PAREVAL-REPO: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks

Joshua H. Davis
Department of Computer Science,
University of Maryland
College Park, Maryland, USA
jhdavis@umd.edu

Ishan Khillan

Department of Computer Science, University of Maryland College Park, Maryland, USA ikhillan@umd.edu

Abstract

GPGPU architectures have become significantly more diverse in recent years, which has led to an emergence of a variety of specialized programming models and software stacks to support them. Portable programming models exist, but they require significant developer effort to port to and optimize for different hardware architectures. Large language models (LLMs) may help to reduce this programmer burden. In this paper, we present a novel benchmark and testing framework, PAREVAL-REPO, which can be used to evaluate the efficacy of LLM-based approaches in automatically translating entire codebases across GPGPU execution models. ParEval-Repo includes several scientific computing and AI mini-applications in a range of programming models and levels of repository complexity. We use ParEval-Repo to evaluate a range of state-of-the-art open-source and commercial LLMs, with both a non-agentic and a top-down agentic approach. We assess code generated by the LLMs and approaches in terms of compilability, functional correctness, categories of build errors, and the cost of translation in terms of the number of inference tokens. Our results demonstrate that LLM translation of scientific applications is feasible for small programs but difficulty with generating functional build systems and cross-file dependencies pose challenges in scaling to larger codebases.

Keywords

Program Translation, LLMs, HPC

1 Introduction

High performance computing (HPC) hardware has increasingly diversified over the last decade, now including GPUs from multiple vendors alongside CPU-based systems. Portable programming models like Kokkos [25] and OpenMP [20] provide a solution to develop a single source code for multiple types of hardware, but

This work is licensed under a Creative Commons Attribution 4.0 International License. *ICPP '25, San Diego, CA, USA*© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2074-1/25/09
https://doi.org/10.1145/3754598.3754669

Daniel Nichols
Department of Computer Science,
University of Maryland
College Park, Maryland, USA
dnicho@umd.edu

Abhinav Bhatele
Department of Computer Science,
University of Maryland
College Park, Maryland, USA
bhatele@cs.umd.edu

challenges remain in productively converting existing code repositories to use them. The size and complexity of existing HPC and scientific code repositories mean that manually converting all relevant portions of the codebase to use a new programming model is extremely time-consuming, as well as potentially prone to error and the introduction of performance issues.

Meanwhile, large language models (LLMs) have shown significant promise in automating simple programming tasks. While prior work has found that generating parallel code for a task from scratch proves to be a challenge for current LLMs, they are capable of translating existing serial or parallel code into a particular parallel programming model [18]. However, these benchmark cases are translations of single, small functions or kernels. Scientific applications are often composed of many such functions and kernels, and solve more complex problems. Translating an entire software repository introduces the complexities of data structure design, object hierarchies, and coordination of work between multiple parallelized functions or kernels. If LLMs can automate some of this work with minimal human intervention, the boon to developer productivity would be immense. Nevertheless, whether or not LLMs are capable of translating entire software repositories, including build systems, headers, and multiple functions, between parallel programming models, remains an open question.

In this paper, we attempt to answer the question posed above by proposing Pareval-Repo, a suite of benchmarking cases for LLM-based automatic repository-scale program translation between parallel programming models. This benchmark suite includes a range of standalone scientific computing and artificial intelligence programs in a range of codebase sizes, from hundreds to thousands of lines. The evaluation tasks include multiple programming model translations – CUDA to OpenMP offloading, CUDA to Kokkos, and OpenMP threading to OpenMP offloading. All but one of these cases are chosen specifically to ensure that no publicly-available translation in the target programming model exists, to prevent the LLM from simply reciting code memorized during training rather than reason through and solve an unseen problem.

PAREVAL-Repo enables us to evaluate the capabilities of different LLMs in correctly performing repository-scale application translation, and enables future researchers to design and test novel techniques for improved LLM-based translation. We evaluate a nonagentic and a top-down agentic approach that can use a variety of open-source and commercial LLMs underneath, as well as the stateof-the-art SWE-agent [29] agentic tool for LLM-driven software engineering issue resolution. While some combinations of LLM and translation techniques succeed in translation for smaller applications, we demonstrate that repository-scale application translation between portable programming models poses unique challenges beyond the previously-observed difficulty with parallel code generation. Most importantly, regardless of the translation technique or LLM used, creating working build systems compatible with portable GPU programming models and maintaining consistency of interfaces across files remain major hurdles. Finally, we propose a novel derived metric, expected token cost (E_{κ}) , which predicts the total token cost required to achieve a correct translation, and use it to compare inference cost of translation techniques and LLMs.

In summary, this paper makes the following contributions:

- We design the PAREVAL-REPO benchmark for evaluating the ability of LLMs to translate entire software repositories between parallel programming models, which includes a range of application sizes and domains.
- We evaluate the effectiveness of several state-of-the-art openand closed-source LLMs using the PAREVAL-REPO benchmark, with agentic and non-agentic approaches of our own design, as well as a state-of-the-art LLM software engineering agent.
- We propose a novel metric, E_κ, which measures the expected total inference cost in number of tokens required to generate a successful translation, and use it to compare the inference costs of the translation techniques compared.
- We study in detail the challenges LLM translation techniques encounter in generating working build system files (Makefiles, CMakeLists.txt, etc.) and handling cross-file dependencies, identifying which LLMs and translation techniques tend to make which specific mistakes.

2 Background

In this section, we provide a brief introduction to large language models, their use in code generation and translation, existing metrics for assessing generated code, and agentic AI software engineering tools. We also include background on the problems faced in manual translation of scientific applications between parallel programming models. To avoid ambiguity we employ the term *LLM* to refer to large language models and *programming model* to refer to the parallel programming model (such as CUDA or Kokkos).

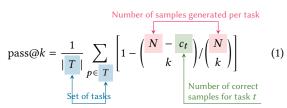
2.1 LLMs and reasoning LLMs

LLMs have become the predominant approach to text generation. Given a sequence of text, represented as a series of *tokens*, they iteratively predict the next token in the sequence to generate an extended sequence. More recently, LLMs have been fine-tuned with reasoning capabilities. These models are trained to first generate reasoning to a solution before generating the solution itself. DeepSeek-R1 [8] and other efforts have found that this reasoning

training encourages the model to question and correct itself. The result is LLMs with powerful reasoning capabilities that excel at problem-solving tasks, including those that arise in programming.

2.2 LLMs for code generation

The use of LLMs for code generation in high-performance computing contexts has been widely studied [12, 17, 18, 26]. As employed in prior efforts to assess the quality of parallel code generated by LLMs [18], we adopt the pass@k metric to estimate the likelihood of getting a correct output given k attempts by the LLM. We define correctness for our translation tasks in Section 6.1. Estimating pass@k requires generating N samples for a given LLM and task combination, where N > k. The number of correct samples c_t for a task t, as well as N and k, determine the estimation of pass@k as demonstrated by Equation (1).



2.3 Software engineering agents

There has been growing interest in *AI agents*: autonomous, LLM-driven systems capable of creating or modifying code with minimal human intervention. A notable example employed in this work is *SWE-agent*, a state-of-the-art coding agent designed to develop fixes for small software engineering (SWE) issues. SWE-agent leverages LLMs in a closed-loop framework including program analysis, generating and executing tests, and version control. It first generates a high-level strategy for resolving a given issue, before applying appropriate changes using its specialized editing tools, across multiple files if needed. These features make SWE-agent particularly well-suited for complex repository-scale refactoring.

2.4 Scientific application translation

Translating scientific applications to new programming models is a persistent challenge. As new GPU vendors and architectures proliferate, portable GPU support has become essential. Many developers who previously ported to CUDA now face the prospect of another porting effort to adopt portable models like OpenMP or Kokkos [20, 25]. Numerous case studies document these transitions [5, 15]. Regardless of whether translation is manual or partially automated [4, 27], recurring themes include the need for extensive user support, collaboration with vendors, strategic planning, and considerable manual effort. Developers must consider changes to build systems, function interfaces, parallelization strategies, and algorithms. Converting scientific applications to portable GPU programming models remains a difficult yet urgent task. In Section 3, we present the methods we compare to address this challenge.

3 Techniques for Repo-level Translation

In this section we detail the techniques we benchmark for translation of HPC software repositories.

3.1 Non-agentic method

The non-agentic strategy employs an LLM of the user's choice to translate a repository file-by-file. This approach is non-agentic, so no context or information can pass between translations of separate files in the same repository. For each file, we provide the contents of all other untranslated files in the repository as context. Listing 1 provides a sample prompt, for the file main.cpp in nanoXOR.

```
You are a helpful coding assistant. You are helping a
  software developer translate a codebase from the CUDA
  execution model to the OpenMP Offload execution model.
  Writing correct, fast code is important, so take some
  time to think before responding to any query, and ensure
  that the code you create is enclosed in triple backticks
  (```), as used in the query below.
  Below is a codebase written in the CUDA execution model.
  We are translating it to the OpenMP Offload execution
10
11
  model. Here is the file tree of the entire repository:
13
  I-- Makefile
14
  |-- README.md
  +-- src/
15
      +-- main.cpp
18
  Here is the code for each file in the codebase:
20
  Makefile
23
  src/main.cpp
24
  Translate the src/main.cpp file to the OpenMP offload
  execution model. Output the translated files in one code
  block. Assume .cpp filenames whenever referring to other
  files as this will be a C++ code.
```

Listing 1: Sample prompt for non-agentic translation method.

To encourage accurate outputs, we begin with a system prompt including the LLM's role, overall task, and emphasis that code should be correct and fast. We provide the file tree for the full repository, and the full text of all the untranslated files in the repository. Finally, we indicate which file the LLM should translate, the execution model to translate into, and the filename extensions to assume where appropriate. For files containing main functions and build system files (Makefile or CMakeLists.txt), we provide an addendum to the prompt. For main function files, this addendum indicates the command line interface the application should respect. For build system files, the addendum indicates the interface the build system should respect, along with the compiler and target architecture it should be compatible with.

3.2 Top-down agentic method

Directly translating an entire repository within the context window of an LLM works well for smaller repositories, but will not scale to larger repositories that do not fit in the context window. This means that the translation will need to split into smaller translation tasks, working with smaller portions of the full repository. Finding the best way to partition the data and work is non-trivial and various coding agents have been proposed that address these issues with

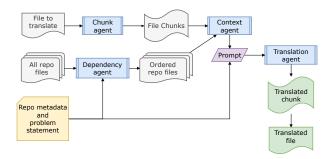


Figure 1: Control flow of the entire top-down agentic translation method.

different approaches. We employ a top-down agentic approach to translation, which is highlighted in Figure 1.

Our top-down agentic approach is comprised of four LLM agents: chunk, dependency, context, and translation. Each of the agents is a mix of static code analysis and LLMs. The dependency agent runs first, determining the dependencies between files in the repository. We translate files with no dependencies first, since they do not require any external context. We utilize the clang compiler to determine #include dependencies only, precluding the existence of circular dependencies. For non-C/C++ files or C/C++ files where clang fails, we use an LLM to analyze the file contents and repository structure and determine the dependencies.

Files are then translated one by one in the order set by the dependency agent. When translating files with dependencies we provide in the prompt a summary of the changes already made to the dependencies. For example, if the function computeWithCuda() is translated to computeWithOpenMP(), then any files that call computeWithCuda() need to be updated to call the new function. The context agent produces LLM generated summaries of translation changes to pass down to future dependents.

The chunk agent is responsible for splitting files into smaller pieces that fit within the context window of the translation agent's LLM. The chunk agent is syntax-aware and splits files at the function level as much as possible, to minimize scope splitting across chunks. Finally, the translation agent is an LLM that translates code from one execution model to another.

3.3 SWE-agent

We employ SWE-agent, described in Section 2.3, as a technique for full-repository translation. To use SWE-agent for this translation, we need to slightly reconfigure our translation task into a format SWE-agent expects. SWE-agent addresses Github issues in git repositories, so we start by rephrasing the usual translation prompt from the Non-agentic approach as an issue, placed in a dedicated file that is passed to SWE-agent. We also create a simple .git directory in the application codebase to be translated to ensure SWE-agent sees the files it expects. Unfortunately, SWE-agent is designed primarily to work with Python repositories, and automatically replaces tabs with spaces, breaking Makefiles. This limits its usefulness for our benchmark suite.

4 Large Language Models Evaluated

In this section we briefly describe the large language models tested in this study, including commercial, open-source, reasoning, and non-reasoning LLMs. To keep total inference costs and node hours low, we use smaller and more efficient versions of commercial LLMs and quantized versions of open-source LLMs.

Gemini 1.5 Flash. Google AI released the multimodal Gemini 1.5 Flash in May 2024. Gemini model parameter counts are not published [21]. We test gemini-2.0-flash, but find performance to be severely worse compared to 1.5, so those results are omitted. Gemini 1.5 Flash represents state-of-the-art free but closed-source LLMs.

GPT-40 mini. OpenAI's GPT-40 mini was released in July 2024. It is a smaller, lower-cost version of GPT-40, itself a multimodal variant of GPT-4 [19]. OpenAI models are closed-source and model parameter counts are not published. We select GPT-40 mini as an affordable paid LLM without reasoning capabilities.

o4 mini. Another OpenAI offering, o4 mini is a more recent product from April 2025. It is a smaller, more cost-efficient version of the o4 reasoning model [3]. Inference API costs for this model are higher than GPT-40 mini. As a reasoning model o4 produces significantly more output tokens per request.

Llama 3.3 70B Instruct. Llama 3.3 is an open-source LLM developed by Meta AI [10], released in December 2024 [1]. We use the instruction fine-tuned version of the model, a top performer in code tasks among open-source LLMs. To fit the 70 billion parameter model on one Delta node, we use a 4-bit GGUF quantization. Llama 3.3 represents the state-of-the-art in open-source non-reasoning LLMs.

QwQ-32B. QwQ-32B is a 32-billion-parameter Qwen-based reasoning model released in March 2025 by Alibaba Cloud [2]. It performs competitively versus other reasoning models like DeepSeek-R1, but at smaller size. We select QwQ to represent state-of-the-art open-source reasoning LLMs. We use an 8-bit GGUF quantization.

5 The ParEval-Repo Suite of Translation Tasks

In this section we describe the translation tasks we select for inclusion in Pareval-Repo. ¹ Table 1 summarizes all the benchmarking tasks, including for each application the source lines of code (SLoC), cyclomatic complexity (CC), number of files, and the programming models translated between. Cyclomatic complexity serves as a general measure of software complexity, specifically measuring the number of linearly independent paths through the program. We collect it using the pmccabe tool. For all applications, we leverage the correctness validation test cases provided by the developers to ensure the translation preserves correctness.

5.1 Applications selected

The primary constraint on application selection is the existence of public ports to the programming models we are attempting to translate into. If a public port to that model does exist, data contamination, or the presence of the exact code we want the LLM to generate in its training dataset, becomes likely. To evaluate the

	SLoC	СС	# Files	OM	Th. OMP	Of.	JA KOKY	O
nanoXOR	109	33	2	✓	?	\checkmark	?	
microXORh	127	33	3	✓	?	\checkmark	?	
microXOR	133	33	4	✓	?	\checkmark	?	
SimpleMOC-kernel	780	59	6		?	\checkmark	?	
XSBench*	2449	264	9	✓	√?	\checkmark	√?	
llm.c	3039	360	7		?	✓	?	

Table 1: The complete set of applications used as translation tasks in this work, including number of source lines of code (SLoC), cyclomatic complexity (CC), and number of files. On the right side, we indicate the programming models already implemented in the application in green and with a checkmark. Programming models we will attempt to port to are indicated with a question mark and colored yellow. For XSBench, we are porting to an existing model to examine whether the existence of a public port improves translation ability.

impact of possible data contamination, we do include one case, XSBench, which is known to have publicly-available ports in the programming models we target. As we will demonstrate in Section 8, applications at this level of complexity are sufficient to expose significant weaknesses in current state-of-the-art approaches to full application translation.

We briefly describe each application in PAREVAL-REPO below. Each application differs in size and file count as well as key characteristics that affect the difficulty of its associated translation tasks.

nanoXOR. nanoXOR is a custom micro-application written specifically for Pareval-Repo. It consists of a single kernel and driver function in a single source file. The nanoXOR kernel performs a simple four-point stencil with the XOR operator over a 2D grid.

microXORh. microXORh is also a custom micro-application, one step in complexity above nanoXOR. It differs only in that the GPU kernel is written in a separate header file that is included in the main function file, introducing a simple compile-time dependency.

microXOR. microXOR is the last of our custom micro-applications. It is one more step in complexity up from microXORh, with the kernel and main driver function in two separate source files, introducing a simple link-time dependency to the translation problem.

SimpleMOC-kernel. SimpleMOC-kernel is a proxy application for SimpleMOC [23], representing neutron flux attenuation. Only a CUDA version is available publicly. It depends on the external cuRAND library, posing an additional challenge to translation.

XSBench. XSBench is a proxy application for OpenMC [24], representing macroscopic cross-section lookup. XSBench is a substantial step up in complexity from SimpleMOC-kernel, but does have publicly-available implementations of the translations we attempt. This case will provide insight into whether possible data contamination can affect translation success rate.

llm.c. llm.c is a CUDA implementation of LLM pretraining. We have slightly reduced the size of the llm.c application to focus on critical

 $^{^1\}mathrm{The}$ full Pareval-Repo is available at https://github.com/parallelcodefoundry/Pareval-Repo

application components. llm.c provides a case study for making AI applications portable, and is a more complex case that does not have publicly-available ports to other programming models.

5.2 Programming model translation pairs selected

We further subdivide our translation tasks into pairs of programming models, the source programming model and the destination programming model for translation.

- 5.2.1 CUDA to OpenMP Offload. For all applications we examine translation from CUDA to OpenMP (GPU) Offload. OpenMP compiler directives are relatively unobtrusive code modifications, but compared to the much more obtrusive and explicit CUDA model, we should expect translations to require a significant degree of code changes. Converting to OpenMP offload also poses compilation challenges, as we require the LLM to produce a working Makefile that provides correct compile flags to use OpenMP offload for the specified compiler and system.
- 5.2.2 CUDA to Kokkos. For all applications we also test translation from CUDA to Kokkos [25], a portable programming model that can execute on NVIDIA GPUs by acting as an abstraction layer over CUDA code. Kokkos code is often structurally similar to CUDA code, including kernels and explicit memory management. However, it poses greater challenge with successful compilation, with the addition of a library dependency, advanced C++ features, and the CMake build system generator.
- 5.2.3 OpenMP Threads to OpenMP Offload. For most applications, excluding those that lack a OpenMP threads (CPU) implementation, we evaluate translation from OpenMP threads to offload. We would expect this task to be easiest, largely requiring modification of existing OpenMP directives. However, this is the only translation task that requires migration from CPU to GPU parallelization.

In total, we evaluate translation of six applications for two translation pairs, and four applications for the third translation pair, for a total of sixteen unique translation tasks.

6 Metrics for Repo-level Translation Correctness and Performance

In this section, we define the metrics we use to assess the quality of translations of full-scale applications between parallel programming models. We consider the quality of the translation tool output in terms of both correctness and token economy.

6.1 Metrics for correctness

For correctness, we adopt the definition of pass@k from [18], as described in 2.2 by Equation (1). We report both the average of pass@k over all tasks in PAREVAL-REPO as well as per-task pass@k.

Each application in our benchmark suite provides test cases, and a solution must generate expected outputs for those tests. To be considered correct we also require that the translation be implemented using the requested target programming model and execute on the hardware specified in the prompt.

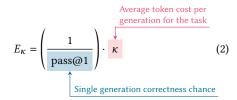
To separately consider compilation success and failure this in our evaluation, we employ build @k, which measures the probability

that the model will generate a compilable solution given k attempts. This metric is similar to pass@k except that it considers all samples that compile, not just those which are correct. The number of correct samples, c_t , is replaced with the number of buildable samples, b_t . The typical translation task for a full application can take some time, on the order of ten to thirty minutes. As such, pass@1 and build@1, or the likelihood of correctness and build success for a single translation attempt, provide the best insight into user experience among possible k values.

6.2 Metric for token economy

We also measure the token economy of LLM inference prompts generated by the translation tool, to understand how tool choice affects cost of translation. Most LLMs inference serving APIs charge users by the number of input tokens and output tokens used, and output tokens are typically more expensive than input tokens. Self-hosted LLM inference does not directly incur a financial cost, but does incur a compute time cost in node hours, charged to an allocation if using a cloud or supercomputing center. In such cases, the number of tokens consumed is proportional to the compute time of the inference prompt. We report for each combination of translation tool and translation task the average number of tokens consumed. The tokenization process differs across LLMs, so these values should be compared primarily between different LLM-based tools sending prompts to the same underlying LLM. To enable comparison between LLMs, we provide estimated costs in dollars or node hours as appropriate in Section 8.4 for two top-performing LLMs.

To assess the impact of accuracy on token economy, we propose the *expected token cost* (E_{κ}) metric. This is defined as the expected number of generations required to produce a correct translation (i.e., the multiplicative inverse of the pass@1 score) multiplied by the average number of tokens required to produce a single translation. E_{κ} is defined explicitly in Eq. 2.



6.3 Identifying and classifying translation errors

To identify specific opportunities for improvement, we analyze mistakes made by LLMs in their translation attempts. Failures in the translation process can come from many sources and are only recorded in unstructured build and run logs. To evaluate errors from the thousands of builds and runs we perform, we develop a semi-automated method to classify errors in the translation process. We cluster the build and run logs of the translated applications into sets of similar errors, and then name these clusters based on the error class they reflect.

We first convert the build and run logs of each translation and run to vector embeddings using the word2vec [16] model. This yields for each translation a single vector that captures the semantics of its output logs. We then cluster these vectors using the DBSCAN [11]

algorithm, a density-based clustering algorithm that can identify clusters of arbitrary shapes, is robust to noise, and has only two hyperparameters that need to be tuned. We manually inspect the quality of resulting clusters to tune DBSCAN's hyperparameters.

While the clustering is helpful, it produces many clusters and fails to join some similar errors. We make a manual pass over the algorithmically-generated clusters to merge them and reassign samples to different clusters where appropriate. During the manual pass we also assign a short label to each cluster that describes the category of error it contains. This combination of automated clustering, followed by manual correction and labeling, allows us to productively classify the most common errors in the translation process for a large number of translation tasks.

7 Experimental Setup

In this section we describe the experimental setup for translation generation (inference) and testing.

7.1 Inference setup

For commercial API models, we set a total budget of 200 dollars, with 170 dollars for o4-mini and 30 dollars for GPT-40-mini. We complete Gemini inference using the Google's API free tier.

For locally-hosted open-source models, we employ the vLLM inference engine version 0.8.2 configured in server mode. We run inference on the Delta system at NCSA², specifically the single-socket A100 nodes, which have four 40 GB NVIDIA A100 GPUs, one 64-core AMD Milan CPU, and 256 GB of RAM. We configure vLLM to use all four GPUs with tensor parallelism with prompt prefix caching enabled, and batch requests where possible.

7.2 Evaluation setup

All translation tasks in Pareval-Repo require translation to a GPU programming model. We test translations on a single NVIDIA 40GB A100 GPU, hosted on the Zaratan system at the University of Maryland³ on a single node with a 128-core AMD EPYC 7763 CPU and 512 GB of RAM. We use CUDA 12.3.0 universally and compile OpenMP offload codes with LLVM 19.1.7 and Kokkos codes with Kokkos 4.5.01 and GCC 11.3.0.

8 Results

In this section we present example translations, results for correctness of generated code translations across LLMs, tasks, and techniques, our analysis of the clustering of errors encountered in attempting to compile LLM translations, and our analysis of the token efficiency of cases where the LLM translation is successful.

8.1 Examples of successful and unsuccessful translations

Listings 2- 4 provide the original nanoXOR CUDA kernel, and examples of correct and incorrect translations to OpenMP Offload generated by QwQ with the non-agentic and agentic translation techniques, respectively. The agentic translation is incorrect, as it

omits the target and parallel for directives, which are required to run the loop on the GPU and parallelize the loop across threads.

Listing 2: Original nanoXOR CUDA kernel.

Listing 3: Correct nanoXOR OpenMP Offload translation generated by the non-agentic translation method with qwq-32b-q8_0.

Listing 4: Incorrect nanoXOR OpenMP Offload translation generated by the agentic translation method with qwq-32b-q8_0.

8.2 Translation correctness

In Figure 2 we present build@1 and pass@1 results for our three programming model translation pairs. Within each row of subfigures, the left subfigure indicates build@1 scores, the likelihood of generating a compilable translation given one attempt, while the right subfigure indicates pass@1, the likelihood of generating a translation that passes correctness tests given one attempt.

Within each subfigure, the heatmaps are organized into rows and columns. Each column of heatmaps corresponds to a translation technique, non-agentic, top-down, and SWE-agent (where applicable). The upper row of heatmaps in each subfigure corresponds to "Code-only" score, while the lower row of heatmaps corresponds to "Overall" score. "Code-only" score considers only the correctness of the generated source code, using a pre-written ground truth Makefile or CMakeLists.txt manually translated by the authors to compile the LLM-translated source code. "Overall" score reflects the results of using the LLM-translated source code and build system.

Note that an experiment configuration with no value in its heatmap cell indicates that we do not run that case, and results

²https://docs.ncsa.illinois.edu/systems/delta/en/latest/index.html

³http://hpcc.umd.edu

of 0 indicate that we run the configuration but it does not generate any correct translations. In several cases, we are unable to generate translations for a combination of LLM, translation technique, application, and programming model pair. The non-agentic approach, because it requires each file to be generated in one response, cannot scale to some application sizes due to exceeding LLM output context limits. This is the case for Gemini and GPT-40 when translating llm.c, and for Gemini when translating XSBench from CUDA to OpenMP offload. In some cases with the top-down agentic approach using local models, we do not complete translation due to exceeding our per-experiment budget of 8 node hours. This is the case for QwQ translating XSBench and llm.c with all programming model pairs as well as Llama-3.3 translating XSBench and llm.c from CUDA to Kokkos. Finally, we present SWE-agent results for a subset of the cases due primarily to the SWE-agent's incompatibility with Makefile mentioned in Sec. 3.3, but also omit XSBench and llm.c to remain within our OpenAI API budget.

Across all cases, we observe that Overall score is consistently significantly lower than Code-only score. This indicates a substantial capability gap between source code translation and build system generation. To further explore the reasons why LLMs fail to generate functional build systems, we examine the types of build errors encountered in this study in Sec. 8.3.

Examining the impact of translation technique, we observe that the non-agentic approach, where it can complete a translation, tends to achieve the highest scores in both build and pass@1, although this varies across LLMs used. SWE-agent, while only tested with one LLM and programming model pair, achieves moderate success, particularly in overall build@1 score. But, it does not manage to generate any code that passes correctness tests. The non-agentic likely outperforms the top-down agentic approach due to the greater quantity of repository context provided, highlighting the need for more sophisticated approaches in future work to develop full application translation agents. Along the programming model translation pair axis, we observe that CUDA to Kokkos translation is significantly more challenging that the translations involving OpenMP.

Turning next to the application axis, we find that more complex applications generally pose greater challenge for all LLMs and translation techniques, as expected. One notable exception can be found with non-agentic Llama-3.3 translating CUDA to OpenMP offload, where code-only pass@k is 0.76 for microXORh but only 0.2 for nanoXOR. Additionally, non-agentic Llama-3.3 translating OpenMP threads to OpenMP offload achieves a pass@k of 0.68 for microXOR and 0 for microXORh and nanoXOR. Overall, no combination of translation technique and LLM achieves a pass@k above 0 for any application larger than microXOR. This key finding indicates that LLM-based translation cannot yet produce working code in a fully automated manner. In Sec. 8.3, we explore the key obstacles to success in translating larger applications in terms of most frequent compilation errors in translated code.

8.3 Error clustering

We cluster the error messages recorded by Pareval-Repo's translation testing code when attempting to build the generated translations, as described in Sec. 6.3. Figure 3 displays the results of this analysis, after manually combining highly similar clusters and

removing clusters of less interest, including errors related to missing files and build timeouts as well as successful build outputs. Across applications and LLMs, errors relating to CMake configuration, as well as undeclared identifiers and function argument or type mismatches for apps besides nanoXOR, are broadly common. This suggests that coordination of function interfaces and variable names across files and successful configuration of CMake for Kokkos builds are common points of difficulty across LLMs. These broader issues must be addressed by improved LLM translation techniques and prompting, rather than tuning the choice of LLM.

However, we also observe that some categories of errors are only highly prevalent for some LLMs and applications. For example, Gemini appears most likely to struggle with Makefile syntax and compiler flags, particularly for SimpleMOC-kernel, Llama-3.3 is particularly susceptible to source code syntax mistakes, and GPT-40 mini produces translation that fail to link especially often for microXOR. We observe that LLMs can still encounter unique pitfalls that may be avoided by tuning the choice of LLM.

While many of these error categories can occur for ordinary, non-HPC codes, we note that the use of portable GPU programming models introduces unique complexities in compilation that contributes significantly to their prevalence, as observed in prior work [6]. For example, mistakes with compiler flag choice frequently arise from use of incorrect OpenMP Offload flags, and the undeclared identifier and function argument/type mismatch categories include mistakes in interacting with Kokkos library features.

8.4 Inference token economy

We also analyze the cost of translation in terms of token economy, or the number of inference tokens required to complete a translation. Figure 4 displays total inference tokens used for translation for each technique, LLM, and application combination, averaged across programming model translation pairs and individual generations. Note that in Figure 4 some additional heatmap cells are empty compared to Figure 2, because we do not include the total tokens consumed for any cases where zero total correct translations are generated. Among commercial API LLMs, the non-agentic translation technique consumes more inference tokens than top-down, but among open-source locally-hosted LLMs, the top-down agentic approach is more expensive, largely because the commercial API LLMs are more conservative in selecting translation context in the top-down approach. In the non-agentic approach, QwQ in particular consumes a significant quantity of tokens, due to the size of its reasoning output. o4-mini is also a reasoning model but consumes significantly fewer additional tokens.

Figure 5 lists E_{κ} , the expected number of tokens needed to produce a successful translation, as defined in Sec. 6.2. We aggregate this metric only over cases where the pass@1 is greater than 0. We can conclude from Figure 5 that among commercial API models, non-agentic o4-mini produces correct translations at the lowest token cost, while among open-source locally-hosted models, non-agentic Llama-3.3 is cheapest.

Given the expected token cost provided in Figure 5, we can estimate the total cost in US dollars or in node-hours for the least expensive API and open-source models, respectively. Table 2 lists these

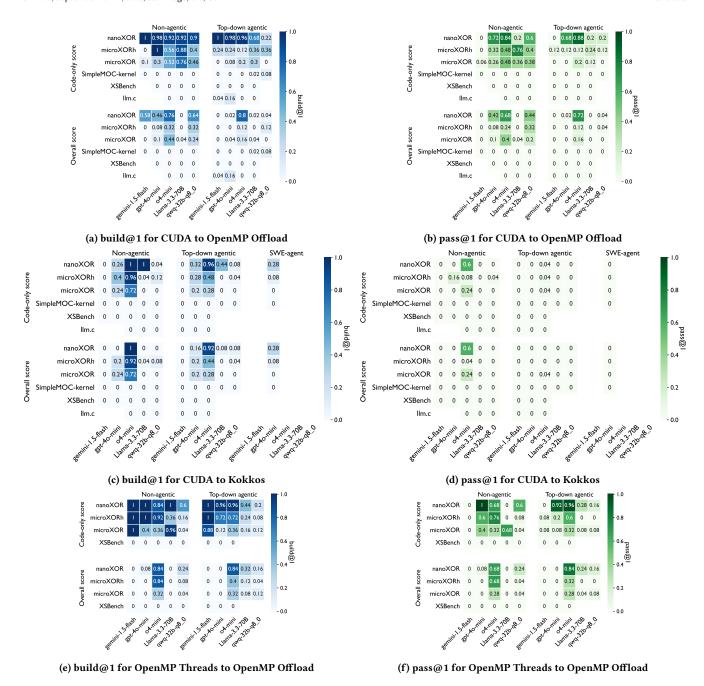


Figure 2: Correctness metrics for OpenMP Threads to OpenMP Offload tasks.

estimates for the three applications that can be successfully translated. We calculate these estiamtes using public OpenAI API costs for o4-mini as well as our observed average generation throughput of 187 tokens per second on a single node of the Delta system with vLLM, as described in 7. Note that Llama-3.3 nanoXOR cost is particularly high due to Llama's unexpected difficulty with that simple application, as described in Sec. 8.2.

9 Related Work

Prior studies have examined using LLMs for code translation. We separate the relevant literature into two categories, repo-level translation and parallel code translation and generation.

9.1 Repository-level code translation

Automating repository-level translation has been a growing area of focus. Prior studies leverage LLMs to minimize human intervention

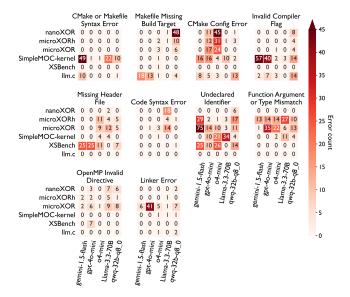


Figure 3: Count of categories of errors encountered when across combinations of large language models and application.

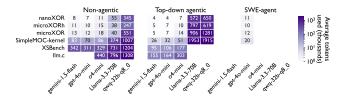


Figure 4: Total inference tokens used in translation, averaged across individual generations and programming model translation pairs.

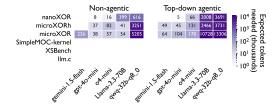


Figure 5: Expected tokens needed for successful translation (E_K) , averaged across individual generations and programming model translation pairs where at least one generation passed correctness test is (i.e., pass@1 is greater than 0).

in the translation process when scaling translation to larger codebases. For instance, AlphaTrans explores translating Java to Python by breaking down large repositories into smaller, manageable fragments and iteratively validating results for syntactic correctness and functional equivalence [13]. Additional work also considers the problem from a benchmarking perspective. RepoTransBench proposes a benchmark suite of Python to Java translation tasks

	nanoXOR	microXORh	microXOR
Non-agentic o4-mini	\$0.03	\$0.04	\$0.05
Non-agentic Llama-3.3	0.6 n.h.	0.06 n.h.	0.08 n.h.

Table 2: Estimated cost in dollars or node-hours for successful translation, based on E_K , published OpenAI API costs, and our observed average generation throughput on a single Delta node with Llama-3.3 in vLLM (187 tokens per second).

for assessing LLM translation capabilities, finding that LLMs consistently achieve below-par results for these tasks [28]. However, these projects both consider translation between Java and Python, without parallel programming models and with no consideration of languages more common in high-performance computing, including C/C++ and Fortran. Furthermore, the methodologies in these studies is tightly integrated with Java and Python code and build systems, making the techniques difficult to generalize to other workflows, particularly those in HPC. As an example, we discovered that SWE-agent does not work with Makefiles, which are a critical part of many HPC codes.

9.2 Parallel code translation

Several efforts to develop LLM tools to translate parallel code exist. First, CodeRosetta [22] proposes an encoder-decoder transformer model to translate between C++ and CUDA as well as Fortran and C++. Unfortunately, its approach is evaluated only using the Code-BLEU similar score, without genuine runtime data. Similarly, Code-Scribe utilizes a scoped code hierarchy and retrieval-augmented generation (RAG) to guide LLM-based translations from Fortran to C++, ensuring compatibility through intermediate Fortran-C APIs [9]. LASSI, on the other hand, focuses on translating parallel programming models, such as CUDA and OpenMP, using iterative compilation and runtime feedback for self-correction [7]. Similarly, the dataset introduced in by Lei et al. [14] focuses on CPU OpenMP Fortran and C++. but does not extend or generalize to other programming models like Kokkos or OpenMP GPU offloading, and relies on only the CodeBLEU similar metric and human evaluation.

While these strategies demonstrate progress in translating parallel code, they often do not consider genuine code functionality, instead employing CodeBLEU code similarity scores to assess translation quality. Furthermore, many employ translation tasks that have already have publicly-available implementations. For example, LASSI relies on HeCBench, which include reference implementations for CUDA and OpenMP already. This creates a risk of training dataset contamination with test problems, making it possible for LLMs to recite already-seen translated code rather than reasoning through the problem and carrying out a genuine translation.

10 Conclusion

Converting an entire application codebase to use a new programming model is a tedious but necessary task to take advantage of the hardware available on flagship supercomputing platforms. Leveraging large language models to automate this effort has the potential to enormously improve HPC application developer productivity. In this paper, we have described PAREVAL-REPO, a collection of HPC

application translation tasks covering multiple parallel programming models and a range of application sizes. We have evaluated a range of state-of-the-art LLMs using both non-agentic and agentic approaches to full application translations, and find that existing techniques largely fail to translate applications beyond trivial scale. We identify that generating working build systems is a major obstacle to successful full-repository translation, and furthermore identify categories of compilation failures that occur across LLMs and only for specific LLMs. The insights gained from our analysis will be critical for designing future approaches that can successfully translate large applications. We conclude with a cost analysis of the most token-economic open-source and commercial LLMs for our translation tasks using our proposed metric for expected token cost, E_{κ} . Given the difficulty LLMs encounter in generating compilable translations, opportunities for future work include constructing a dataset of complete HPC code repositories for use in fine-tuning LLMs or including in prompt context for few-shot learning.

Acknowledgments

This material is based upon work supported in part by the National Science Foundation (NSF) under Grant No. 2047120, and the NSF Graduate Research Fellowship Program under Grant No. DGE 2236417. This material is based upon work supported in part by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, through solicitation DE-FOA-0003264, "Advances in Artificial Intelligence for Science", under Award Number DE-SC0025598. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-855581).

This research is supported by the National Artificial Intelligence Research Resource (NAIRR) Pilot and the Delta advanced computing and data resource which is supported by the NSF (award NSF-OAC 2005572) and the State of Illinois. The authors acknowledge the University of Maryland supercomputing resources made available for conducting the research reported in this paper.

References

- 2024. Llama 3.3 Model Card and Prompt Format. https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
- [2] 2024. QwQ: Reflect Deeply on the Boundaries of the Unknown. https://qwenlm.github.io/blog/qwq-32b-preview/
- [3] 2025. o3 and o4-mini System Card. https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
- [4] Waseem Ahmed, Mohsin Khan, Adeel Ahmed Khan, Rashid Mehmood, Abdullah Algarni, Aiiad Albeshri, and Iyad Katib. 2018. A Framework for Faster Porting of Scientific Applications Between Heterogeneous Clouds. In Smart Societies, Infrastructure, Technologies and Applications, Rashid Mehmood, Budhendra Bhaduri, Iyad Katib, and Imrich Chlamtac (Eds.). Springer International Publishing, Cham, 27-43.
- [5] Joshua H Davis, Justin Shafner, Daniel Nichols, Nathan Grube, Pino Martin, and Abhinav Bhatele. 2023. Porting a computational fluid dynamics code with amr to large-scale gpu platforms. In 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 602–612.
- [6] Joshua H. Davis, Pranav Sivaraman, Joy Kitson, Konstantinos Parasyris, Harshitha Menon, Isaac Minn, Giorgis Georgakoudis, and Abhinav Bhatele. 2025 (to appear). Taking GPU Programming Models to Task for Performance Portability. In Proceedings of the International Conference on Supercomputing (ICS '25).
- [7] Matthew T Dearing, Yiheng Tao, Xingfu Wu, Zhiling Lan, and Valerie Taylor. 2024. LASSI: An LLM-based Automated Self-Correcting Pipeline for Translating Parallel Scientific Codes. In 2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops). IEEE, 136–143.
- [8] DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501. 12948

- [9] Akash Dhruv and Anshu Dubey. 2025. Leveraging Large Language Models for Code Translation and Software Development in Scientific Computing. arXiv:2410.24119 [cs.SE] https://arxiv.org/abs/2410.24119
- [10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The Llama 3 Herd of Models. Technical Report.
- [11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (Portland, Oregon) (KDD'96). AAAI Press, 226–231.
- [12] William F Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Balaprakash, and Jeffrey S Vetter. 2024. Large language model evaluation for high-performance computing software development. Concurrency and Computation: Practice and Experience 36, 26 (2024), e8269.
- [13] Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid, Rangeet Pan, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Repository-level compositional code translation and validation. arXiv:2410.24117 [cs.SE] https://arxiv.org/abs/2410.24117
- [14] Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, and Chunhua Liao. 2023. Creating a Dataset for High-Performance Computing Code Translation using LLMs: A Bridge Between OpenMP Fortran and C++. arXiv:2307.07686 [cs.SE] https: //arxiv.org/abs/2307.07686
- [15] Nicholas Malaya, Bronson Messer, Joseph Glenski, Antigoni Georgiadou, Justin Lietz, Kalyana Gottiparthi, Marc Day, Jackie Chen, Jon Rood, Lucas Esclapez, et al. 2023. Experiences readying applications for exascale. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–13.
- [16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs.CL] https://arxiv.org/abs/1301.3781
- [17] Christian Munley, Aaron Jarmusch, and Sunita Chandrasekaran. 2023. LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation. arXiv:2310.04963 [cs.AI]
- [18] Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav Bhatele. 2024. Can Large Language Models Write Parallel Code?. In Proceedings of the 33rd International Symposium on High-Performance Parallel and Distributed Computing (HPDC '24). Association for Computing Machinery, New York, NY, USA.
- [19] OpenAI, Aaron Hurst, and et al. 2024. GPT-4o System Card. arXiv:2410.21276 [cs.CL] https://arxiv.org/abs/2410.21276
- [20] OpenMP4 2013. OpenMP Application Program Interface. Version 4.0. July 2013.
- [21] Gemini Team. 2023. Gemini: A Family of Highly Capable Multimodal Models. arXiv:2312.11805 [cs.CL]
- [22] Ali Tehrani, Arijit Bhattacharjee, Le Chen, Nesreen K Ahmed, Amir Yazdan-bakhsh, and Ali Jannesari. 2024. CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming. Advances in Neural Information Processing Systems 37 (2024), 100965–100999.
- [23] John R. Tramm, Geoffrey Gunow, Tim He, Kord S. Smith, Benoit Forget, and Andrew R. Siegel. 2016. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures. Computer Physics Communications 202 (2016), 141 – 150. doi:10.1016/j.cpc.2016.01.007
- [24] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XSBench-the development and verification of a performance abstraction for Monte Carlo reactor analysis. The Role of Reactor Physics toward a Sustainable Future (PHYSOR) (2014).
- [25] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022), 805–817. doi:10.1109/TPDS.2021.3097283
- [26] Pedro Valero-Lara, William F Godoy, Keita Teranishi, Prasanna Balaprakash, and Jeffrey S Vetter. 2024. ChatBLAS: The First AI-Generated and Portable BLAS Library. In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 19–24.
- [27] Ben Van Werkhoven and Pieter Hijma. 2015. An integrated approach to porting large scientific applications to GPUs. In 2015 IEEE 11th International Conference on e-Science. IEEE, 57–66.
- [28] Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo, Jiachi Chen, John Grundy, Xilin Liu, Yuchi Ma, Mingzhi Mao, Hongyu Zhang, and Zibin Zheng. 2024. Repo-TransBench: A Real-World Benchmark for Repository-Level Code Translation. arXiv:2412.17744 [cs.SE] https://arxiv.org/abs/2412.17744
- [29] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press. 2024. Swe-agent: Agent-computer interfaces enable automated software engineering. Advances in Neural Information Processing Systems 37 (2024), 50528–50652.