatively
small – representing a 35%, 26%, and 23% slowdown for
the 280k, 560k, and 1.12M people per cores configurations,
respectively. The 1.12M people per core configuration shows
increased variability on 1024 and 2048 cores along with
increased runtime, but the runtime on 4096 cores returns to
similar level to that on 512 cores.

While these scaling results represent an optimistic represen-
tation of the person-location visit graph, they exploit location-
load attributes that are present in the more realistic networks.
While our simulation would see significant slowdowns from
purely random visits, our static load balancing scheme is
designed to place people and locations together on processors
such that there exists a high level of interconnectedness
between these objects similar to that seen in these datasets.

VIII. VALIDATION CASE STUDY

Finally, we performed a validation case study. We sought to
show that the distributions of Loimos’ results corresponds to
those of an established simulator, EpiHiper, with a focus on
total cumulative infections and the time to reach an equilibrium
state. Figure 8 shows how both simulators show similar overall
disease trajectories, with outbreaks either persisting to infect a
significant proportion of the population or dying out quickly.
In the former case, both simulations average similar numbers
of total cumulative infections – 863k for Loimos and 858k for
EpiHiper – and the latter occurs rarely for both simulations –
twice for Loimos and once for EpiHiper.

With respect to the time to equilibrium for the persistent
outbreaks, Loimos shows more tightly clustered results than
EpiHiper. This is likely a byproduct of how the two simulators
handle their input networks. Since EpiHiper uses the same
contact network for an entire run, differences in the chosen
contact network have the potential to cause compounding
differences in the simulation results. In contrast, since Loimos
essentially selects a new contact network in each iteration,
differences in contact networks between runs tend to be
smoothed over to some extent as more networks are sampled
over the course of a run, similar to how there is less variation
in the average of 100 die rolls than that of a single roll.

IX. CONCLUSION

Uncontrolled spread of infectious disease is a challenging
societal issue – one that requires policy makers to have the best
possible tools in order to make informed decisions. Computer
simulations are one such vital tool. The tight time constraints
on relevant policy decisions mean that these simulations need

to be able to model large regions extremely quickly and accu-
rately across a wide variety of counter-factual scenarios. These
demands require the use of powerful supercomputing systems.
Toward this end, we presented a scalable parallel simulation
framework for modeling contagion processes, Loimos, and
demonstrated its capabilities.

In this work, we outlined the methods we used to develop
this simulation framework and to optimize it for production
HPC systems. We described the models underpinning our work
as well as various optimizations we have made to enable
the code to scale well. We demonstrated our code’s use of
resources during both strong and weak scaling runs on Perl-
mutter at NERSC, achieving modest, but linear, strong scaling
speedups and relatively flat weak scaling results. We also show
how the epidemiological results of the simulation compare
to an existing model. Together, these runs demonstrate the
potential uses of Loimos for policy makers as a fast epidemic
simulator that is robust enough to capture the effects of policy
interventions.

ACKNOWLEDGMENTS

This material is based in part upon work supported by
the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Department of
Energy Computational Science Graduate Fellowship under
Award No. DE-SC0021.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. De-
partment of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under
Contract No. DE-AC02-05CH11231 using NERSC awards
DDR-ERCAP0032257 and DDR-ERCAP0029890. The au-
thors acknowledge Research Computing at The University of
Virginia for providing computational resources and technical
support that have contributed to the results reported within this
publication.

REFERENCES

[1] E. Y. Cramer, Y. Huang, Y. Wang, E. L. Ray, M. Cornell,
J. Bracher, others, and U. C.-. F. H. Consortium, “The united states
covid-19 forecast hub dataset,” medRxiv, 2021. [Online]. Available:
https://www.medrxiv.org/content/10.1101/2021.11.04.21265886v1

[2] MIDAS Network, “COVID-19 Scenario Modeling Hub,” https://
covid19scenariomodelinghub.org, last accessed Apr 6th, 2023.

[3] “Covid-19 modeling,” Virginia Department of Health. [Online].
Available: https://www.vdh.virginia.gov/coronavirus/see-the-numbers/
covid-19-modeling/

[4] “Ut austin covid-19 modeling consortium,” University of Texas
at Austin COVID-19 Modeling Consortium. [Online]. Available:
https://covid-19.tacc.utexas.edu/

[5] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM review,
vol. 42, no. 4, pp. 599–653, 2000.

[6] P. Bhattacharya, D. Machi, J. Chen, S. Hoops, B. Lewis, H. Mortveit,
S. Venkatramanan, M. L. Wilson, A. Marathe, P. Porebski et al., “Ai-
driven agent-based models to study the role of vaccine acceptance in
controlling covid-19 spread in the us,” in 2021 IEEE International
Conference on Big Data (Big Data). IEEE, 2021, pp. 1566–1574.

[7] P. Bhattacharya, J. Chen, S. Hoops, D. Machi, B. Lewis, S. Venka-
tramanan, M. L. Wilson, B. Klahn, A. Adiga, B. Hurt et al., “Data-
driven scalable pipeline using national agent-based models for real-time
pandemic response and decision support,” The International Journal
of High Performance Computing Applications, p. 10943420221127034,
2022.

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 0 20 40 60 80 100 120 140 160 180 200

In
fe

ct
io

n
 C

o
u
n
t

(C
u
m

u
la

ti
v
e
)

Simulation Day

30 MD Outbreaks Simulated in EpiHiper

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 20 40 60 80 100 120 140 160 180 200

In
fe
ct
io
n
C
ou
nt

 (
C
um
ul
at
iv
e)

Simulation Day

30 MD Outbreaks Simulated in Loimos

Fig. 8. Cumulative infections over time for 30 replicates in EpiHiper (left) and Loimos (right) of a simulated MD outbreak, with both distributions showing
similar average infection totals but with a wider range of times until equilibrium is reached for EpiHiper.

 0

 0.5

 1

 1.5

 2

 2.5

128 256 512 1024 2048 4096

Ex
ec
ut
io
n
T
im
e
(s
/d
ay
)

Number of Cores

1.12M people/core
560k people/core
280k people/core

Runtime per Day for Weak Scaling Runs (Perlmutter)

Fig. 9. Weak scaling results on Perlmutter for three different per-processor
loads, with runtimes relatively flat but with more variation for larger datasets.
Execution times averaged over three runs, with extrema shown in error bars.

[8] J. J. Grefenstette, S. T. Brown, R. Rosenfeld, J. DePasse, N. T. Stone,
P. C. Cooley, W. D. Wheaton, A. Fyshe, D. D. Galloway, A. Sriram et al.,
“Fred (a framework for reconstructing epidemic dynamics): an open-
source software system for modeling infectious diseases and control
strategies using census-based populations,” BMC public health, vol. 13,
no. 1, pp. 1–14, 2013.

[9] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken,
“Mitigation strategies for pandemic influenza in the United States,”
Proceedings of the National Academy of Sciences, vol. 103,
no. 15, pp. 5935–5940, Apr. 2006, publisher: Proceedings of
the National Academy of Sciences. [Online]. Available: https:
//www.pnas.org/doi/full/10.1073/pnas.0601266103

[10] P. Bhattacharya, J. Chen, S. Hoops, D. Machi, B. Lewis,
S. Venkatramanan, M. L. Wilson, B. Klahn, A. Adiga, B. Hurt,
J. Outten, A. Adiga, A. Warren, Y. Y. Baek, P. Porebski, A. Marathe,
D. Xie, S. Swarup, A. Vullikanti, H. Mortveit, S. Eubank, C. L. Barrett,
and M. Marathe, “Data-driven scalable pipeline using national agent-
based models for real-time pandemic response and decision support,”
The International Journal of High Performance Computing Applications,
vol. 37, no. 1, pp. 4–27, Jan. 2023, publisher: SAGE Publications Ltd
STM. [Online]. Available: https://doi.org/10.1177/10943420221127034

[11] A. Bhatele, J.-S. Yeom, N. Jain, C. J. Kuhlman, Y. Livnat, K. R. Bisset,
L. V. Kale, and M. V. Marathe, “Massively parallel simulations of
spread of infectious diseases over realistic social networks,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2017, pp. 689–694.

[12] D. Machi, P. Bhattacharya, S. Hoops, J. Chen, H. Mortveit, S. Venka-
tramanan, B. Lewis, M. Wilson, A. Fadikar, T. Maiden, C. L. Barrett,

and M. V. Marathe, “Scalable Epidemiological Workflows to Support
COVID-19 Planning and Response,” in 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2021, pp. 639–
650, iSSN: 1530-2075.

[13] S. Truelove, C. P. Smith, M. Qin, L. C. Mullany, R. K. Borchering,
J. Lessler, K. Shea, E. Howerton, L. Contamin, J. Levander, J. Kerr,
H. Hochheiser, M. Kinsey, K. Tallaksen, S. Wilson, L. Shin,
K. Rainwater-Lovett, J. C. Lemairtre, J. Dent, J. Kaminsky, E. C.
Lee, J. Perez-Saez, A. Hill, D. Karlen, M. Chinazzi, J. T. Davis,
K. Mu, X. Xiong, A. Pastore y Piontti, A. Vespignani, A. Srivastava,
P. Porebski, S. Venkatramanan, A. Adiga, B. Lewis, B. Klahn,
J. Outten, M. Orr, G. Harrison, B. Hurt, J. Chen, A. Vullikanti,
M. Marathe, S. Hoops, P. Bhattacharya, D. Machi, S. Chen, R. Paul,
D. Janies, J.-C. Thill, M. Galanti, T. K. Yamana, S. Pei, J. L. Shaman,
J. M. Healy, R. B. Slayton, M. Biggerstaff, M. A. Johansson, M. C.
Runge, and C. Viboud, “Projected resurgence of COVID-19 in the
United States in July—December 2021 resulting from the increased
transmissibility of the Delta variant and faltering vaccination,” eLife,
vol. 11, p. e73584, Jun. 2022, publisher: eLife Sciences Publications,
Ltd. [Online]. Available: https://doi.org/10.7554/eLife.73584

[14] K. R. Bissett, J. Cadena, M. Khan, and C. J. Kuhlman, “Agent-Based
Computational Epidemiological Modeling,” Journal of the Indian
Institute of Science, vol. 101, no. 3, pp. 303–327, Jul. 2021. [Online].
Available: https://doi.org/10.1007/s41745-021-00260-2

[15] A. Tiwari, “Modelling and analysis of covid-19 epidemic in india,”
Journal of Safety Science and Resilience, vol. 1, no. 2, pp. 135–140,
2020.

[16] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo,
A. Di Matteo, and M. Colaneri, “Modelling the covid-19 epidemic
and implementation of population-wide interventions in italy,” Nature
medicine, vol. 26, no. 6, pp. 855–860, 2020.

[17] K. Prem, Y. Liu, T. W. Russell, A. J. Kucharski, R. M. Eggo, N. Davies,
S. Flasche, S. Clifford, C. A. Pearson, J. D. Munday et al., “The effect
of control strategies to reduce social mixing on outcomes of the covid-
19 epidemic in wuhan, china: a modelling study,” The Lancet Public
Health, vol. 5, no. 5, pp. e261–e270, 2020.

[18] C. Anastassopoulou, L. Russo, A. Tsakris, and C. Siettos, “Data-based
analysis, modelling and forecasting of the covid-19 outbreak,” PloS one,
vol. 15, no. 3, p. e0230405, 2020.

[19] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova,
S. Merler, A. P. y Piontti, K. Mu, L. Rossi, K. Sun et al., “The effect of
travel restrictions on the spread of the 2019 novel coronavirus (covid-19)
outbreak,” Science, vol. 368, no. 6489, pp. 395–400, 2020.

[20] P. C. Silva, P. V. Batista, H. S. Lima, M. A. Alves, F. G. Guimarães, and
R. C. Silva, “Covid-abs: An agent-based model of covid-19 epidemic to
simulate health and economic effects of social distancing interventions,”
Chaos, Solitons & Fractals, vol. 139, p. 110088, 2020.

[21] E. Cuevas, “An agent-based model to evaluate the covid-19 transmission
risks in facilities,” Computers in biology and medicine, vol. 121, p.
103827, 2020.

[22] B. G. Aaby, K. S. Perumalla, and S. K. Seal, “Efficient simulation

of agent-based models on multi-gpu and multi-core clusters,”
in Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques, ser. SIMUTools ’10. Brussels,
BEL: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2010. [Online]. Available:
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8822

[23] J. Parker and J. M. Epstein, “A distributed platform for global-scale
agent-based models of disease transmission,” ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 22, no. 1, pp. 1–25,
2011.

[24] K. S. Perumalla and S. K. Seal, “Discrete event modeling and mas-
sively parallel execution of epidemic outbreak phenomena,” Simulation,
vol. 88, no. 7, pp. 768–783, 2012.

[25] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V.
Marathe, “Episimdemics: an efficient algorithm for simulating the spread
of infectious disease over large realistic social networks,” in SC’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
IEEE, 2008, pp. 1–12.

[26] J.-S. Yeom, A. Bhatele, K. Bisset, E. Bohm, A. Gupta, L. V. Kale,
M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on
blue waters,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, 2014, pp. 755–764.

[27] W.-m. Liu, H. W. Hethcote, and S. A. Levin, “Dynamical behavior
of epidemiological models with nonlinear incidence rates,” Journal of
mathematical biology, vol. 25, pp. 359–380, 1987.

[28] J. Chen, S. Hoops, H. S. Mortveit, B. L. Lewis, D. Machi, P. Bhat-
tacharya, S. Venkatramanan, M. L. Wilson, C. L. Barrett, and
M. V. Marathe, “Epihiper—a high performance computational modeling
framework to support epidemic science,” PNAS nexus, vol. 4, no. 1, p.
pgae557, 2025.

[29] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk,
M. Massari, S. Salmaso, G. S. Tomba, J. Wallinga et al., “Social contacts
and mixing patterns relevant to the spread of infectious diseases,” PLoS
medicine, vol. 5, no. 3, p. e74, 2008.

[30] L. V. Kale and A. Bhatele, Eds., Parallel Science and Engineering
Applications: The Charm++ Approach. Taylor & Francis Group, CRC
Press, Nov. 2013.

[31] L. V. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the 2011
HPC Class II Challenge,” Dept. of Computer Science, University of
Illinois, Tech. Rep., Nov. 2011.

[32] U. S. C. Bureau, “North American Industry Classification System
(NAICS) U.S. Census Bureau.” [Online]. Available: https://www.census.
gov/naics/

[33] ——, “Census Bureau Data.” [Online]. Available: https://data.census.
gov/

[34] U. S. D. of Transportation Federal Highway Administration, “NHTS
NextGen OD Data.” [Online]. Available: https://nhts.ornl.gov/od/

[35] Microsoft, “microsoft/USBuildingFootprints,” Jan. 2024, original-
date: 2018-06-13T18:31:31Z. [Online]. Available: https://github.com/
microsoft/USBuildingFootprints

[36] N. C. for Educational Statistics, “Electronic Catalog of NCES Products
(National Center for Education Statistics). Publications and data
products.” publisher: National Center for Education Statistics. [Online].
Available: https://nces.ed.gov/datatools/index.asp?DataToolSectionID=1

[37] NERSC, “Perlmutter system architecture,” https://docs.nersc.gov/
systems/perlmutter/architecture/.

[38] J.-s. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V.
Kale, M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on Blue
Waters,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’14. IEEE Computer Society, May
2014, lLNL-CONF-648533.

[39] A. Collins, M. Koehler, and C. Lynch, “Methods that support the
validation of agent-based models: An overview and discussion,” Journal
of Artificial Societies and Social Simulation, vol. 27, no. 1, 2024.

