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Abstract—Large Language Model (LLM) based coding tools
have been tremendously successful as software development as-
sistants, yet they are often designed for general purpose program-
ming tasks and perform poorly for more specialized domains such
as high performance computing. Creating specialized models and
tools for these domains is crucial towards gaining the benefits of
LLMs in areas such as HPC. While previous work has explored
HPC-specific models, LLMs still struggle to generate parallel
code and it is not at all clear what hurdles are still holding back
these LLMs and what must be done to overcome them. In this
work, we conduct an in-depth study along the many axes of fine-
tuning a specialized HPC LLM in order to better understand
the challenges. Based on our findings we fine-tune and evaluate
a specialized HPC LLM that is shown to be the best performing
open-source code LLM for parallel code generation to date.

Index Terms—Large Language Models, Code Generation, HPC

I. INTRODUCTION

Large language models (LLMs) have been a transforma-
tional technology in aiding software development. Their ability
to automate coding tasks and connect natural language de-
scriptions to code has improved developer productivity and
enabled developers to more rapidly move from concept to
implementation. As of 2023 over 92% of surveyed developers
use AI in some form to aid their development process [1].
Beyond general development assistance these tools have the
potential to enhance developer capabilities on more complex
programming tasks such as writing parallel code. Writing
correct, parallel code is an important problem facing modern
developers and is already difficult for humans. Using LLMs to
improve the quality and quantity of parallel code is an impor-
tant step in improving the performance of modern software.

While code LLMs have shown promise in their code gen-
eration capabilities, they still struggle with more complex
programming tasks such as parallel code. Previous work [2]
has extensively studied LLMs across various parallel execution
models and algorithms and found that LLMs are significantly
worse at generating parallel code compared to sequential code.
Two main reasons are identified for this discrepancy: the lack
of parallel code data in the pre-training data of modern LLMs
and the intrinsic difficulty of parallel code generation. Solving
the latter issue is a long-term effort that will require the
development of more sophisticated AI models that can plan
and reason through complex problems. However, the former
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issue of obtaining high-quality parallel code data at scale and
effectively learning from that data is a much more tractable
problem to tackle with current language modeling capabilities.

Creating HPC and parallel capable LLMs offers a great
number of benefits to the HPC community. They will dras-
tically improve the productivity of scientific developers and,
in turn, the speed at which scientific discoveries are made.
The process of designing these HPC capable LLMs will
involve the creation of large HPC datasets and studies into
modeling that data. Building out a large corpus of HPC data
and understanding how to best learn from and model that data
will be critical to developing future HPC AI developer tools.
As the field of AI and code LLMs continues to progress it is
important that the HPC community understands and addresses
the unique challenges associated with HPC code generation.

Gathering parallel code data at scale and effectively learning
from it is difficult. The data samples are already underrepre-
sented in large code datasets and simply collecting more is
often not enough; high-quality parallel code data is needed
to train models effectively. This is evinced by the results
of the StarCoder2 project which trained code LLMs on The
Stack v2 dataset that contains nearly all permissively licensed
code and code related data online [3]. Despite the impressive
data collection efforts, the StarCoder2 models perform similar
or worse than comparable models trained on less data. This
suggests that we cannot keep improving model performance
by collecting more data, but rather we need to collect better
data. Furthermore, it is not well understood what makes data
“better” for training code LLMs.

In this paper we address the lack of high-quality parallel
code data by creating a large synthetic code dataset, HPC-
INSTRUCT, using our proposed methodology to map existing
parallel code samples to high-quality instruct-answer pairs.
We then fine-tune code LLMs on this dataset and evaluate
them against other code LLMs on ParEval [2], a state-of-
the-art parallel code generation benchmark. We find that our
fine-tuned model, HPC-Coder-v2, is the best performing open-
source code LLM for parallel code generation and performs
near GPT-4 level. We conduct an in-depth study to better
understand how data representation and training parameters
impact the models ability to learn how to model parallel code.
These insights will be critical for future efforts developing the
next generation of HPC AI developer tools.

In this paper we make the following important contributions.



• We collect a large synthetic dataset of high quality
parallel code instruction data, HPC-INSTRUCT.

• We fine-tune a code LLM, HPC-Coder-v2, that is the
most capable open-source code LLM for parallel code
generation and completion.

• We conduct an in-depth study along the data and fine-
tuning parameters to understand how to best fine-tune
code LLMs for parallel code generation.

Furthermore, we answer the following research questions:
RQ1 How does the choice of fine-tuning base model and the

use of instruction masking impact the performance of a
code LLM on parallel code generation?

RQ2 How does the amount of fine-tuning data for a particular
parallel execution model affect the performance of a code
LLM on that model?

RQ3 How does the quality of parallel code fine-tuning data
impact the performance of a code LLM on parallel code
generation?

RQ4 How does model size impact the ability of a code LLM
to learn from distilled synthetic data?

II. BACKGROUND

In this section we provide background on the use of LLMs
for code, LLM distillation, and fine-tuning instruction LLMs.

A. LLMs for Code

LLMs, based on the Transformer architecture [4], have
proven to be capable of modeling text data, such as natural lan-
guage and code. Most often used for generative tasks, they can
be employed in a variety of software development tasks, such
as code completion, summarization, and translation. Building
off of their success in these tasks, they are continually being
integrated into software development tools and workflows.

Code LLMs are very similar to natural language LLMs,
but are generally pre-trained, fine-tuned, and/or prompted with
distinct code-specific data. For example, popular open-source
models like StarCoder2 [3] is pre-trained on The Stack v2
dataset [3], which is a large dataset of mostly code text.
Other popular models like CodeLlama [5] use existing LLMs
that are pre-trained on natural language data and then fine-
tuned on code-specific data. Popular code tools like GitHub
Copilot simply call existing frontier LLMs like GPT-4o [6]
with heavily engineered prompts to generate code.

B. LLM Knowledge Distillation

Large frontier LLMs, like GPT-4o [6], generally give the
best responses across a large variety of tasks, however, they
are computationally and financially expensive to run. For this
reason, the practice of knowledge distillation [7], where a
smaller model is trained to be as good as a larger model
for a particular sub-task, is becoming increasingly popular.
Knowledge distillation techniques generally either employ a
teacher-student model, where the teacher is the larger model
and the student is the smaller model, or a model compression
technique, where the larger model is compressed into a smaller
model. This work focuses on a simple form of teacher-student

knowledge distillation, where the large model is used to
generate lots of high quality synthetic data samples that are
then used to train a smaller model.

C. Fine-tuning Instruction LLMs

Instruction LLMs are a specialized form of LLMs that are
fine-tuned to receive a natural language instruction from the
user and generate a response. They behave like a chatbot, but
do not necessarily handle multi-turn dialog. These are usually
created by first selecting a general LLM that was pre-trained
on a corpus of general text data and then fine-tuning on a
corpus of dialog data. This is accomplished by showing the
model samples in the format “Instruct: {instruction} Response:
{response}” and then training the model to generate the
response. This is generally very effective at getting LLMs to
follow user prompts and most models available today have an
instruction variant available.

Generally, instruction LLMs are fine-tuned using
instruction-masking. When fine-tuning with instruction
masking, the gradient values corresponding to the instruction
tokens are masked to zero to prevent the model from learning
to generate the instruction tokens. Instead, weights are only
updated based on its ability to predict missing tokens in
the response. Conceptually, this is done since there may be
bad text in the instruction that we do not want the model to
learn to generate. For example, the user instructs the model
to fix their buggy code. In this case the instruction will
contain bad code, which we do not want the model to learn
to generate. Instead, we want the model to learn to generate
the fixed code in the response. While instruction-masking
is common practice and conceptually clear, there is little
literature arguing quantitatively for its effectiveness.

III. OUR APPROACH TO IMPROVING CODE LLMS FOR
PARALLEL LANGUAGES

Our approach to improving Code LLMs for parallel lan-
guages involves creating a large synthetic code dataset, HPC-
INSTRUCT, and then fine-tuning existing pre-trained Code
LLMs on this dataset. We first present an overview of our
proposed approach (Figure 1) and then present details of the
various components.

We begin by generating a large scale synthetic dataset of
code samples using open-source parallel code snippets and
state-of-the-art LLMs. This dataset is comprised of roughly
120k parallel code instruction-response pairs where the in-
struction is a natural language problem description and the re-
sponse is the code that solves the problem. The construction of
this dataset is inspired by previous work [8] that demonstrated
the success of fine-tuning smaller code LLMs on synthetic data
generated from larger foundation models.

Using the HPC instruction dataset, we then conduct an in-
depth study along the axes of code model fine-tuning to better
understand how data representation and quality, model size,
and prompt construction impact the ability of a code LLM
to learn how to generate parallel code. Each of these ablation
studies explores a research question raised in Section I. During
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Fig. 1: Overview of the methodology proposed in this paper.
First, we use open-source parallel code snippets to generate a
large synthetic instruction dataset of parallel code samples. We
then conduct ablation studies to understand how data, model,
and fine-tuning parameters impact the capability of a code
LLM to write parallel code. Finally, we utilize the dataset and
insights from the ablation studies to fine-tune a code LLM
for parallel code generation and evaluate it against other code
LLMs on the parallel code generation benchmark ParEval.

these studies we evaluate each of the fine-tuned models against
the ParEval [2] benchmark to understand their performance on
real parallel code generation tasks. These studies yield critical
insights into best practices for fine-tuning HPC code LLMs.

Finally, with the full HPC instruction dataset and insights
from the ablation studies, we fine-tune three state-of-the-art
HPC capable code LLMs. These are evaluated against the
ParEval benchmark and compared to other state-of-the-art
LLMs for their ability to generate parallel code.

IV. AMELIORATING THE DATA PROBLEM WITH
SYNTHETIC DATA

Before we can fine-tune HPC LLMs, we need to collect a
large dataset of HPC relevant code and dialog. While large
datasets of open-source code exist [3], previous work has
shown that generating structured synthetic data with state-of-
the-art LLMs can yield data much more effective for fine-
tuning specialized code LLMs [8]. This section details our
approach to collecting large-scale synthetic data for HPC
based on this insight.

While state-of-the-art commercial LLMs like GPT-4o can
generate high-quality instruction samples, they tend to gen-
erate very repetitive samples. To address this, we adapt the
use of seed code snippets from [8] to get diverse outputs
from the LLM. We gather a diverse set of seed snippets
from open-source codebases in The Stack V2 [3], focusing
on code in HPC languages (C, Fortran, etc.) and using HPC
libraries (MPI, OpenMP, etc.). In total we collect 125k seed
snippets including 25,000 samples in Python, C, FORTRAN,
and C++, 15,000 samples in CUDA, and 5,000 samples in
Chapel and OpenCL. When asked to generate a data sample,
the LLM is asked to be inspired by the seed snippet, yielding
more diverse and creative outputs. This process is visualized
in Figure 2. An example programming template response can
be seen in Figure 3, illustrating the workflow from seed snippet
selection to the final dataset sample.

We obtain further variety in the generated data by generating
multiple sample types:
Programming Prompts: In this template, the LLM is tasked
with generating a parallel programming problem and a corre-
sponding solution.
Translation Prompts: The translation template directs the
LLM to create a problem focused on converting code from
one parallel programming language to another. For example,
the model might be prompted to translate a CUDA-based
implementation into OpenMP or OpenMP to MPI.
Optimization Prompts: For these prompts, we ask the LLM
to generate an optimization problem and a corresponding
optimized solution.
Parallelization Prompts: The parallelization template asks the
LLM to parallelize a given code snippet, transforming it from
a sequential implementation to an efficient parallel version.

Using the 125k formatted prompts we generate syn-
thetic data samples with four state-of-the-art LLMs: Gemini-
Pro, DBRX, Llama-3-70B, and Mixtral-8x7B. The resulting
dataset, named HPC-INSTRUCT, comprises over 122k syn-
thetic data samples (some outputs were not parsable and dis-
carded). We use several LLMs to gather a variety of samples,
further ensuring data diversity. It also enables us to study the
impact of data quality along the axis of source generation
model. An example data sample from HPC-INSTRUCT is
shown in Listing 1.

V. STUDIES EXPLORING THE CREATION OF IMPROVED
HPC CODE LLMS

We now have a large dataset of synthetic instruction HPC
data, HPC-INSTRUCT, and our goal is to fine-tuning existing
models with this data. However, there are many unknowns
regarding the configuration of fine-tuning such as how to
format prompts, how much and what quality of data to use,
what size of model to use, etc. In this section, we design a
series of ablation studies along different axes of model fine-
tuning to better understand how each contributes to the ability
of a fine-tuned code LLM to generate parallel code.

A. Choice of Base Model and Instruction Masking

RQ1 How does the choice of fine-tuning base model
and the use of instruction masking impact the perfor-
mance of a code LLM on parallel code generation?

In this experiment, we explore the choice of base versus
instruct models, and whether to use instruction masking with
the goal of answering RQ1. We choose to study the impact
of base versus instruct models as it is unclear from related
literature which model type is better for fine-tuning on specific
tasks. Generally, most users interact with instruct models as
they are able to follow instructions and better engage in dialog-
like interactions. For this reason, most open-source models
have instruct models available that have been fine-tuned from
a base model. When fine-tuning a new instruct model, on one



Sampling Seed
Snippets

Creating Prompts

Programming
problem

Code optimization
problem

Code translation
problem

Code parallelization
problem

Data

Problem Statement

Solution

Open Source
Codebase

Generating Code
using LLMs

Fig. 2: Synthetic data generation process. We collect seed snippets from open source codebases and combine them with multiple
prompt templates to create data generation prompts for an LLM. These prompts are then used to generate problem-solution
pairs with an LLM.

Seed:

TRANSA = 'C' or 'c', op( A ) = A**T.

Prompt Template:

 Please gain inspiration from the random code snippet
 below to create a high-quality programming problem ...

Large Language Model

Solution:

Here's the translated OpenMP code: 
 void op(float *A, float *result) { 
 #pragma omp parallel for
...

Problem Statement:

  Here is a CUDA kernel that computes
  the transpose of a matrix A. translate
  to OPENMP
  __global__ void op(float *A, float
  *result) {

Fig. 3: Example synthetic data generation output. Here, a
random seed snippet is used alongside the translation prompt
template and fed into the LLM. The resulting synthetic sample
from the LLM is a problem of translating some code to
OpenMP and the corresponding solution.

hand, it may be better to reap the benefits of the existing fine-
tuned model and start from there. On the other hand, it may be
better to start from scratch with a base model, since they will
be more general and easier to fine-tune. Instruction masking
is usually employed to prevent the model from learning bad
patterns that may be present in the user instruction. We only
want to learn from the responses. While intuitive, we are
actually learning from less information when we mask the
instruction and it is unclear if this trade-off between learning
from less information and learning from less noise is worth it.

We fine-tune the Deepseek-Coder 1.3B and 6.7B base
and instruct models with and without instruction masking
(see Section II-C) on the HPC-INSTRUCT, Magicoder-OSS-
Instruct-75K, and Evol-Instruct-Code-80k-v1 datasets. In total,
we fine-tune eight models: {1.3B, 6.7B} × {base, instruct}
× {masked, unmasked}. We omit the 16B model from this
experiment due to its high computational cost for fine-tuning.
The goal of this experiment is to better understand the impact
of the choice of base model and instruction masking.

B. Studying the Impact of the Amount and Quality of Parallel
Code Data

RQ2 How does the amount of fine-tuning data for a
particular parallel execution model affect the perfor-
mance of a code LLM on that model?

RQ3 How does the quality of parallel code fine-
tuning data impact the performance of a code LLM
on parallel code generation?

Even with an ideal base model and prompting strategy it
is still difficult to fine-tune a good model without the right
amount and quality of data. To answer RQ2 and RQ3, we
design two experiments: one to study the impact of the amount
of data from individual parallel models and another to study
the impact of the quality of data.

For the first experiment, we create several versions of the
HPC-INSTRUCT each with varying amounts of MPI code
samples: 0k, 2k, 4k, 6k, 8k, 10k, and 12k. We leave the
other data in the dataset unchanged and just vary the amount
of MPI data. MPI samples are identified by the presence of
certain substrings like “mpi.h” or “MPI Init” in the code.
These datasets are used to fine-tune the 1.3B and 6.7B models
resulting in 14 total models. We omit the 16B model from
this experiment due to its high computational cost for fine-
tuning. The purpose of this study is to shed light on how
the amount of data from a specific parallel model affects the
final performance of the LLM on that parallel model. Does
performance keep increasing with more data or does it plateau
at some point? This is important as it informs how we collect
future data for fine-tuning. We select MPI for this study as
LLMs consistently perform worse at generating MPI code than
any other parallel programming model [2] and, therefore, it is
desirable to improve their ability to generate MPI code.

Tangentially, we also study the impact of the quality of data
on the fine-tuned models. As LLMs are increasingly getting
more dependent on synthetic data for training, it is also getting
extremely important to validate the quality of the synthetic
data being produced to see its effect on model performance.
We hypothesize that there is a trade-off between the amount of
data and the quality of data, where eventually more data stops
improving performance and quality becomes more important.



Understanding this trade-off is particularly vital for synthetic
data where we are expending compute to create the data; we
need to know whether compute time is better spent on more
data or better data.

Directly studying data quality is difficult as it is hard to
quantify and the scale of data is too large for qualitative
analysis. In order to overcome this we instead use the base
model used for generating the synthetic data as a proxy for
differences in data quality. We presume that the different
models generate data of different quality. This will not allow
us to infer what makes the data better or worse, but it will
allow us to see if quality impacts the ability of the fine-tuned
model to generate parallel code. To conduct this experiment we
fine-tune the 1.3B and 6.7B models on the HPC-INSTRUCT
dataset generated from four different LLMs: Gemini-Pro,
DBRX, Llama-3-70B, and Mixtral-8x7B. We also fine-tune
both models on all of the data together. Again, we omit the
16B model from this experiment due to its high computational
cost for fine-tuning. This results in ten total models that we
can compare to see if the quality of the data impacts the final
performance of the fine-tuned model.

C. Studying the Impact of Model Size

RQ4 How does model size impact the ability of a code
LLM to learn from distilled synthetic data?

Finally, we aim to study how model size impacts the final
performance of a fine-tuned model (RQ4). While larger models
tend to be better at most tasks, there is a trade-off where the
time and resources necessary to run a larger model may not be
worth the marginal increase in performance. For example, if a
7B parameter model is able to generate code for a particular
niche task nearly as well as a 70B parameter model, then it
is likely much more practical for a user to simply use the 7B
model. It will run quickly on a consumer laptop whereas the
70B model will require specialized hosting or multiple GPUs.
To study the impact of model size, we fine-tune the 1.3B,
6.7B, and 16B models on the HPC-INSTRUCT dataset. This
will allow us to compare the performance of the models across
different sizes and see if the larger models are worth the extra
resources.

VI. FINE-TUNING STATE-OF-THE-ART HPC-CAPABLE
CODE LLMS

We use what we learn from conducting the experiments
described in the previous section to fine-tune the final versions
of the fine-tuned Deepseek-Coder of different sizes.

A. Selecting a Pre-trained Model

We have to select a pre-trained model to fine-tune before
starting to fine-tune. When fine-tuning smaller open-source
models, choosing a model already trained for code tasks tends
to yield better results [9]. Based on this and the successful
results of previous code LLM fine-tuning studies [8], we select
the DeepSeek-Coder [10], [11] family of models for fine-
tuning. In particular, we fine-tuned the 1.3b, 6.7b [10], and

16b [11] parameter models. These models are state-of-the-
art in code modeling and outperform other LLMs on many
coding benchmarks [9]–[11]. They are trained on a dataset
of 87% code and 13% natural language with a 16k context
window. The 1.3b and 6.7b are based on the llama [12] model
architecture, while the 16b is a custom mixture-of-experts
(MOE) [13] architecture. The MOE architecture enables the
16b model to scale to larger sizes while maintaining faster
runtime performance.

B. Fine-Tuning on Synthetic HPC Code Data

We fine-tune each of the models on the HPC-INSTRUCT,
Magicoder-OSS-Instruct-75K [8], and Evol-Instruct-Code-
80k-v1 [14] datasets. The latter two datasets are state-of-the-
art synthetic and semi-synthetic code instruction datasets. We
include these since, although they are not HPC specific, they
can still improve the model’s generalization capabilities. In
total the fine-tuning dataset has 277k samples.

For generating the best 1.3b, 6.7b, and 16b fine-tuned
models, we use the findings of the ablation studies presented
in Section VIII. The ablation studies are not exhaustive, hence
analyze them to decide the best configuration setup.

VII. EXPERIMENTAL SETUP

In this section, we detail the fine-tuning step, other models
used for comparison, and the benchmarks and metrics used to
compare models for parallel code generation.

A. Fine-tuning Setup

We use the AxoNN [15] framework to fine-tune the models.
This is a parallel deep learning framework wrapped around
PyTorch [16]. It handles automatically parallelizing the model
across GPUs and allows us to fine-tune the models that do not
fit in memory on a single node. The 6.7b and 16b models are
fine-tuned on four nodes each with four 80GB A100 GPUs,
while the 1.3b model is fine-tuned on two A100 GPUs. The
total fine-tuning times range between 3 and 20 hours.

We fine-tune the 1.3b and 6.7b models in bfloat16 precision
with a batch size of 128 and a sequence length of 8192
for two epochs. The 16b model is fine-tuned with a batch
size of 1024 for one epoch. Furthermore, we employ the
AdamW optimizer [17] to update the model weights based on
the fine-tuning loss. This training setup and hyperparameters
are selected based on those used in related literature to fine-
tune code LLMs. Cursory experiments showed that these
hyperparameters work well for our fine-tuning task, however, it
is possible that an exhaustive search could yield better results.
Performance hyperparameters, like batch size, are selected
based on the model size, available GPU memory, and desired
performance. The context window length is lowered from 16k
to 8k from the base models, since none of the data samples
in the dataset exceed 8k tokens and this saves memory and
performance during fine-tuning.



B. Other Models Used for Evaluation

We compare our final models with several other state-of-
the-art code LLMs to better understand their performance and
how our study’s insights can lead to improvements in the field.
We compare our models with the following models:
• StarCoder2 (1.3B, 7B, 15B): LLMs pre-trained on a

large corpus of mostly code data from The Stack V2 [3].
• Magicoder (6.7B): A fine-tuning of the DeepseekCoder-

6.7B model fine-tuned on synthetic data generated based
on open-source code [8].

• Phind-V2 (34B): A fine-tuning of the CodeLlama-
34B [5] model on a proprietary dataset [18]. At the time
of its release it was the best model on the BigCode
leaderboard [9].

• Gemini-1.5-flash: A commercial model avaiable via API
from Google [19].

• GPT-3.5, GPT-4: State-of-the-art commercial LLMs
from OpenAI only accessible via API [20], [21].

C. Benchmark Used

When evaluating LLMs for code generation it is imperative
to evaluate them on code correctness. To do this for par-
allel code generation we use the state-of-the-art benchmark
ParEval [2]. ParEval has 420 coding problems that it uses
to test an LLM’s parallel code generation capabilities. These
problems range across 12 different problem types: sort, scan,
dense linear algebra, sparse linear algebra, search, reduce,
histogram, stencil, graph, geometry, fourier transform and
transform help us show the diversity on which the model
has been tested on. For each of the problem types there
are problems across seven different execution models: mpi,
mpi+omp, cuda, kokkos, serial, hip, omp. ParEval provides
drivers to run and unit test the generated code for correctness.
Furthermore, the results can be analyzed along the many
different axes of the problem types and execution models.

We also compared our model’s memory requirements and
throughput with other models to better understand the trade-
offs between model size, performance and accuracy. These
numbers are recorded on the ParEval benchmark when gener-
ating outputs using an H100 and a batch size of one. These
results are important to users who may be constrained by
hardware with limited memory or speed.

D. Metrics for Comparison

Since LLMs are probabilistic and may output different
results for the same problem it is generally best to evaluate
them in a probabilistic manner. For code LLMs most papers
have adopted the pass@k metric to do this [22]. This metric
quantifies the probability that an LLM can generate at least one
correct solution within k attempts. Since we cannot calculate
this probability directly we need to estimate it. To do this for
one prompt, N samples are generated where N is much greater
than k, which are then evaluated on code correctness and used
to estimate pass@k. Choosing N to be much greater than k
ensures that we can compute a statistically significant estimate
of pass@k. The pass@k compute is shown in Equation (1).

pass@k =
1

| P |

∑
p∈ P

[
1−

(
N − cp

k

)
/

(
N

k

)]
(1)

Number of samples generated per prompt

Set of prompts
Number of correct
samples for prompt p

To further demonstrate pass@k, say we want to generate a
pass@1 score for a model, it will generate N = 10 samples
for a given prompt and out of these cp = 3 samples are correct.
Using the formula, we will get a score of 0.3 so the model has
a 30 percent chance of generating the correct solution in it’s
first attempt. The pass@1 metric is an important benchmark
that is used to evaluate models’ usability which is why we
use it to compare our model with other models to see where it
stands. In recent years, papers have resorted to just reporting
pass@k for k = 1 as LLMs have become more powerful
and can generate correct code more often. It is also a more
desirable metric for the user who wants code to be generated
correctly the first time.

VIII. RESULTS OF ABLATION STUDIES

With the different models trained across the various config-
urations and data partitions, we can now analyze each model’s
parallel code generation performance to better understand the
impact of different training configurations. In this section we
detail the results from each of these ablation studies and
provide insights into how to best train an HPC specialized
code LLM.

A. Choice of Base Model and Instruction Masking

RQ1 How does the choice of fine-tuning base model
and the use of instruction masking impact the perfor-
mance of a code LLM on parallel code generation?

Figure 4 details the parallel code generation results on
ParEval for the masked/unmasked and instruct/non-instruct
prompt formats. There are eight models shown in the figure;
they were fine-tuned on the Deepseek-Coder base models and
the Deepseek-Coder instruct models using either masked or
unmasked gradients. We observe little correlation between
using masked and unmasked gradients on the instruction
prompts. Using masked gradients instead of unmasked pro-
vides a slight less than one percentage point improvement
for the 1.3B models. However, using masked gradients hurt
performance when fine-tuning the 6.7B model. This goes
against traditional wisdom that using masked gradients is
better for fine-tuning instruction models.

Unlike for masking, there is a notable difference between
fine-tuning the base version of a model and an existing instruct
variant. We observe that fine-tuning base models, rather
than instruct variants, leads to better performance at par-
allel code generation. This is true across all configurations:
1.3B and 6.7B models, masked and unmasked gradients. The
difference is most pronounced for the 1.3B models, where fine-
tuning the base models gives a roughly 4 percentage point
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Fig. 4: ParEval parallel code generation scores for various
prompt formats. Results are shown for 8 total model con-
figurations: {masked, unmasked} gradients × {instruct, non-
instruct} base models × {1.3B, 6.7B} model sizes. There is no
correlation in parallel code generation performance between
masked and unmasked gradients, however, fine-tuning the base
model rather than the instruct gives much better results for
both 1.3B and 6.7B models.

advantage over fine-tuning the instruct models. While it is
difficult to pinpoint the exact cause of this difference, it is
likely that the instruct models were fine-tuned to model a
less general distribution when they were first fine-tuned from
the base model. In other words, it is better to fine-tune base
models and not further derivations (fine-tunings) of them, since
the base models are more general and can be fine-tuned to a
specific task more effectively.

B. Studying the Impact of the Amount and Quality of Parallel
Code Data

RQ2 How does the amount of fine-tuning data for a
particular parallel execution model affect the perfor-
mance of a code LLM on that model?

Figure 5 presents the MPI code generation performance for
various amounts of MPI fine-tuning data. MPI is selected for
this study since LLMs consistently perform worse at generat-
ing MPI code than any other parallel execution model [2] and,
therefore, it is desirable to improve their ability to generate
MPI code. In total there are 14 models shown in the figure:
the 1.3B and 6.7B Deepseek-Coder models each fine-tuned on
datasets with 0k, 2k, 4k, 6k, 8k, 10k, and 12k MPI samples.
After running ParEval’s MPI benchmarks on these models,
we observe that increasing the amount of training data
for a particular parallel execution model can improve
the performance of smaller code LLMs on that execution
model with diminishing returns, but has little to no effect
on larger code models.

The 1.3B models see a gradual increase in MPI code
generation performance until 6k MPI samples, after which the
performance plateaus and eventually decreases at 12k MPI
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Fig. 5: ParEval MPI code generation performance for increas-
ing amounts of MPI fine-tuning date. As the amount of MPI
fine-tuning date increases the smaller 1.3B model sees an in-
crease in ability to generate MPI code with diminishing returns
after 6k samples. The larger 6.7B model sees no improvement
in MPI code generation performance with additional data.

samples. The plateau can be explained by smaller models
being more susceptible to overfitting. The 6.7B models, on
the other hand, have fairly consistent MPI code generation
performance across all amounts of MPI fine-tuning data. The
model has already learned all it can from the data and adding
more has no effect on performance.
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Fig. 6: ParEval parallel code generation performance across
different synthetic data sources. There is a clear difference
in performance across data sources with Llama generated
synthetic data leading to the best performing LLMs and DBRX
leading to the worst.

RQ3 How does the quality of parallel code fine-
tuning data impact the performance of a code LLM
on parallel code generation?

In addition to the amount of data, the quality of the data
can also impact the ability of an LLM to learn from it. To
study this, we examine the performance of the models when
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Fig. 7: ParEval code generation performance by problem type. These results follow similar trends to those shown in [2] except
with higher performance across all problem types.

fine-tuned on HPC-INSTRUCT synthetic data with different
LLMs used to generate the data. Figure 6 shows the ParEval
performance of each of these models. We observe that the
quality of the parallel code fine-tuning data can have a
significant impact on the performance of a code LLM
on parallel code generation. Models trained on Llama3-70B
generated data have up to six percentage points higher parallel
code generation performance than those trained on DBRX
data. While it is difficult quantify the quality of these data
samples, it is clear that the quality of the data does lead to
a measurable difference in generation quality. This motivates
further investigation into what makes a training data sample
high quality.

C. Studying the Impact of Model Size

RQ4 How does model size impact the ability of a code
LLM to learn from distilled synthetic data?

Finally, we investigate the impact of base model size when
fine-tuning a code LLM. This is a crucial question as larger
models are considerably more expensive to fine-tune, store,
and deploy for inference. Understanding the trade-offs be-
tween size and generative capabilities is essential for designing
practical code LLMs. Figure 8 shows the ParEval performance
of the 1.3B, 6.7B, and 16B models fine-tuned on the same
HPC-INSTRUCT data. We observe a significant increase
in performance from 1.3B to 6.7B, but a much smaller
increase from 6.7B to 16B.

The diminishing return as model size increases is expected
as we are using knowledge distillation to train the models;
the performance of the LLMs is unlikely to surpass the
performance of the teacher model. Based on the ParEval
results in [2], the 16B model is approaching the parallel code
generation performance of foundation models like GPT-3.5
and GPT-4.
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Fig. 8: ParEval serial and parallel code generation performance
along various base model sizes. There is a significant increase
in performance from 1.3B to 6.7B, but a much smaller increase
from 6.7B to 16B.

IX. HPC-CODER-V2: AN IMPROVED CODE LLM FOR
PARALLEL CODE GENERATION

Using the insights from the ablation studies we train a
series of models with the best configuration to create state-
of-the-art parallel code generation LLMs. In this section we
evaluate these models, HPC-Coder-v2-1.3B, HPC-Coder-v2-
6.7B, and HPC-Coder-v2-16B, on the ParEval benchmark suite
and compare their performance with other state-of-the-art code
LLMs. Appendix C has the full ParEval results for all models.

A. HPC-Coder-v2 Across Problem Types and Execution Mod-
els

Figure 7 shows the code generation performance of HPC-
Coder-v2 across the twelve problem types in the ParEval
benchmark suite. We observe similar trends to those shown
in [2] except with higher performance across all problem types.
The LLMs tend to struggle with sparse unstructured problems,
such as sparse linear algebra and geometric problems. The
models perform much better on dense, structured problems
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such as dense linear algebra, stencil, and simple data transfor-
mation problems. With the exception of geometric problems,
the models perform better as their size increases with the 16B
model performing the best across all problem types. Interest-
ingly, the models perform worse on geometric problems as the
model size increases.
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Fig. 10: ParEval code generation performance by execution
model. The LLMs perform best on serial code followed by
OpenMP. The models struggle most with MPI code generation.

Another axis of comparison besides problem type is the
parallel execution model. Figure 10 shows the code generation
performance of the three LLMs across the seven execution
models in ParEval. As with the problem types we see similar
trends as in [2]. The LLMs always perform best on serial
code followed by OpenMP. This is expected as OpenMP
code is most similar to its serial counterpart. The next best
performing execution models are the GPU models, CUDA and
HIP. These are followed by Kokkos and the MPI models, MPI
and MPI+OpenMP, reinforcing the trend that LLMs struggle
with MPI code generation.

B. Comparison with Other Models

Finally, we compare the performance of the HPC-Coder-
v2 models with other state-of-the-art code LLMs. Figure 9
shows ParEval parallel and serial code generation performance
across all models (an expanded list of models is shown in
Appendix C). We see that, while the commercial models still
dominate, the HPC-Coder-v2 models are competitive. At each
relative model size class we see that the HPC-Coder-v2 models
perform better than comparative models for parallel code
generation. The HPC-Coder-v2-1.3B is significantly better
than StarCoder2-3B despite being much smaller. Furthermore,
the HPC-Coder-v2-6.7B model performs better than the 34B
Phind-V2 model. Despite their success at parallel code genera-
tion, the HPC-Coder-v2 models are still beaten by Magicoder-
6.7B for serial code. This highlights, however, the success
of our data and fine-tuning strategies at training models to
generate parallel code.

Although parallel code correctness is the most important
metric for an HPC code LLM, the system requirements of
the model and the speed at which it can generate code are
also very important to developers. A model that can generate
correct code nearly as often as a larger model, but can run
quickly on a consumer laptop, is arguably much more useful
for developers than the larger model. To study this trade-
off in the HPC-Coder-v2 models, we present the throughput,
required memory, and ParEval parallel pass@1 results for each
model in Figure 11. The size of the dots are scaled based on the
memory requirement of the model with larger dots indicating
larger models. The ideal location for a model is the top right
where the model generates correct code quickly.

We see that the HPC-Coder-v2 models generate parallel
code just as well or better than the other models while
being faster and more memory efficient. HPC-Coder-v2-6.7B
is significantly faster than Phind-V2-34B while requiring
much less memory and having slightly better performance on
ParEval. Magicoder-6.7B has similar throughput and memory
requirements as HPC-Coder-v2-6.7B, but performs worse at
generating parallel code. The HPC-Coder-v2-1.3B model is
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Fig. 11: Comparison of parallel code generation pass rate
(pass@1), model memory requirements (GB), and generation
throughput (tokens per second). The top right of the graph
is the ideal location where models generation correct code
quickly. The smaller the dot the lower the model memory
requirements. We see that the 6.7B model gets similar perfor-
mance to the much larger 34B model while generating tokens
significantly faster.

the fastest and requires the least amount of memory, yet it
outperforms other models in its size class (StarCoder2-3B).
These results demonstrate that with high quality fine-tuning
data we do not need to sacrifice memory and throughput to
generate high quality parallel code.

X. RELATED WORK

In this section we highlight related literature on the use and
design of code LLMs for HPC and parallel code. We further
discuss works focused on fine-tuning specialized code LLMs.

A. Code LLMs for HPC

Since code LLMs became popular with OpenAI’s copi-
lot [22] many works have focused on adapting these models for
HPC and parallel code [2], [23]–[28]. These works generally
fall into two categories: (1) creating improved LLMs that are
better at HPC tasks and (2) engineering HPC agents and tools
to leverage existing state-of-the-art LLMs for HPC tasks. Our
work falls into the first category, so we focus on literature
in this area. However, we note that the models and insights
contributed in our work will be invaluable for studies in the
second category [24], [29], [30].

Several papers that focus on creating improved LLMs
for HPC tasks have focused on more narrow tasks within
HPC code generation. Schneider et al. [23] introduce the
MPIrigen model approach for generating MPI code. OMPGPT
is introduced by Chen et al [31] for generating OpenMP
code. None of these works focus on creating general code
LLMs that can handle a wide variety of HPC tasks. The
most similar to this work, Nichols et al. [27], fine-tuned
the HPC-Coder model using scraped HPC data from GitHub
and the PolyCoder base model [32]. While this work fine-
tuned a general HPC model, the base LLM used, PolyCoder,

is significantly out-of-date compared to the state-of-the-art
models used in this work. For reference, PolyCoder is based
on the GPT-2 architecture and achieves a pass@1 of 5.59%
on the HumanEval benchmark [22] whereas even the smallest
model used in this work, Deepseek-Coder-1.3B [33], achieves
a pass@1 of 65.2% on the same benchmark.

B. Fine-tuning Specialized Code LLMs

Beyond HPC there are a great many of works that focus on
fine-tuning code LLMs for specialized tasks or domains. Tang
et al [34] introduce BioCoder to address code generation tasks
in the biological domain. Liu et al [35] introduce VerilogEval
for evaluating LLMs on Verilog code generation tasks. Other
works focus on more abstract issues that arise when creat-
ing specialized code LLMs. Cassano et al [36] introduce a
methodology for overcoming data limitations for low-resource
languages. This is aimed to aid in cases where not enough data
is available in a particular programming language to effectively
train a model. While the semi-synthetic approach in the paper
may be useful for HPC data, we found in our results that data
amount was not the primary issue for HPC code LLMs, but
rather data quality. Another paper exploring both data amount
and quality by Wei et al [8] uses LLM generated synthetic
data to overcome data limitations. The data collection portion
of our work is an extension of the ideas in this paper for HPC.

XI. CONCLUSION

In this paper we introduced a new HPC instruction dataset,
HPC-INSTRUCT, using synthetic data generated from LLMs
and open-source parallel code. Using this dataset we con-
duct an in-depth study along the data, model, and prompt
configuration axes of model fine-tuning to better understand
how individual choices impact the ability of a code LLM to
generate parallel code. From this study we find the following
insights:
• Instruction masking during fine-tuning has little to no

impact on the ability of a code LLM to generate parallel
code.

• Fine-tuning base models, rather than their instruct vari-
ants, leads to better parallel code generation capabilities.

• Increasing the amount of training data for a particular
parallel execution model can improve the performance
of smaller code LLMs on that model with diminishing
returns, but has little to no effect on larger models.

• The quality of the parallel code fine-tuning data can have
a significant impact on the performance of a code LLM
on parallel code generation.

• Moving from small to medium size HPC code LLMs can
lead to significant improvements, while further increasing
model size has diminishing returns.

Using these insights and the HPC-INSTRUCT dataset we
fine-tuned three state-of-the-art HPC code LLMs: HPC-Coder-
v2-1.3B, HPC-Coder-v2-6.7B, and HPC-Coder-v2-16B. We
evaluated these models on the ParEval benchmark and com-
pared them to other state-of-the-art code LLMs. We found
that our models are currently the best performing open-source



models at generating parallel code. Furthermore, our models
run faster and use less memory than other models with similar
or even less parallel code generation capabilities. The models
and insights contributed in this work will be invaluable for
both HPC developers and future studies into code LLMs for
HPC and parallel code.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 2047120.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Con-
tract No. DE-AC02-05CH11231 using NERSC award DDR-
ERCAP0029890.

REFERENCES

[1] I. Shani, “Survey reveals ai’s impact on the developer
experience,” https://github.blog/news-insights/research/
survey-reveals-ais-impact-on-the-developer-experience/, June 2023,
accessed: 2024-10-12.

[2] D. Nichols, J. H. Davis, Z. Xie, A. Rajaram, and A. Bhatele, “Can
large language models write parallel code?” in Proceedings of the 33rd
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’24. New York, NY, USA: Association for
Computing Machinery, 2024.

[3] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei, T. Liu, M. Tian, D. Kocetkov,
A. Zucker, Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov, I. Paul, Z. Li,
W.-D. Li, M. Risdal, J. Li, J. Zhu, T. Y. Zhuo, E. Zheltonozhskii,
N. O. O. Dade, W. Yu, L. Krauß, N. Jain, Y. Su, X. He, M. Dey, E. Abati,
Y. Chai, N. Muennighoff, X. Tang, M. Oblokulov, C. Akiki, M. Marone,
C. Mou, M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze, O. Dehaene,
N. Patry, C. Xu, J. McAuley, H. Hu, T. Scholak, S. Paquet, J. Robinson,
C. J. Anderson, N. Chapados, M. Patwary, N. Tajbakhsh, Y. Jernite,
C. M. Ferrandis, L. Zhang, S. Hughes, T. Wolf, A. Guha, L. von Werra,
and H. de Vries, “Starcoder 2 and the stack v2: The next generation,”
2024.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[5] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
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APPENDIX

A. Reproducibility

The scripts used in this study are available at
https://github.com/parallelcodefoundry/HPC-Coder.
The HPC-INSTRUCT dataset can be found at
https://huggingface.co/datasets/hpcgroup/hpc-instruct. Each of
the final HPC-Coder-v2 models is available on the Hugging
Face model hub at https://huggingface.co/collections/
hpcgroup/hpc-coder-v2-66b681a3a8a5a1978e163a5d.

B. Example HPC-INSTRUCT Sample

The following is an example of a sample from the
HPC-INSTRUCT dataset. The problem statement and solu-
tion were generated by Llama3-70B with the seed snip-
pet static bag_t threadbag[NUMTHREADS + 1];.
Listing 1 shows the problem statement and solution generated
by the model.

C. Full ParEval Results

Complete ParEval correctness results for all HPC-Coder-
v2 models, StarCoder2-3B, Phind-V2-34B, and GPT-4 are
shown in Figure 12. Each box in the heatmap represents the
estimated pass@1 for the corresponding model on a particular
problem type and execution model. The number is estimated
using twenty generated samples for each of the five problems
per problem type (100 generations total per box). Summary
pass@1 results for even more models are shown in Table I.

TABLE I: ParEval code generation results for all models.

Model Size (B) Pass@1
serial parallel

HPC-Coder-v2-1.3B 1.3 54.7 23.5
StarCoder2-3B 3 42.7 9.61
HPC-Coder-v2-6.7B 6.7 67.2 33.3
Magicoder-6.7B 6.7 73.6 30.4
StarCoder2-7B 7 59.4 15.9
CodeLlama-7B 7 48.4 15.3
CodeLlama-13B 13 52.8 17.4
StarCoder2-15B 15 61.6 23.1
StarCoderBase 15.5 51.7 18.6
HPC-Coder-v2-16B 16 72.8 34.1
Phind-V2-34B 34 65.6 32.1
CodeLlama-34B 34 54 10.2
Gemini-Pro — 59.3 25.1
GPT-3.5 175 76 39.6
GPT-4 — 76.1 37.8

** Problem Statement **
In a high-performance computing application, you are
tasked with optimizing a critical component that processes
large datasets. The component, responsible for aggregating
statistical metrics, is currently sequential and
bottlenecking the entire system. Your mission is to
parallelize the aggregation process to significantly reduce
the processing time. The statistical metrics are stored in
a 2D array `data` of size `ROWS x COLS`, where each element
`data[i][j]` represents a data point. The aggregation
function, `compute_metric`, takes a single data point as
input and returns a metric value. The goal is to compute
the sum of metric values for all data points in the array.
The original sequential code is as follows:

```c
int compute_metric(int data_point) {

// complex computation involving data_point
return result;

}
void aggregate_metrics(int** data, int rows, int cols) {

int sum = 0;
for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {
sum += compute_metric(data[i][j]);

}
}
printf("Sum of metrics: %d\n", sum);

}
```
Your task is to parallelize the `aggregate_metrics`
function using OpenMP to take advantage of multiple CPU
cores. The `compute_metric` function remains unchanged.

** Solution **
To parallelize the `aggregate_metrics` function, we can use
OpenMP's parallel for directive to distribute the
computation across multiple threads. We'll also employ
OpenMP's reduction clause to safely accumulate the partial
sums computed by each thread. Here's the parallelized code:

```c
#include <omp.h>
int compute_metric(int data_point) {

// complex computation involving data_point
return result;

}

void aggregate_metrics(int** data, int rows, int cols) {
int sum = 0;
#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {
sum += compute_metric(data[i][j]);

}
}
printf("Sum of metrics: %d\n", sum);

}
```
In this solution:

* We added the `#pragma omp parallel for` directive to
parallelize the outer loop, which iterates over the rows
of the 2D array.

* We used the `reduction(+:sum)` clause to specify that
each thread should maintain its own partial sum, which
will be combined using the `+` operator at the end of the
parallel region. This ensures that the final sum is
correctly computed.

* The inner loop, which iterates over the columns, is
executed sequentially within each thread, as it has no
dependencies between iterations. By parallelizing the
`aggregate_metrics` function, we can significantly reduce
the processing time for large datasets, taking advantage
of the available CPU cores.

Listing 1: Example problem statement from the HPC-
INSTRUCT dataset. The problem requires the model to par-
allelize a for-loop using OpenMP.

https://github.com/parallelcodefoundry/HPC-Coder
https://huggingface.co/datasets/hpcgroup/hpc-instruct
https://huggingface.co/collections/hpcgroup/hpc-coder-v2-66b681a3a8a5a1978e163a5d
https://huggingface.co/collections/hpcgroup/hpc-coder-v2-66b681a3a8a5a1978e163a5d
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Fig. 12: Complete generation results for a sample of the models on the ParEval benchmark. Each box shows the pass@1 score
for a problem type and parallel execution model.
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