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Abstract
Bit vectors are an important component in many data structures. Such data structures are used
in a variety of applications and domains including databases, search engines, and computational
biology. Many use cases depend on being able to perform rank and/or select queries on the bit
vector. No existing rank and select structure enabling these queries is most efficient both for space
and for time; there is a tradeoff between the two. In practice, the smallest rank and select data
structures, cs-poppy and pasta-flat, impose a space overhead of 3.51%, or 3.125% if only rank
needs to be supported. In this paper, we present a new data structure, orzo, which reduces the
overhead of the rank component by a further 26.5%. We preserve desirable cache-centric design
decisions made in prior work, which allows us to minimize the performance penalty of creating a
smaller data structure.
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1 Introduction

Rank and select data structures support rank and select queries on bit vectors. Informally, a
rank query counts the number of 1s or 0s in a bit vector, up to the i-th position, while a
select query finds the position of the i-th 1 or 0. Efficient support for these data structures is
important, due to their role in the design of a multitude of more sophisticated data structures.
Examples include wavelet trees [7], as well as compressed suffix arrays and trees [8], commonly
used for text indexing and in search engines. They have also been applied as a component in
approximate membership query filters [15], which are utilized in numerous domains, including
databases and computational biology. In sequences of monotonically non-decreasing integers
compressed by the Elias-Fano encoding [2][3], select queries are necessary for efficient random
access. Such sequences are found in inverted indexes, also commonly used in search engines
[21].

In domains where rank and select data structures are utilized, memory is often at a
premium. As such, in addition to query runtime, it is important to consider memory
utilization when deciding which rank/select structure to use. One of the major challenges
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in the design of rank and select data structures is that reducing query time and reducing
the memory footprint of the data structure are often at odds. Frequently, tradeoffs must be
made in order to improve one or the other.

Performing rank and select efficiently requires an auxiliary data structure, otherwise a
linear scan of the bit vector is required. The naïve approach of precomputing the results
for all possible queries and storing these results in a fixed-width integer array is clearly
very space-inefficient, with the space requirements of the new array dominating those of the
original bit vector. Succinct data structures can store this auxiliary information much more
compactly. Succinct data structures are those that require an amount of space close to the
information-theoretic lower bound. If M is the information-theoretical optimal number of
bits needed to store some data, a succinct representation takes M + o(M) bits of space.

While prior work has explored the design of theoretically optimal succinct rank and select
data structures [19, 16], these are generally not practical, either due to high constant factors
or a lack of regard for the realities of hardware architectures. For example, it has been
observed and is now well-understood that cache-misses play a significant role in determining
the runtime of rank and select queries [6]. As such, minimizing potential cache misses is an
important design goal, and a challenge in the design of practical rank and select structures.

Practical rank and select structures do exist, and come with a wide variety of space and
time tradeoffs. Because rank and select structures lend themselves particularly well to very
large data sets and applications where memory usage is a bottleneck, in this work we focus
primarily on the smallest of these structures, modifying their design to use even less memory.
We work to preserve principled cache-centric design decisions made in prior work. The main
contribution of this paper is the rank and select data structure, orzo, which saves space by
making use of the aforementioned Elias-Fano encoding [2][3]. While this encoding is typically
applied to very long sequences of integers, we instead leverage it at a very small “micro”
scale, compressing many short spans of integers.

2 Background and Related Work

Informally, a rank query counts the number of 1s or 0s in a bit vector, up to the i-th position,
while a select query finds the position of the i-th 1 or 0. Formally,1 for a 0-indexed bit vector
B of length n:

rankα(i) =
∑

j∈[0,i−1)

I(B[j] = α), i ∈ [1, n], α ∈ {0, 1} (1)

selectα(i) = min({j ∈ [1, n] : rankα(j) = i}) − 1, α ∈ {0, 1} (2)

For example, on the 0-indexed 10-bit vector 1011001101, rank1(4) = 3 and select1(4) =
6. Mentions of rank and select in this paper are assumed to refer to rank1 and select1;
generalizing the techniques described to the α = 0 variants is straightforward.

We first discuss the design of rank-only data structures. Practical rank structures often
follow a common general design pattern:

1 The literature varies on whether or not rank is defined as the count of bits up to, or up to and including
the i-th bit. We use the former definition, as do the implementations against which we compare our
approach.
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Starting from a basic block of size ≥ 2 bits, conceptualize a hierarchy of increasingly large
sub-blocks of the bit vector. The largest block size is referred to as a super block (or
upper block).
Design a multi-layer indexing scheme to provide cumulative counts of one bits across
different levels of blocks. The top layer, L0, has one index for each super block, and
provides an absolute cumulative count of one bits up to the start of the corresponding
block. The next layer, L1, provides cumulative counts up to the start of the next smallest
block size, within a super block, and so on. Two or three layers typically works well in
practice, with the middle blocks in a three-layer scheme often referred to as a lower blocks.
Observe that as block size decreases, corresponding indices need fewer bits to store the
cumulative sums within the block.
When possible, further optimize the design of the data structure around minimizing cache
misses. González [6] provides an extensive analysis of the effect that cache misses have
on rank and select performance, concluding that they become an increasingly dominant
part of the total query time as the size of the bit vector increases.

The size chosen for the basic block has a significant impact on the overall size of the rank
and select data structure. The size of the basic block is inversely proportional to the size of
the structure, but increasing the size of the basic block also results in longer query times.

2.1 poppy and pasta

Zhou’s poppy [20] data structure is a good example of a very small practical rank structure.
It uses a basic block spanning 512 bits, a lower block spanning four basic blocks (2048 bits),
and super blocks spanning 232 bits, so it possesses a three-layer index. L0 indices are 64 bits
wide and count across super blocks, enabling poppy to support bit vectors of up to 264 bits.
L1 indices count across lower blocks (within super blocks) and are 32 bits wide.

poppy diverges from the general design above by using non-cumulative L2 indices to
store counts within a lower block. Three L2 indices are used per lower block, storing the
population count of the first three basic blocks. Each L2 index needing to store a maximum
value of 512 means that they need to be at least ten bits wide. Originally proposed by Geary
[5], poppy then interleaves the L1 and L2 indices, guaranteeing that it will take no more
than one cache miss to access both. Two bits of padding ensure that the resulting L1-L2
index is word-aligned.

This scheme results in a space overhead of only 3.125% relative to the original bit vector,
and enables poppy to be only slightly slower for rank queries than other structures, such
as rank9 [17], which uses a two-layer index and imposes 25% additional space. combined
sampling [13] is a one-layer solution that also imposes a space overhead of 3.125%, but
achieves this by having a larger basic block of 1024 bits (slowing queries) and by only
supporting up to 232 bits.

Kurpicz’s pasta-flat [11] (see Figure 1) slightly improves upon poppy’s performance
by doubling the size of the L1-L2 index to 128 bits and storing seven cumulative L2 indices
of 12 bits each, supporting a lower block size of 4096 bits (eight basic blocks).2 This leaves
128 − (12 × 7) = 44 bits for the L1 index, so super blocks can cover 244 bits. Because both
the L1-L2 index and the lower block double in size, the space overhead remains the same
as poppy at 3.125% (each L1-L2 index covers twice as many basic blocks, but is also twice

2 Though we do not find these performance improvements to be consistent across all input sizes and query
types, see Figure 3.



4 Elias-Fano for Rank and Select

the width). The size of the L0 layer is negligible in both structures and is optional if the bit
vector is less than the size of a super block. pasta-flat is visualized in Figure 1.
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Figure 1 Visualization of pasta-flat. The shaded cells represent the original bit vector, while
the cells labeled L0, L1, and L2 represent the indices of the pasta-flat data structure. One L1
index and seven L2 indices are interleaved in a 128-bit span.

Rank operations

In poppy, rank(i) queries are answered by identifying which super and lower blocks contain
i, summing their respective L0 and L1 indices, and scanning L2 indices (because they’re
non-cumulative) to find the basic block containing the i in question. Within a basic block,
no information about the ranks of individual bits is stored, so we must perform a scan.
Luckily, this can be done very quickly with population count (POPCNT) instructions. This
instruction returns the number of one bits in a 64-bit word. We therefore need up to 512

64 = 8
popcounts to scan the basic block. This is the fastest method to compute rank within a basic
block. pasta-flat uses essentially the same procedure, but with cumulative L2 indices it
can random access the correct basic block, removing the need for poppy’s short L2 scan.

Select operations

For selection there are two methods that are generally employed:
1. In rank-based selection, a rank structure like those described above is used to help identify

the basic block where the i-th one bit is located. However, this must be done by searching
(either a linear scan or binary search), because we cannot know in advance in which basic
block the i-th one bit will be. This is in contrast to computing rank, where the i-th bit
(one or zero) is always in the same location.

2. In position-based selection, select answers for every k ones are sampled, and for answering
select(i) we find the largest value of j where jk ≤ i. The samples allow us to reach a
position very close to the correct basic block, which we can then find by scanning.

After the correct basic block is found, in-block selection is performed. A fast way to do
this proceeds similarly to rank queries, by popcounting words until the word in which the
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target is located is identified. In-word selection is then performed. Broadword programming
[9] can achieve this quickly in an architecture independent way, while specialized instructions
on x86 processors can achieve it even faster [14].

combined sampling and cs-poppy (the select-enabled variant of rank-only poppy) both
set the sample rate k to 8192 bits, and make use of their existing rank structures to help
answer select queries faster, by combining both rank-based and position-based selection.
cs-poppy divides these samples into buckets: one for each super block. This facilitates using
only 232 bits per sample, which combined sampling also uses because it only supports up
to 232 bits. The space overhead for both is therefore the same, at 0.39% in addition to the
space already used for rank (3.125%, for a total space overhead of 3.51%), relative to the
size of the original bit vector.

To answer select queries, cs-poppy first identifies the super block containing the answer
by scanning the L0 layer. It then identifies a lower block near the answer by using the stored
select samples, and identifies the correct lower block and basic block by scanning L1 and
L2 indices. In-block selection is performed as described above. pasta-flat uses the same
design and approach, but also introduces a technique for using SIMD instructions to more
quickly identify the correct L2 entry in an L1-L2 index.

2.2 Other Rank/Select Structures
SPIDER [12] is another rank and select data structure worth noting, as its space requirements
are near that of poppy and pasta-flat. Inspired by learned data structures [4][10], SPIDER
uses predictions to speed up select queries, and improves rank performance by interleaving
the rank data structure with the original bit vector (for cases where this is undesirable, a non-
interleaved variant is proposed where the rank-only component is identical to pasta-flat).
However, it achieves speedups by using more space than pasta-flat, with a total space
overhead of 3.82%, or 3.33% to support only rank. It offers good space/time tradeoffs, but
in the opposite direction that we are pursuing in this paper.

2.3 Elias-Fano Encoding
Elias-Fano encoding is an encoding scheme which facilitates the compression of a monotoni-
cally non-decreasing list of integers [2][3]. In the Elias-Fano encoding, the number of bits
required to represent n integers from the universe [0, u] is:

2n + n
⌈
log2

u

n

⌉
(3)

The first step in the encoding process is to split each element into its upper ⌈log2 n⌉ bits
and lower

⌈
log2

u
n ⌉ bits. The lower bits are concatenated to form a bit vector, EFl, and

stored as-is. The upper bits are transformed into a unary representation, a bit vector EFu of
size 2n bits. Buckets are created for each possible distinct value ≤ u that is representable by
the ⌈log2 n⌉ upper bits; these buckets store counters for values that are actually represented
in the original list. EFu is then constructed by creating sequences of one bits for the count
of each bucket, followed by a zero bit to indicate the end of the bucket. A single bit is set to
1 for each of n elements, and a 0 is used as a stop bit for each bucket. The full representation
is the concatenation of the upper and lower bit vectors.

To access an element i in the Elias-Fano representation, the lower bits of the element can
be easily extracted from the lower bit vector by computing, and then jumping to, the correct
offset. The upper bits for the element must be reconstructed, which is straightforwardly



6 Elias-Fano for Rank and Select

achieved by computing select1(i) − i, essentially a count of the number of buckets passed
in reaching the 1 bit of the element in question. The necessity of computing select1(i) for
random access explains why data structures that enable efficient select operations are often
used in conjunction with this representation.

3 A New Approach for Saving Space

cs-poppy and pasta-flat stand out as being the smallest practical rank and select data
structures, and their design is extremely effective for minimizing cache-misses and achieving
performance near that of much larger structures. For these reasons, we use them as a
foundation from which we may consider various optimizations for space savings. There are
two strategies by which we can approach reducing space requirements further:
1. Increase the size of the basic block. As mentioned previously, the size of the basic block

is inversely proportional to the size of the entire rank structure.
2. Decrease the size of one of the layers. This could be achieved either by reducing the size

of individual indices within a given layer, or by reducing the need for as many indices.

The first strategy is straightforward – we do not implement it in this work. The choice of
a 512-wide basic block, as used by cs-poppy and pasta-flat, is empirically well-grounded.
Zhou observes that for < 512 bits, doubling the size of the basic block does not double the
time it takes to popcount a block, whereas doubling beyond 512 does [20]. As the size of a
cache line on modern processors is 64 bytes, we will never incur more than one cache miss
in popcounting a basic block of 512 bits, and we allow more memory bandwidth to be free
for other operations (assuming that the basic blocks are aligned to cache line boundaries).
Although we do not experiment with a larger basic block, we do highlight that the design of
orzo as described below should generalize to a hypothetical variant with a larger basic block.

The second strategy has different implications when applied to different layers in the rank
structure. For example, decreasing the size of the L0 layer is likely to be far less effective in
reducing the overall space requirements than reducing the size of the lower layers. Consider
the space requirements in bytes of a rank data structure for an N -bit vector with super
blocks of size SBsize bits, lower blocks of size LBsize bits, L0 indices of L0bytes, and L1-L2
indices of L1L2bytes:

L0bytes ×
⌈

N

SBsize

⌉
+ L1L2bytes ×

⌈
N

LBsize

⌉
(4)

For SBsize ≫ LBsize the right side of the sum is dominant. With SBsize = 244, LBsize =
4096, 64-bit L0 indices, and 128-bit L1-L2 indices in pasta-flat, this amounts to well under
0.01% of the total rank structure space, a negligible amount. If all else is kept equal, but the
L1 index is reduced to be 20 bits wide (therefore supporting SBsize = 220), the larger L0
layer still consumes only 0.19% of the full size of the rank structure.

Layers which consume more space are also more likely to be responsible for cache misses,
as a smaller percentage of the layer is able to fit in various hardware caches. For example,
the L0 layers in cs-poppy and pasta-flat can be cache-resident for even large bit vectors.

With this in mind, the L1-L2 layer is the clear choice to target for space saving optimiza-
tions. As previously described, cs-pasta and pasta-flat interleave an L1 index and several
L2 indices into a single L1-L2 index. We want to avoid any approaches that involve splitting
the indices, as an important goal in the design of orzo is to introduce as few additional
cache misses as possible. At most, both of these structures will incur three cache misses in
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performing a rank query: one to access the L0 index, one to access the L1-L2 index, and one
to access the underlying bit vector.

3.1 Trading L1 bits for L2 bits
We observe that in pasta-flat, the L1 index is quite wide, and that we might be able to
profitably shrink it in order to pack more L2 entries in the L1-L2 index. The size of the
lower block can then be increased by 512 for each L2 entry added, and covering more basic
blocks without increasing the size of an L1-L2 index will result in space savings. The L0
layer will increase in size, but this increase remains negligible as long as L2width ≪ L1width.
pasta-flat has seven L2 indices per L1-L2 index, which allows it to have lower blocks that
are 4096 bits wide (8 basic blocks). If we add another L2 index, we can cover 4608 bits in a
lower block, but we can no longer get away with using only 12 bits per L2 index. This is
because previously the maximum number an L2 index needed to represent was 7×512 = 3584,
which can be handled by 12 bits, but 13 bits are required to represent 8 × 512 = 4096. As
128 − (13 × 8) = 24, we have 24 bits left for the L1 index, not enough space to pack another
L2 entry in the L1-L2 index. We refer to this hypothetical variant as orzo-full. It is "full"
in the sense that it packs as many 13-bit L2 indices as possible in 128 bits, while leaving
space for the L1 index.

However, we can pack in another L2 index if we represent each L2 index in a different
number of bits, depending on the maximum value each L2 needs to store. For example, the
first L2 index only needs to store values up to 512, and so can be represented in 10 bits. The
second needs to store up to 1024, and so can be represented in 11 bits. With this scheme, we
can pack up to nine L2 indices, at the cost of slightly complicating L2 access and shrinking
the L1 index to 22 bits. We refer to this variant as orzo-mixed.

3.2 Orzo: Elias-Fano Encoded L2 Indices
As it turns out though, we can do better than orzo-mixed. L2 indices in pasta-flat
represent a cumulative count of one bits within the basic blocks in a lower block. As such,
they are a candidate to be represented in the Elias-Fano encoding, which can represent
monotonically non-decreasing sequences of integers. This is the core observation that
facilitates our new approach, which we call orzo. The Elias-Fano encoding is, from an
information-theoretic perspective, extremely close to the optimal representation for a sequence
of monotonically non-decreasing integers [2][1][18], so we should expect this to be a good
method of compressing the L2 indices, and indeed it is.

Recall that the space requirements of the Elias-Fano representation depend on the number
of elements we want to store, n, and the maximum value that we want to store. If we are
attempting to store ten L2 indices in our L1-L2 index, n = 10. The maximum number we
will need to store is u = 5120 = (512 ∗ 10), the maximum count of ones in ten basic blocks.
Putting this together with Equation 2.3, we can calculate the number of bits we need for
storing the L2 indices of one lower level block:

2 × 10 + 10
⌈

log2
5120
10

⌉
= 110 (5)

The L1-L2 index is 128 bits wide, so this leaves us with 128 − 110 = 18 bits remaining
for our L1 index, which is more than enough for the L0 layer to remain extremely small, see
Equation 4. In place of distinct L2 indices in our L1-L2 index, we store the concatenated
upper and lower bit vectors of the Elias-Fano representation, EFu and EFl respectively. We
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store EFu in the lower bits of our L1-L2 index, followed by EFl, followed by the L1 index,
although the order of these is not significant; they could be swapped around and only small
changes to the rank and select logic would need to be made. A visualization of orzo can be
seen in Figure 2.
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Figure 2 Our rank structure, orzo. The overall structure is similar to pasta-flat in Figure 1,
with the L2 indices compressed by the Elias-Fano encoding. More space in the interleaved L1-L2
index is reserved for L2 indices than in pasta-flat, while the L1 index is smaller. As a result, the
lower blocks cover a longer span of the original bit vector, while the span of the super blocks is
shorter.

With ten L2 indices, our lower block size is 11 × 512 = 5632. Because 218 is not evenly
divisible by our lower block size of 5632, we opt to make our super block size 259072 instead
of exactly 218; this ensures that a lower block does not span a super block boundary. orzo’s
space overhead in bytes for a bit vector of N elements is therefore:

8
⌈

N

259072

⌉
+ 16

⌈
N

5632

⌉
(6)

This is an overhead of 2.297% for rank queries, or ∼26.49% less space than the 3.125%
cs-poppy and pasta-flat require for their rank-only components. It is also an improvement
over our more naïve orzo-full and orzo-mixed structures, see Table 1.

Table 1 Space savings in orzo versus pasta-flat.

Approach L2 Indices Space Savings

pasta-flat 7 0.0%
orzo-full 8 11.1%
orzo-mixed 9 19.95%
orzo 10 26.49%

From a query performance perspective, there is one downside in regards to decreasing
the width of the L1 index. While relative to the size of the full rank structure the L0 layer
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is still extremely small, the input size for which the L0 layer may remain cache-resident
decreases. While for pasta-flat the L0 layer is not even necessary for input sizes < 244

bits, in orzo at 230 bits the L0 layer reaches the size of the level 1 data cache (32 KiB) in
one of the processors we use for testing (see Table 2 in Section 6), and reaches the level 2
cache (512 KiB) at 234 bits. Although this is not ideal, it is a necessary tradeoff to obtain
the space savings that we do. Introducing the potential for more cache misses in the L0 layer
is not nearly as bad as sacrificing the cache properties of the L1-L2 layer. Indeed, we actually
slightly minimize the potential for cache misses in the L1-L2 layer, as queries on almost all
random indices i and j will access L1-L2 indices that are closer together, as a result of our
larger lower blocks representing more of the underlying bit vector.

4 Orzo: Rank Queries

Compared to how rank queries are handled in pasta-flat, orzo introduces only one
additional complication: the need to decode an L2 index. The L1 index is extracted
in essentially the same way as pasta-flat (only the magnitude of the bit shift required
changes), as is the L0 index (assuming the L0 index is necessary).

For decoding the L2 indices, the lower part of the Elias-Fano representation is easily
extracted with a bit shift followed by a mask, in the same manner that full L2 indices are
extracted from pasta-flat. The upper bits must be reconstructed. As discussed in Section
2.3, this requires computing select1(i) − i on the upper Elias-Fano bit vector. At only twenty
bits wide, our upper bit vector fits within a machine word, so we can leverage fast in-word
selection techniques. The best of these on x86-64 architectures [14] leverages two special
instructions: PDEP and TZCNT. PDEP transfers bits from the first operand into a destination
based on the mask in a second operand. TZCNT counts the number of trailing zero bits in
the source and returns the count. For non-x86 architectures, broadword programming [9]
provides a relatively efficient way to select within a word. The reconstructed upper bits
are concatenated with the lower bits to construct the full L2 index. After decoding the L2
index and adding it to the L1 and L0 indices, the final step is to determine the number of
ones present in the basic block, which we can do very quickly with a scan and popcount
instructions (maximum of eight).

5 Orzo: Select Queries

In order to speed up select operations, orzo samples the position of every 8192nd one bit, in
the same fashion as cs-poppy and pasta-flat. This incurs a maximum additional space
overhead of 0.39% compared to the rank-only versions of these structures. Unfortunately,
orzo’s design complicates select queries more than it does rank queries.

Recall that cs-poppy divides select samples into buckets, with one bucket per super block.
For select(y), the L0 layer is searched in order to find the super block in which the y-th one
bit is present.3 However, because of its narrower L1 index, orzo may have many more L0
entries; searching these would be costly; a scan would have to examine many elements, while
a binary search would exhibit poor cache locality and would still visit substantially more
entries than the equivalent in cs-poppy or pasta-flat.

To address this, we opt to introduce a second super block to orzo for select queries, and a
corresponding second L0 layer, L0select. Instead of covering 259072 (≈ 218) bits, these select

3 The cs-poppy paper describes a binary search, but the available implementation uses a linear scan.
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Listing 1 Using x86 intrinsics to select within a word [14].
uint64_t pdep_result = _pdep_u64 (1ul << i, word );
uint64_t select_result = _tzcnt_u64 ( pdep_result );

super blocks cover 4294895616 bits. This number is chosen instead of exactly 232, as it is
evenly divisible both by our regular super block size and our lower block size. The additional
memory incurred by the second super block is negligible.

We can now scan our L0select layer at the same speed as cs-poppy, and we can divide
our select samples into fewer buckets. We obtain a select sample from our bucket in the same
manner as cs-poppy, which locates a lower block near the target lower block containing the
answer to our query. To find the lower block actually containing the answer, we must scan
L1 indices.

orzo again complicates this by the fact that our L1 indices are only cumulative within
our standard super blocks, not our select super blocks. While cs-poppy may simply examine
the next L1 index and determine if the current block contains the solution to our query, orzo
first needs to know the rank at the start of the regular super block that the current lower
block is within. Luckily, this is simple to retrieve, as knowing what lower block we are in
allows us to determine the regular L0 index corresponding to the start of our regular super
block. We can now proceed with our scan of L1 indices until we reach the correct lower
block. Our scan of L2 indices proceeds in a similar fashion to cs-poppy, with the exception
that we must first decode the indices. Once the correct basic block is reached, we leverage
the technique of using popcount instructions to find the correct word, and for select within
a word we use the same PDEP and TZCNT instructions that we have already described, see
Listing 1.

Although orzo does introduce some complications for select, its design does have one
upside from a query performance perspective that helps offset some of the overhead from
the extra bookkeeping. orzo’s lower blocks span 5632 bits, in contrast to pasta-flat’s 4096
bits. This means that it is sometimes the case that fewer L1 indices must be scanned in
order to identify the correct lower block; this is especially true for sparser bit vectors.

6 Experimental Setup

All code for our orzo implementation, as well as the code for the implementations we compare
against, was written in C++ and compiled with clang version 17.0.6. We performed our
experiments on two different x86-64 processors from different vendors, provisioned on compute
nodes running Red Hat Enterprise Linux (Version 8.10) through the University of Maryland’s
Zaratan cluster. See Table 2 for the specifics of each platform. The CPUs supported different
features (for example, no AVX512 on the AMD CPU), and we used different compiler flags
for each CPU, see Table 3 for details. We always pin our benchmarking processes to CPU 1.

Table 2 CPUs used for our experiments.

CPU Clock Rate L1d Cache L1i Cache L2 Cache

Intel Xeon Platinum 8468 3.8 GHz 48 KiB 32 KiB 2048 KiB
AMD EPYC 7763 2.23 GHz 32 KiB 32 KiB 512 KiB
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Table 3 Compiler flags used in our experiments.

CPU Compiler Flags

All -std=c++23 -O3 -flto -static
Intel Xeon Platinum 8468 -mbmi -mbmi2 -mavx512f -mavx512vl -mavx512bw -mavx2
AMD EPYC 7763 -march=native

For our experiments, we mostly replicate the setups used by Zhou and Kurpicz in
evaluating cs-poppy [20] and pasta-flat [11]. We create random bit vectors of various
lengths at three different sparsity levels of one bits: 10%, 50%, and 90%. For each input we
test ten million random queries, and we run all tests five times with randomized bit vectors.
We show the average of these runs in our reported results (the deviation between runs is
extremely small).

The following rank and select data structures are evaluated in our experiments:
cs-poppy is Kurpicz’s [11] implementation of Zhou’s [20] data structure.4
pasta-flat is Kurpicz’s [11] original version of the pasta-flat data structure.
orzo is the rank and select data structure that we describe in Section 3.2, with ten
Elias-Fano encoded L2 indices per interleaved L1-L2 index, and an L1 index size of 18
bits.

As the focus of this research is to improve the space efficiency of practical rank and select
structures, we opt to compare only against structures which incur a space overhead of ≈ 3.51%
for rank and select, or ≈ 3.125% for just rank. It is well-known that approaches which use
more memory (and possibly make other tradeoffs as well, such as SPIDER’s [12] interleaving
of the bit vector with the rank/select structure) can achieve better query times. Examples
include pasta-wide, another rank structure by Kurpicz [11] which incurs an overhead of
10%, and rank9 by Vigna [17] which incurs an overhead of 25%. We also omit combined
sampling [13] from our analysis, despite it meeting the specified space requirements. Zhou
has demonstrated that it is considerably (2-3x depending on the size of the bit vector) less
efficient for rank queries than cs-poppy, and slightly less efficient for select queries [20].
Additionally, combined sampling only supports bit vectors of up to 232 bits.

7 Experimental Results and Interpretation

For simplicity, in this section, we focus on orzo’s query performance relative only to
pasta-flat. However, as can be seen in the performance plots in Figures 3 and 4, both
pasta-flat and cs-poppy perform very similarly, so our observations apply to both. The
performance plots annotate each data point for orzo with the percentage increase in query
time over pasta-flat.

Query performance is generally quite consistent across different input sparsities, especially
for rank, across both CPUs that we tested, and for all of the data structures. An exception
is that for select, there is a jump in query time going from 50% sparse bit vectors to 90%
sparse bit vectors. On the Xeon CPU, going from 50% to 90% sparsity for the 234 input size
increases query times from ∼156 ns (orzo) and ∼109 ns (pasta-flat) to ∼177 ns and ∼129

4 We opt to use Kurpicz’s implementation, as they demonstrate it to be faster than the original imple-
mentation, and Kurpicz reports that the original implementation has a bug that prevents select queries
from terminating on large bit vectors.
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Figure 3 Performance of rank and select operations on Intel Xeon CPU. Data points for orzo
are annotated with the percentage increase in query runtime compared to pasta-flat.

ns. See plots e and f of Figure 3. This is expected, because select queries must scan more L1
indices with decreasing density in the bit vector.

Relative performance between orzo and pasta-flat is not consistent across CPUs. For
example, there is a ∼9% gap in query runtime between orzo and pasta-flat for rank queries
on a 234 bit vector using the Intel Xeon CPU. This becomes a ∼38% gap on the AMD EPYC.
See corresponding a, b, and c plots of Figures 3 and 4. On the other hand, for select queries,
the AMD EPYC ends up being the platform with less of a gap in query runtime at large
input sizes.

While cs-poppy and pasta-flat are closer in performance to each other than orzo is
to either, neither is consistently faster, with the winner varying across different query types,
sparsities, and input sizes. This is in contrast to prior comparisons between these two data
structures [11], which had pasta-flat consistently ahead.

The inconsistency across machines, input sizes, and sparsities implies that it is likely
worth benchmarking different rank and select data structures on the hardware and input sizes
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Figure 4 Performance of rank and select operations on AMD EPYC CPU. Data points for orzo
are annotated with the percentage increase in query runtime compared to pasta-flat.

with which they’re going to be used. While orzo might represent a good space/time tradeoff
on one machine and one range of input sizes, this may not hold in other scenarios. The
choice between the equally sized cs-poppy and pasta-flat structures is also less clear-cut
than what prior research indicated, with cs-poppy actually having faster queries in many
scenarios.

8 Conclusion and Future Work

In this work, we examine several of the most space-efficient rank and select data structures.
Using one of these as a foundation, we propose a scheme to achieve further compression
by exploiting Elias-Fano encoding. Our data structure, orzo, realizes considerable space
savings of 26.49% over the rank components of cs-poppy and pasta-flat, achieving a new
space/time tradeoff that is on the Pareto frontier of rank and select solutions. Our space
savings do come at the cost of query time, but this is expected. We suggest that our solution
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is ideal for applications where memory is the primary bottleneck or a hard constraint, but
fast rank and select queries are still necessary. As long as the query runtime is not the
bottleneck in an application, the relative increases in query time are unlikely to be felt, due
to the extremely small runtime of the queries in absolute terms. We also conjecture that our
technique of using Elias-Fano encoding for micro-scale compression, as opposed to its typical
use in compressing large datasets, might find use in the design and engineering of other data
structures.

Future Work

There are several topics we intend to address in future work. The first is evaluating the
construction time for various rank and select data structures. To date, most studies focus
primarily on query times or space improvements.

Revisiting cs-poppy-style delta-encoded L2 indices is also of interest. It is a space-efficient
representation, and it is worth researching mitigations to the increasing cost of the L2 scan if
significantly more L2 indices are added (as would be necessary if moving to a 128-bit L1-L2
index, for example).

Finally, we wish to implement and evaluate rank and select data structures on alternative
architectures, such as GPUs. This could potentially ellucidate new use-cases for these
structures, and would also be interesting for how it may affect the design of rank and select
structures and algorithms. For example, modern NVIDIA GPUs have a cache line width of
128 bytes, twice as large as most modern CPUs. Prior work suggests the size of the basic
block could be profitably doubled in such a scenario [20].
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