
ParEval-Repo: A Benchmark Suite for Evaluating LLMs with
Repository-level HPC Translation Tasks

Joshua H. Davis
Department of Computer Science,

University of Maryland
College Park, Maryland, USA

jhdavis@umd.edu

Daniel Nichols
Department of Computer Science,

University of Maryland
College Park, Maryland, USA

dnicho@umd.edu

Ishan Khillan
Department of Computer Science,

University of Maryland
College Park, Maryland, USA

ikhillan@umd.edu

Abhinav Bhatele
Department of Computer Science,

University of Maryland
College Park, Maryland, USA

bhatele@cs.umd.edu

Abstract

GPGPU architectures have become significantly more diverse in
recent years, which has led to an emergence of a variety of spe-
cialized programming models and software stacks to support them.
Portable programming models exist, but they require significant
developer effort to port to and optimize for different hardware archi-
tectures. Large language models (LLMs) may help to reduce this pro-
grammer burden. In this paper, we present a novel benchmark and
testing framework, ParEval-Repo, which can be used to evaluate
the efficacy of LLM-based approaches in automatically translating
entire codebases across GPGPU execution models. ParEval-Repo
includes several scientific computing and AI mini-applications in
a range of programming models and levels of repository complex-
ity. We use ParEval-Repo to evaluate a range of state-of-the-art
open-source and commercial LLMs, with both a non-agentic and a
top-down agentic approach. We assess code generated by the LLMs
and approaches in terms of compilability, functional correctness,
categories of build errors, and the cost of translation in terms of
the number of inference tokens. Our results demonstrate that LLM
translation of scientific applications is feasible for small programs
but difficultywith generating functional build systems and cross-file
dependencies pose challenges in scaling to larger codebases.

Keywords

Program Translation, LLMs, HPC

1 Introduction

High performance computing (HPC) hardware has increasingly
diversified over the last decade, now including GPUs from multi-
ple vendors alongside CPU-based systems. Portable programming
models like Kokkos [25] and OpenMP [20] provide a solution to
develop a single source code for multiple types of hardware, but

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPP ’25, San Diego, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2074-1/25/09
https://doi.org/10.1145/3754598.3754669

challenges remain in productively converting existing code reposi-
tories to use them. The size and complexity of existing HPC and
scientific code repositories mean that manually converting all rel-
evant portions of the codebase to use a new programming model
is extremely time-consuming, as well as potentially prone to error
and the introduction of performance issues.

Meanwhile, large language models (LLMs) have shown signif-
icant promise in automating simple programming tasks. While
prior work has found that generating parallel code for a task from
scratch proves to be a challenge for current LLMs, they are capable
of translating existing serial or parallel code into a particular paral-
lel programming model [18]. However, these benchmark cases are
translations of single, small functions or kernels. Scientific applica-
tions are often composed of many such functions and kernels, and
solve more complex problems. Translating an entire software repos-
itory introduces the complexities of data structure design, object
hierarchies, and coordination of work between multiple parallelized
functions or kernels. If LLMs can automate some of this work with
minimal human intervention, the boon to developer productivity
would be immense. Nevertheless, whether or not LLMs are capable
of translating entire software repositories, including build systems,
headers, and multiple functions, between parallel programming
models, remains an open question.

In this paper, we attempt to answer the question posed above by
proposing ParEval-Repo, a suite of benchmarking cases for LLM-
based automatic repository-scale program translation between par-
allel programming models. This benchmark suite includes a range
of standalone scientific computing and artificial intelligence pro-
grams in a range of codebase sizes, from hundreds to thousands of
lines. The evaluation tasks include multiple programming model
translations – CUDA to OpenMP offloading, CUDA to Kokkos, and
OpenMP threading to OpenMP offloading. All but one of these
cases are chosen specifically to ensure that no publicly-available
translation in the target programming model exists, to prevent the
LLM from simply reciting code memorized during training rather
than reason through and solve an unseen problem.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754669

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Davis et al.

ParEval-Repo enables us to evaluate the capabilities of different
LLMs in correctly performing repository-scale application transla-
tion, and enables future researchers to design and test novel tech-
niques for improved LLM-based translation. We evaluate a non-
agentic and a top-down agentic approach that can use a variety of
open-source and commercial LLMs underneath, as well as the state-
of-the-art SWE-agent [29] agentic tool for LLM-driven software
engineering issue resolution. While some combinations of LLM and
translation techniques succeed in translation for smaller applica-
tions, we demonstrate that repository-scale application translation
between portable programming models poses unique challenges
beyond the previously-observed difficulty with parallel code gener-
ation. Most importantly, regardless of the translation technique or
LLM used, creating working build systems compatible with portable
GPU programming models and maintaining consistency of inter-
faces across files remain major hurdles. Finally, we propose a novel
derived metric, expected token cost (𝐸𝜅), which predicts the total
token cost required to achieve a correct translation, and use it to
compare inference cost of translation techniques and LLMs.

In summary, this paper makes the following contributions:
• We design the ParEval-Repo benchmark for evaluating the
ability of LLMs to translate entire software repositories be-
tween parallel programming models, which includes a range
of application sizes and domains.

• We evaluate the effectiveness of several state-of-the-art open-
and closed-source LLMs using the ParEval-Repo benchmark,
with agentic and non-agentic approaches of our own design,
as well as a state-of-the-art LLM software engineering agent.

• We propose a novel metric, 𝐸𝜅 , which measures the expected
total inference cost in number of tokens required to generate
a successful translation, and use it to compare the inference
costs of the translation techniques compared.

• We study in detail the challenges LLM translation techniques
encounter in generating working build system files (Make-
files, CMakeLists.txt, etc.) and handling cross-file dependen-
cies, identifying which LLMs and translation techniques tend
to make which specific mistakes.

2 Background

In this section, we provide a brief introduction to large language
models, their use in code generation and translation, existing met-
rics for assessing generated code, and agentic AI software engi-
neering tools. We also include background on the problems faced
in manual translation of scientific applications between parallel
programming models. To avoid ambiguity we employ the term LLM
to refer to large language models and programming model to refer
to the parallel programming model (such as CUDA or Kokkos).

2.1 LLMs and reasoning LLMs

LLMs have become the predominant approach to text generation.
Given a sequence of text, represented as a series of tokens, they
iteratively predict the next token in the sequence to generate an
extended sequence. More recently, LLMs have been fine-tuned
with reasoning capabilities. These models are trained to first gen-
erate reasoning to a solution before generating the solution itself.
DeepSeek-R1 [8] and other efforts have found that this reasoning

training encourages the model to question and correct itself. The
result is LLMs with powerful reasoning capabilities that excel at
problem-solving tasks, including those that arise in programming.

2.2 LLMs for code generation

The use of LLMs for code generation in high-performance comput-
ing contexts has been widely studied [12, 17, 18, 26]. As employed
in prior efforts to assess the quality of parallel code generated by
LLMs [18], we adopt the pass@𝑘 metric to estimate the likelihood
of getting a correct output given 𝑘 attempts by the LLM. We de-
fine correctness for our translation tasks in Section 6.1. Estimating
pass@𝑘 requires generating 𝑁 samples for a given LLM and task
combination, where 𝑁 > 𝑘 . The number of correct samples 𝑐𝑡 for a
task 𝑡 , as well as 𝑁 and 𝑘 , determine the estimation of pass@𝑘 as
demonstrated by Equation (1).

pass@𝑘 =
1

| 𝑇 |

∑︁
𝑝∈ 𝑇

[
1 −

(
𝑁 − 𝑐𝑡

𝑘

)
/
(
𝑁

𝑘

)]
(1)

Number of samples generated per task

Set of tasks

Number of correct

samples for task 𝑡

2.3 Software engineering agents

There has been growing interest in AI agents: autonomous, LLM-
driven systems capable of creating or modifying code with minimal
human intervention. A notable example employed in this work is
SWE-agent, a state-of-the-art coding agent designed to develop fixes
for small software engineering (SWE) issues. SWE-agent leverages
LLMs in a closed-loop framework including program analysis, gen-
erating and executing tests, and version control. It first generates
a high-level strategy for resolving a given issue, before applying
appropriate changes using its specialized editing tools, across mul-
tiple files if needed. These features make SWE-agent particularly
well-suited for complex repository-scale refactoring.

2.4 Scientific application translation

Translating scientific applications to new programming models
is a persistent challenge. As new GPU vendors and architectures
proliferate, portable GPU support has become essential. Many de-
velopers who previously ported to CUDA now face the prospect
of another porting effort to adopt portable models like OpenMP
or Kokkos [20, 25]. Numerous case studies document these transi-
tions [5, 15]. Regardless of whether translation is manual or partially
automated [4, 27], recurring themes include the need for extensive
user support, collaboration with vendors, strategic planning, and
considerable manual effort. Developers must consider changes to
build systems, function interfaces, parallelization strategies, and
algorithms. Converting scientific applications to portable GPU pro-
gramming models remains a difficult yet urgent task. In Section 3,
we present the methods we compare to address this challenge.

3 Techniques for Repo-level Translation

In this section we detail the techniques we benchmark for transla-
tion of HPC software repositories.

ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks ICPP ’25, September 08–11, 2025, San Diego, CA, USA

3.1 Non-agentic method

The non-agentic strategy employs an LLM of the user’s choice to
translate a repository file-by-file. This approach is non-agentic, so
no context or information can pass between translations of separate
files in the same repository. For each file, we provide the contents
of all other untranslated files in the repository as context. Listing 1
provides a sample prompt, for the file main.cpp in nanoXOR.

1 You are a helpful coding assistant. You are helping a

2 software developer translate a codebase from the CUDA

3 execution model to the OpenMP Offload execution model.

4 Writing correct , fast code is important , so take some

5 time to think before responding to any query , and ensure

6 that the code you create is enclosed in triple backticks

7 (```), as used in the query below.

8

9 Below is a codebase written in the CUDA execution model.

10 We are translating it to the OpenMP Offload execution

11 model. Here is the file tree of the entire repository:

12

13 |-- Makefile

14 |-- README.md

15 +-- src/

16 +-- main.cpp

17

18 Here is the code for each file in the codebase:

19

20 Makefile

21 ...

22

23 src/main.cpp

24 ...

25

26 Translate the src/main.cpp file to the OpenMP offload

27 execution model. Output the translated files in one code

28 block. Assume .cpp filenames whenever referring to other

29 files as this will be a C++ code.

Listing 1: Sample prompt for non-agentic translationmethod.

To encourage accurate outputs, we begin with a system prompt
including the LLM’s role, overall task, and emphasis that code
should be correct and fast. We provide the file tree for the full repos-
itory, and the full text of all the untranslated files in the repository.
Finally, we indicate which file the LLM should translate, the execu-
tion model to translate into, and the filename extensions to assume
where appropriate. For files containing main functions and build
system files (Makefile or CMakeLists.txt), we provide an addendum
to the prompt. For main function files, this addendum indicates the
command line interface the application should respect. For build
system files, the addendum indicates the interface the build system
should respect, along with the compiler and target architecture it
should be compatible with.

3.2 Top-down agentic method

Directly translating an entire repository within the context window
of an LLM works well for smaller repositories, but will not scale to
larger repositories that do not fit in the context window. This means
that the translation will need to split into smaller translation tasks,
working with smaller portions of the full repository. Finding the
best way to partition the data and work is non-trivial and various
coding agents have been proposed that address these issues with

All repo
 files

Repo metadata
and

problem
statement

Context
agent

Dependency
agent

Prompt

File to
translate

Translation
agent

Translated
chunk

Ordered
repo files

Chunk
agent File Chunks

Translated
file

Figure 1: Control flow of the entire top-down agentic trans-

lation method.

different approaches. We employ a top-down agentic approach to
translation, which is highlighted in Figure 1.

Our top-down agentic approach is comprised of four LLM agents:
chunk, dependency, context, and translation. Each of the agents
is a mix of static code analysis and LLMs. The dependency agent
runs first, determining the dependencies between files in the repos-
itory. We translate files with no dependencies first, since they do
not require any external context. We utilize the clang compiler to
determine #include dependencies only, precluding the existence
of circular dependencies. For non-C/C++ files or C/C++ files where
clang fails, we use an LLM to analyze the file contents and reposi-
tory structure and determine the dependencies.

Files are then translated one by one in the order set by the de-
pendency agent. When translating files with dependencies we pro-
vide in the prompt a summary of the changes already made to the
dependencies. For example, if the function computeWithCuda()
is translated to computeWithOpenMP(), then any files that call
computeWithCuda() need to be updated to call the new function.
The context agent produces LLM generated summaries of transla-
tion changes to pass down to future dependents.

The chunk agent is responsible for splitting files into smaller
pieces that fit within the context window of the translation agent’s
LLM. The chunk agent is syntax-aware and splits files at the func-
tion level as much as possible, to minimize scope splitting across
chunks. Finally, the translation agent is an LLM that translates code
from one execution model to another.

3.3 SWE-agent

We employ SWE-agent, described in Section 2.3, as a technique
for full-repository translation. To use SWE-agent for this transla-
tion, we need to slightly reconfigure our translation task into a
format SWE-agent expects. SWE-agent addresses Github issues
in git repositories, so we start by rephrasing the usual translation
prompt from the Non-agentic approach as an issue, placed in a
dedicated file that is passed to SWE-agent. We also create a simple
.git directory in the application codebase to be translated to ensure
SWE-agent sees the files it expects. Unfortunately, SWE-agent is
designed primarily to work with Python repositories, and automat-
ically replaces tabs with spaces, breaking Makefiles. This limits its
usefulness for our benchmark suite.

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Davis et al.

4 Large Language Models Evaluated

In this section we briefly describe the large language models tested
in this study, including commercial, open-source, reasoning, and
non-reasoning LLMs. To keep total inference costs and node hours
low, we use smaller and more efficient versions of commercial LLMs
and quantized versions of open-source LLMs.

Gemini 1.5 Flash. Google AI released the multimodal Gemini 1.5
Flash in May 2024. Gemini model parameter counts are not pub-
lished [21]. We test gemini-2.0-flash, but find performance to be
severely worse compared to 1.5, so those results are omitted. Gemini
1.5 Flash represents state-of-the-art free but closed-source LLMs.

GPT-4o mini. OpenAI’s GPT-4o mini was released in July 2024.
It is a smaller, lower-cost version of GPT-4o, itself a multimodal
variant of GPT-4 [19]. OpenAI models are closed-source and model
parameter counts are not published. We select GPT-4o mini as an
affordable paid LLM without reasoning capabilities.

o4 mini. Another OpenAI offering, o4 mini is a more recent product
from April 2025. It is a smaller, more cost-efficient version of the o4
reasoning model [3]. Inference API costs for this model are higher
than GPT-4o mini. As a reasoning model o4 produces significantly
more output tokens per request.

Llama 3.3 70B Instruct. Llama 3.3 is an open-source LLM developed
by Meta AI [10], released in December 2024 [1]. We use the instruc-
tion fine-tuned version of the model, a top performer in code tasks
among open-source LLMs. To fit the 70 billion parameter model
on one Delta node, we use a 4-bit GGUF quantization. Llama 3.3
represents the state-of-the-art in open-source non-reasoning LLMs.

QwQ-32B. QwQ-32B is a 32-billion-parameter Qwen-based reason-
ing model released in March 2025 by Alibaba Cloud [2]. It performs
competitively versus other reasoning models like DeepSeek-R1,
but at smaller size. We select QwQ to represent state-of-the-art
open-source reasoning LLMs. We use an 8-bit GGUF quantization.

5 The ParEval-Repo Suite of Translation Tasks

In this section we describe the translation tasks we select for inclu-
sion in ParEval-Repo.1 Table 1 summarizes all the benchmarking
tasks, including for each application the source lines of code (SLoC),
cyclomatic complexity (CC), number of files, and the programming
models translated between. Cyclomatic complexity serves as a gen-
eral measure of software complexity, specifically measuring the
number of linearly independent paths through the program. We
collect it using the pmccabe tool. For all applications, we leverage
the correctness validation test cases provided by the developers to
ensure the translation preserves correctness.

5.1 Applications selected

The primary constraint on application selection is the existence
of public ports to the programming models we are attempting
to translate into. If a public port to that model does exist, data
contamination, or the presence of the exact code we want the LLM
to generate in its training dataset, becomes likely. To evaluate the

1The full ParEval-Repo is available at https://github.com/parallelcodefoundry/
ParEval-Repo

SLoC CC # Files OM
P T
h.

OM
P O

f.

CU
DA

Ko
kk
os

nanoXOR 109 33 2 ✓ ? ✓ ?
microXORh 127 33 3 ✓ ? ✓ ?
microXOR 133 33 4 ✓ ? ✓ ?
SimpleMOC-kernel 780 59 6 ? ✓ ?
XSBench* 2449 264 9 ✓ ✓? ✓ ✓?
llm.c 3039 360 7 ? ✓ ?

Table 1: The complete set of applications used as transla-

tion tasks in this work, including number of source lines

of code (SLoC), cyclomatic complexity (CC), and number of

files. On the right side, we indicate the programming models

already implemented in the application in green and with a

checkmark. Programming models we will attempt to port to

are indicated with a question mark and colored yellow. For

XSBench, we are porting to an existing model to examine

whether the existence of a public port improves translation

ability.

impact of possible data contamination, we do include one case,
XSBench, which is known to have publicly-available ports in the
programmingmodels we target. Aswewill demonstrate in Section 8,
applications at this level of complexity are sufficient to expose
significant weaknesses in current state-of-the-art approaches to
full application translation.

We briefly describe each application in ParEval-Repo below.
Each application differs in size and file count as well as key charac-
teristics that affect the difficulty of its associated translation tasks.

nanoXOR. nanoXOR is a custom micro-application written specif-
ically for ParEval-Repo. It consists of a single kernel and driver
function in a single source file. The nanoXOR kernel performs a
simple four-point stencil with the XOR operator over a 2D grid.

microXORh. microXORh is also a custom micro-application, one
step in complexity above nanoXOR. It differs only in that the GPU
kernel is written in a separate header file that is included in the
main function file, introducing a simple compile-time dependency.

microXOR. microXOR is the last of our custom micro-applications.
It is one more step in complexity up from microXORh, with the
kernel and main driver function in two separate source files, intro-
ducing a simple link-time dependency to the translation problem.

SimpleMOC-kernel. SimpleMOC-kernel is a proxy application for
SimpleMOC [23], representing neutron flux attenuation. Only a
CUDA version is available publicly. It depends on the external
cuRAND library, posing an additional challenge to translation.

XSBench. XSBench is a proxy application for OpenMC [24], repre-
senting macroscopic cross-section lookup. XSBench is a substan-
tial step up in complexity from SimpleMOC-kernel, but does have
publicly-available implementations of the translations we attempt.
This case will provide insight into whether possible data contami-
nation can affect translation success rate.

llm.c. llm.c is a CUDA implementation of LLM pretraining. We have
slightly reduced the size of the llm.c application to focus on critical

https://github.com/parallelcodefoundry/ParEval-Repo
https://github.com/parallelcodefoundry/ParEval-Repo

ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks ICPP ’25, September 08–11, 2025, San Diego, CA, USA

application components. llm.c provides a case study for making
AI applications portable, and is a more complex case that does not
have publicly-available ports to other programming models.

5.2 Programming model translation pairs

selected

We further subdivide our translation tasks into pairs of program-
ming models, the source programming model and the destination
programming model for translation.

5.2.1 CUDA to OpenMP Offload. For all applications we examine
translation from CUDA to OpenMP (GPU) Offload. OpenMP com-
piler directives are relatively unobtrusive code modifications, but
compared to the muchmore obtrusive and explicit CUDAmodel, we
should expect translations to require a significant degree of code
changes. Converting to OpenMP offload also poses compilation
challenges, as we require the LLM to produce a working Makefile
that provides correct compile flags to use OpenMP offload for the
specified compiler and system.

5.2.2 CUDA to Kokkos. For all applications we also test translation
from CUDA to Kokkos [25], a portable programming model that
can execute on NVIDIA GPUs by acting as an abstraction layer over
CUDA code. Kokkos code is often structurally similar to CUDA
code, including kernels and explicit memorymanagement. However,
it poses greater challenge with successful compilation, with the
addition of a library dependency, advanced C++ features, and the
CMake build system generator.

5.2.3 OpenMP Threads to OpenMP Offload. For most applications,
excluding those that lack a OpenMP threads (CPU) implementation,
we evaluate translation from OpenMP threads to offload. We would
expect this task to be easiest, largely requiring modification of
existing OpenMP directives. However, this is the only translation
task that requires migration from CPU to GPU parallelization.

In total, we evaluate translation of six applications for two trans-
lation pairs, and four applications for the third translation pair, for
a total of sixteen unique translation tasks.

6 Metrics for Repo-level Translation

Correctness and Performance

In this section, we define the metrics we use to assess the quality
of translations of full-scale applications between parallel program-
ming models. We consider the quality of the translation tool output
in terms of both correctness and token economy.

6.1 Metrics for correctness

For correctness, we adopt the definition of pass@𝑘 from [18], as
described in 2.2 by Equation (1). We report both the average of
pass@𝑘 over all tasks in ParEval-Repo as well as per-task pass@𝑘 .

Each application in our benchmark suite provides test cases, and
a solution must generate expected outputs for those tests. To be
considered correct we also require that the translation be imple-
mented using the requested target programming model and execute
on the hardware specified in the prompt.

To separately consider compilation success and failure this in our
evaluation, we employ build@𝑘 , which measures the probability

that the model will generate a compilable solution given 𝑘 attempts.
This metric is similar to pass@𝑘 except that it considers all sam-
ples that compile, not just those which are correct. The number
of correct samples, 𝑐𝑡 , is replaced with the number of buildable
samples, 𝑏𝑡 . The typical translation task for a full application can
take some time, on the order of ten to thirty minutes. As such,
𝑝𝑎𝑠𝑠@1 and 𝑏𝑢𝑖𝑙𝑑@1, or the likelihood of correctness and build
success for a single translation attempt, provide the best insight
into user experience among possible 𝑘 values.

6.2 Metric for token economy

We also measure the token economy of LLM inference prompts gen-
erated by the translation tool, to understand how tool choice affects
cost of translation. Most LLMs inference serving APIs charge users
by the number of input tokens and output tokens used, and output
tokens are typically more expensive than input tokens. Self-hosted
LLM inference does not directly incur a financial cost, but does
incur a compute time cost in node hours, charged to an allocation if
using a cloud or supercomputing center. In such cases, the number
of tokens consumed is proportional to the compute time of the in-
ference prompt. We report for each combination of translation tool
and translation task the average number of tokens consumed. The
tokenization process differs across LLMs, so these values should
be compared primarily between different LLM-based tools sending
prompts to the same underlying LLM. To enable comparison be-
tween LLMs, we provide estimated costs in dollars or node hours
as appropriate in Section 8.4 for two top-performing LLMs.

To assess the impact of accuracy on token economy, we propose
the expected token cost (𝐸𝜅) metric. This is defined as the expected
number of generations required to produce a correct translation (i.e.,
the multiplicative inverse of the pass@1 score) multiplied by the
average number of tokens required to produce a single translation.
𝐸𝜅 is defined explicitly in Eq. 2.

𝐸𝜅 =
©­« 1

pass@1
ª®¬ · 𝜅 (2)

Single generation correctness chance

Average token cost per

generation for the task

6.3 Identifying and classifying translation

errors

To identify specific opportunities for improvement, we analyze
mistakes made by LLMs in their translation attempts. Failures in
the translation process can come from many sources and are only
recorded in unstructured build and run logs. To evaluate errors
from the thousands of builds and runs we perform, we develop a
semi-automated method to classify errors in the translation process.
We cluster the build and run logs of the translated applications into
sets of similar errors, and then name these clusters based on the
error class they reflect.

We first convert the build and run logs of each translation and run
to vector embeddings using the word2vec [16] model. This yields
for each translation a single vector that captures the semantics of
its output logs. We then cluster these vectors using the DBSCAN [11]

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Davis et al.

algorithm, a density-based clustering algorithm that can identify
clusters of arbitrary shapes, is robust to noise, and has only two
hyperparameters that need to be tuned. We manually inspect the
quality of resulting clusters to tune DBSCAN’s hyperparameters.

While the clustering is helpful, it produces many clusters and
fails to join some similar errors. We make a manual pass over
the algorithmically-generated clusters to merge them and reassign
samples to different clusters where appropriate. During the manual
pass we also assign a short label to each cluster that describes
the category of error it contains. This combination of automated
clustering, followed by manual correction and labeling, allows us
to productively classify the most common errors in the translation
process for a large number of translation tasks.

7 Experimental Setup

In this section we describe the experimental setup for translation
generation (inference) and testing.

7.1 Inference setup

For commercial API models, we set a total budget of 200 dollars,
with 170 dollars for o4-mini and 30 dollars for GPT-4o-mini. We
complete Gemini inference using the Google’s API free tier.

For locally-hosted open-source models, we employ the vLLM
inference engine version 0.8.2 configured in server mode. We run
inference on the Delta system at NCSA2, specifically the single-
socket A100 nodes, which have four 40 GB NVIDIA A100 GPUs,
one 64-core AMD Milan CPU, and 256 GB of RAM. We configure
vLLM to use all four GPUs with tensor parallelism with prompt
prefix caching enabled, and batch requests where possible.

7.2 Evaluation setup

All translation tasks in ParEval-Repo require translation to a GPU
programming model. We test translations on a single NVIDIA 40GB
A100 GPU, hosted on the Zaratan system at the University of Mary-
land3 on a single node with a 128-core AMD EPYC 7763 CPU and
512 GB of RAM. We use CUDA 12.3.0 universally and compile
OpenMP offload codes with LLVM 19.1.7 and Kokkos codes with
Kokkos 4.5.01 and GCC 11.3.0.

8 Results

In this section we present example translations, results for cor-
rectness of generated code translations across LLMs, tasks, and
techniques, our analysis of the clustering of errors encountered in
attempting to compile LLM translations, and our analysis of the
token efficiency of cases where the LLM translation is successful.

8.1 Examples of successful and unsuccessful

translations

Listings 2- 4 provide the original nanoXOR CUDA kernel, and
examples of correct and incorrect translations to OpenMP Offload
generated by QwQ with the non-agentic and agentic translation
techniques, respectively. The agentic translation is incorrect, as it

2https://docs.ncsa.illinois.edu/systems/delta/en/latest/index.html
3http://hpcc.umd.edu

omits the target and parallel for directives, which are required
to run the loop on the GPU and parallelize the loop across threads.

1 __global__ void cellsXOR(const int *input , int *output ,

size_t N) {

2 int i = blockIdx.y * blockDim.y + threadIdx.y;

3 int j = blockIdx.x * blockDim.x + threadIdx.x;

4 if (i < N && j < N) {

5 int count = 0;

6 if (i > 0 && input[(i-1)*N + j] == 1) count ++;

7 if (i < N-1 && input[(i+1)*N + j] == 1) count ++;

8 if (j > 0 && input[i*N + (j-1)] == 1) count ++;

9 if (j < N-1 && input[i*N + (j+1)] == 1) count ++;

10 output[i*N + j] = (count == 1) ? 1 : 0;

11 }

12 }

Listing 2: Original nanoXOR CUDA kernel.

1 #pragma omp target data map(to: input [0:N*N]) map(from:

output [0:N*N])

2 {

3 #pragma omp target teams distribute parallel for

collapse (2)

4 for (int i = 0; i < N; i++) {

5 for (int j = 0; j < N; j++) {

6 // Kernel body identical , omitted for brevity

Listing 3: Correct nanoXOR OpenMP Offload translation

generated by the non-agentic translation method with

qwq-32b-q8_0.

1 #pragma omp target data map(to: input [0:N*N]) map(from:

output [0:N*N])

2 {

3 #pragma omp teams distribute collapse (2) num_threads(

blockEdge * blockEdge)

4 for (size_t i = 0; i < N; i++) {

5 for (size_t j = 0; j < N; j++) {

6 // Kernel body identical , omitted for brevity

Listing 4: Incorrect nanoXOR OpenMP Offload translation

generated by the agentic translation method with

qwq-32b-q8_0.

8.2 Translation correctness

In Figure 2 we present build@1 and pass@1 results for our three
programming model translation pairs. Within each row of subfig-
ures, the left subfigure indicates build@1 scores, the likelihood of
generating a compilable translation given one attempt, while the
right subfigure indicates pass@1, the likelihood of generating a
translation that passes correctness tests given one attempt.

Within each subfigure, the heatmaps are organized into rows and
columns. Each column of heatmaps corresponds to a translation
technique, non-agentic, top-down, and SWE-agent (where applica-
ble). The upper row of heatmaps in each subfigure corresponds to
“Code-only” score, while the lower row of heatmaps corresponds to
“Overall” score. “Code-only” score considers only the correctness
of the generated source code, using a pre-written ground truth
Makefile or CMakeLists.txt manually translated by the authors to
compile the LLM-translated source code. “Overall” score reflects the
results of using the LLM-translated source code and build system.

Note that an experiment configuration with no value in its
heatmap cell indicates that we do not run that case, and results

https://docs.ncsa.illinois.edu/systems/delta/en/latest/index.html
http://hpcc.umd.edu

ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks ICPP ’25, September 08–11, 2025, San Diego, CA, USA

of 0 indicate that we run the configuration but it does not gen-
erate any correct translations. In several cases, we are unable to
generate translations for a combination of LLM, translation tech-
nique, application, and programming model pair. The non-agentic
approach, because it requires each file to be generated in one re-
sponse, cannot scale to some application sizes due to exceeding
LLM output context limits. This is the case for Gemini and GPT-4o
when translating llm.c, and for Gemini when translating XSBench
from CUDA to OpenMP offload. In some cases with the top-down
agentic approach using local models, we do not complete transla-
tion due to exceeding our per-experiment budget of 8 node hours.
This is the case for QwQ translating XSBench and llm.c with all
programming model pairs as well as Llama-3.3 translating XSBench
and llm.c from CUDA to Kokkos. Finally, we present SWE-agent
results for a subset of the cases due primarily to the SWE-agent’s
incompatibility with Makefile mentioned in Sec. 3.3, but also omit
XSBench and llm.c to remain within our OpenAI API budget.

Across all cases, we observe that Overall score is consistently sig-
nificantly lower than Code-only score. This indicates a substantial
capability gap between source code translation and build system
generation. To further explore the reasons why LLMs fail to gener-
ate functional build systems, we examine the types of build errors
encountered in this study in Sec. 8.3.

Examining the impact of translation technique, we observe that
the non-agentic approach, where it can complete a translation, tends
to achieve the highest scores in both build and pass@1, although
this varies across LLMs used. SWE-agent, while only tested with
one LLM and programming model pair, achieves moderate success,
particularly in overall build@1 score. But, it does not manage to gen-
erate any code that passes correctness tests. The non-agentic likely
outperforms the top-down agentic approach due to the greater quan-
tity of repository context provided, highlighting the need for more
sophisticated approaches in future work to develop full application
translation agents. Along the programming model translation pair
axis, we observe that CUDA to Kokkos translation is significantly
more challenging that the translations involving OpenMP.

Turning next to the application axis, we find that more complex
applications generally pose greater challenge for all LLMs and
translation techniques, as expected. One notable exception can be
found with non-agentic Llama-3.3 translating CUDA to OpenMP
offload, where code-only pass@k is 0.76 for microXORh but only
0.2 for nanoXOR. Additionally, non-agentic Llama-3.3 translating
OpenMP threads to OpenMP offload achieves a pass@k of 0.68
for microXOR and 0 for microXORh and nanoXOR. Overall, no
combination of translation technique and LLM achieves a pass@k
above 0 for any application larger than microXOR. This key finding
indicates that LLM-based translation cannot yet produce working
code in a fully automated manner. In Sec. 8.3, we explore the key
obstacles to success in translating larger applications in terms of
most frequent compilation errors in translated code.

8.3 Error clustering

We cluster the error messages recorded by ParEval-Repo’s trans-
lation testing code when attempting to build the generated trans-
lations, as described in Sec. 6.3. Figure 3 displays the results of
this analysis, after manually combining highly similar clusters and

removing clusters of less interest, including errors related to miss-
ing files and build timeouts as well as successful build outputs.
Across applications and LLMs, errors relating to CMake configu-
ration, as well as undeclared identifiers and function argument or
type mismatches for apps besides nanoXOR, are broadly common.
This suggests that coordination of function interfaces and vari-
able names across files and successful configuration of CMake for
Kokkos builds are common points of difficulty across LLMs. These
broader issues must be addressed by improved LLM translation
techniques and prompting, rather than tuning the choice of LLM.

However, we also observe that some categories of errors are
only highly prevalent for some LLMs and applications. For example,
Gemini appears most likely to struggle with Makefile syntax and
compiler flags, particularly for SimpleMOC-kernel, Llama-3.3 is
particularly susceptible to source code syntax mistakes, and GPT-
4o mini produces translation that fail to link especially often for
microXOR.We observe that LLMs can still encounter unique pitfalls
that may be avoided by tuning the choice of LLM.

While many of these error categories can occur for ordinary, non-
HPC codes, we note that the use of portable GPU programmingmod-
els introduces unique complexities in compilation that contributes
significantly to their prevalence, as observed in prior work [6]. For
example, mistakes with compiler flag choice frequently arise from
use of incorrect OpenMPOffload flags, and the undeclared identifier
and function argument/type mismatch categories include mistakes
in interacting with Kokkos library features.

8.4 Inference token economy

We also analyze the cost of translation in terms of token economy,
or the number of inference tokens required to complete a transla-
tion. Figure 4 displays total inference tokens used for translation
for each technique, LLM, and application combination, averaged
across programming model translation pairs and individual genera-
tions. Note that in Figure 4 some additional heatmap cells are empty
compared to Figure 2, because we do not include the total tokens
consumed for any cases where zero total correct translations are
generated. Among commercial API LLMs, the non-agentic trans-
lation technique consumes more inference tokens than top-down,
but among open-source locally-hosted LLMs, the top-down agentic
approach is more expensive, largely because the commercial API
LLMs are more conservative in selecting translation context in the
top-down approach. In the non-agentic approach, QwQ in particu-
lar consumes a significant quantity of tokens, due to the size of its
reasoning output. o4-mini is also a reasoning model but consumes
significantly fewer additional tokens.

Figure 5 lists 𝐸𝜅 , the expected number of tokens needed to pro-
duce a successful translation, as defined in Sec. 6.2. We aggregate
this metric only over cases where the pass@1 is greater than 0. We
can conclude from Figure 5 that among commercial API models,
non-agentic o4-mini produces correct translations at the lowest
token cost, while among open-source locally-hosted models, non-
agentic Llama-3.3 is cheapest.

Given the expected token cost provided in Figure 5, we can esti-
mate the total cost in US dollars or in node-hours for the least expen-
sive API and open-source models, respectively. Table 2 lists these

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Davis et al.

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

C
od

e-
on

ly
 s

co
re

1 0.98 0.92 0.92 0.9

0 1 0.56 0.88 0.4

0.1 0.3 0.52 0.76 0.46

0 0 0 0 0

0 0 0 0

0 0 0

Non-agentic

1 0.98 0.96 0.68 0.22

0.24 0.24 0.12 0.36 0.36

0 0.08 0.2 0.3 0

0 0 0 0.02 0.08

0 0 0 0

0.04 0.16 0 0

Top-down agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

O
ve

ra
ll

sc
or

e

0.58 0.46 0.76 0 0.64

0 0.08 0.32 0 0.32

0 0.1 0.44 0.04 0.24

0 0 0 0 0

0 0 0 0

0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0 0.02 0.8 0.02 0.04

0 0 0.12 0 0.12

0 0.04 0.16 0.04 0

0 0 0 0.02 0.08

0 0 0 0

0.04 0.16 0 0
0.0

0.2

0.4

0.6

0.8

1.0

build@
1

(a) build@1 for CUDA to OpenMP Offload

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

C
od

e-
on

ly
 s

co
re

0 0.72 0.84 0.2 0.6

0 0.32 0.48 0.76 0.4

0.06 0.26 0.48 0.36 0.38

0 0 0 0 0

0 0 0 0

0 0 0

Non-agentic

0 0.68 0.88 0.2 0.2

0.12 0.12 0.12 0.24 0.12

0 0 0.2 0.12 0

0 0 0 0 0

0 0 0 0

0 0 0 0

Top-down agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

O
ve

ra
ll

sc
or

e

0 0.42 0.68 0 0.44

0 0.08 0.24 0 0.32

0 0.1 0.4 0.04 0.2

0 0 0 0 0

0 0 0 0

0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0 0.02 0.72 0 0.04

0 0 0.12 0 0.04

0 0 0.16 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0
0.0

0.2

0.4

0.6

0.8

1.0
pass@

1

(b) pass@1 for CUDA to OpenMP Offload

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

C
od

e-
on

ly
 s

co
re

0 0.26 1 1 0.04

0 0.4 0.96 0.04 0.12

0 0.24 0.72 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

Non-agentic

0 0.32 0.96 0.44 0.08

0 0.28 0.48 0 0.04

0 0.2 0.28 0 0

0 0 0 0 0

0 0 0

0 0 0

Top-down agentic

0.28

0.08

0

0

SWE-agent

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

O
ve

ra
ll

sc
or

e

0 0 1 0 0

0 0.2 0.92 0.04 0.08

0 0.24 0.72 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0 0.16 0.92 0.08 0.08

0 0.2 0.44 0 0.04

0 0.2 0.28 0 0

0 0 0 0 0

0 0 0

0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0.28

0.08

0

0

0.0

0.2

0.4

0.6

0.8

1.0

build@
1

(c) build@1 for CUDA to Kokkos

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c
C

od
e-

on
ly

 s
co

re

0 0 0.6 0 0

0 0.16 0.08 0 0.04

0 0 0.24 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

Non-agentic

0 0 0.04 0 0

0 0 0.04 0 0

0 0 0.04 0 0

0 0 0 0 0

0 0 0

0 0 0

Top-down agentic

0

0

0

0

SWE-agent

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR

microXORh

microXOR

SimpleMOC-kernel

XSBench

llm.c

O
ve

ra
ll

sc
or

e

0 0 0.6 0 0

0 0 0.04 0 0

0 0 0.24 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0 0 0 0 0

0 0 0 0 0

0 0 0.04 0 0

0 0 0 0 0

0 0 0

0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0

0

0

0

0.0

0.2

0.4

0.6

0.8

1.0

pass@
1

(d) pass@1 for CUDA to Kokkos

nanoXOR

microXORh

microXOR

XSBenchC
od

e-
on

ly
 s

co
re 1 1 0.84 1 0.6

1 1 0.92 0.36 0.16

1 0.4 0.36 0.96 0.04

0 0 0 0 0

Non-agentic

1 0.96 0.96 0.44 0.2

1 0.72 0.72 0.24 0.08

0.88 0.12 0.36 0.16 0.12

0 0 0

Top-down agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR

microXORh

microXOR

XSBenchO
ve

ra
ll

sc
or

e 0 0.08 0.84 0 0.24

0 0 0.84 0 0.08

0 0 0.32 0 0.04

0 0 0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0 0 0.84 0.32 0.16

0 0 0.4 0.12 0.04

0 0 0.32 0.08 0.12

0 0 0
0.0

0.2

0.4

0.6

0.8

1.0

build@
1

(e) build@1 for OpenMP Threads to OpenMP Offload

nanoXOR

microXORh

microXOR

XSBenchC
od

e-
on

ly
 s

co
re 0 1 0.68 0 0.6

0 0.6 0.76 0 0.08

0 0.4 0.32 0.68 0.04

0 0 0 0 0

Non-agentic

0 0.92 0.96 0.28 0.16

0.08 0.2 0.6 0 0

0.08 0.08 0.32 0.08 0.08

0 0 0

Top-down agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR

microXORh

microXOR

XSBenchO
ve

ra
ll

sc
or

e 0 0.08 0.68 0 0.24

0 0 0.68 0 0.04

0 0 0.28 0 0.04

0 0 0 0 0

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

0 0 0.84 0.24 0.16

0 0 0.32 0 0

0 0 0.28 0.04 0.08

0 0 0
0.0

0.2

0.4

0.6

0.8

1.0

pass@
1

(f) pass@1 for OpenMP Threads to OpenMP Offload

Figure 2: Correctness metrics for OpenMP Threads to OpenMP Offload tasks.

estimates for the three applications that can be successfully trans-
lated. We calculate these estiamtes using public OpenAI API costs
for o4-mini as well as our observed average generation through-
put of 187 tokens per second on a single node of the Delta system
with vLLM, as described in 7. Note that Llama-3.3 nanoXOR cost
is particularly high due to Llama’s unexpected difficulty with that
simple application, as described in Sec. 8.2.

9 Related Work

Prior studies have examined using LLMs for code translation. We
separate the relevant literature into two categories, repo-level trans-
lation and parallel code translation and generation.

9.1 Repository-level code translation

Automating repository-level translation has been a growing area of
focus. Prior studies leverage LLMs to minimize human intervention

ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks ICPP ’25, September 08–11, 2025, San Diego, CA, USA

nanoXOR
microXORh
microXOR

SimpleMOC-kernel
XSBench

llm.c

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
49 1 1 22 10
0 0 0 0 0
10 0 0 0 1

CMake or Makefile
Syntax Error

0 0 0 1 48
0 0 2 1 10
0 0 3 0 6
0 0 1 0 0
0 0 1 0 0
18 13 1 0 4

Makefile Missing
Build Target

0 11 45 0 1
0 12 31 1 3
0 17 24 0 0
16 16 4 10 2
0 0 0 0 0
8 5 3 0 13

CMake Config Error
0 0 0 0 8
0 0 0 0 4
0 0 1 0 4
57 40 2 3 14
0 0 0 0 0
2 7 3 0 14

Invalid Compiler
Flag

nanoXOR
microXORh
microXOR

SimpleMOC-kernel
XSBench

llm.c

0 0 0 2 0
0 0 11 4 5
0 0 9 12 5
0 0 4 4 0
25 25 11 0 7
0 0 0 0 0

Missing Header
File

0 0 0 18 0
0 0 0 4 1
0 1 3 14 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

Code Syntax Error

ge
m

in
i-1

.5
-fl

as
h

gp
t-

4o
-m

in
i

o4
-m

in
i

Ll
am

a-
3.

3-
70

B
qw

q-
32

b-
q8

_0

0 0 0 0 6
29 2 1 3 17
75 14 10 3 11
0 10 21 34 4
25 10 26 0 14
0 0 0 0 0

Undeclared
Identifier

ge
m

in
i-1

.5
-fl

as
h

gp
t-

4o
-m

in
i

o4
-m

in
i

Ll
am

a-
3.

3-
70

B
qw

q-
32

b-
q8

_0

0 0 0 0 0
13 14 14 27 10
1 35 22 6 13
0 0 2 11 4
0 0 0 0 0
0 0 0 0 0

Function Argument
or Type Mismatch

ge
m

in
i-1

.5
-fl

as
h

gp
t-

4o
-m

in
i

o4
-m

in
i

Ll
am

a-
3.

3-
70

B
qw

q-
32

b-
q8

_0

nanoXOR
microXORh
microXOR

SimpleMOC-kernel
XSBench

llm.c

0 3 0 7 6
2 2 0 5 1
2 6 1 9 8
0 0 0 0 0
0 7 0 0 0
0 0 0 0 0

OpenMP Invalid
Directive

ge
m

in
i-1

.5
-fl

as
h

gp
t-

4o
-m

in
i

o4
-m

in
i

Ll
am

a-
3.

3-
70

B
qw

q-
32

b-
q8

_0

0 0 0 0 2
0 0 0 1 0
6 41 5 1 7
0 0 1 1 1
0 0 0 0 0
0 0 1 0 2

Linker Error

0

5

10

15

20

25

30

35

40

45

Error count

Figure 3: Count of categories of errors encountered when

across combinations of large language models and applica-

tion.

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR
microXORh
microXOR

SimpleMOC-kernel
XSBench

llm.c

8 7 11 55 345
11 10 15 38 247
13 12 18 40 551
83 70 86 374 1007
342 311 329 731 1204

440 796 1308

Non-agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

4 4 7 572 650
5 7 10 797 619
5 7 14 906 1281
26 32 51 1953 1915
95 106 177
155 164 303

Top-down agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

11
10
12
20

SWE-agent

100

101

102

103

A
verage tokens

used (thousands)

Figure 4: Total inference tokens used in translation, aver-

aged across individual generations and programming model

translation pairs.

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

nanoXOR
microXORh
microXOR

SimpleMOC-kernel
XSBench

llm.c

8 16 399 616

37 82 41 3251

226 38 57 54 5205

Non-agentic

ge
mini

-1
.5-

fla
sh

gp
t-4

o-
mini

o4
-m

ini

Lla
ma-3

.3-
70

B

qw
q-

32
b-

q8
_0

5 66 2008 3691

49 45 131 2466 3731

64 104 170 10728 13306

Top-down agentic

100

101

102

103

104

Expected tokens
needed (thousands)

Figure 5: Expected tokens needed for successful translation

(𝐸𝜅), averaged across individual generations and program-

ming model translation pairs where at least one generation

passed correctness test is (i.e., pass@1 is greater than 0).

in the translation process when scaling translation to larger code-
bases. For instance, AlphaTrans explores translating Java to Python
by breaking down large repositories into smaller, manageable frag-
ments and iteratively validating results for syntactic correctness
and functional equivalence [13]. Additional work also considers
the problem from a benchmarking perspective. RepoTransBench
proposes a benchmark suite of Python to Java translation tasks

nanoXOR microXORh microXOR
Non-agentic o4-mini $0.03 $0.04 $0.05
Non-agentic Llama-3.3 0.6 n.h. 0.06 n.h. 0.08 n.h.

Table 2: Estimated cost in dollars or node-hours for successful

translation, based on 𝐸𝜅 , publishedOpenAIAPI costs, and our

observed average generation throughput on a single Delta

node with Llama-3.3 in vLLM (187 tokens per second).

for assessing LLM translation capabilities, finding that LLMs con-
sistently achieve below-par results for these tasks [28]. However,
these projects both consider translation between Java and Python,
without parallel programming models and with no consideration
of languages more common in high-performance computing, in-
cluding C/C++ and Fortran. Furthermore, the methodologies in
these studies is tightly integrated with Java and Python code and
build systems, making the techniques difficult to generalize to other
workflows, particularly those in HPC. As an example, we discov-
ered that SWE-agent does not work with Makefiles, which are a
critical part of many HPC codes.

9.2 Parallel code translation

Several efforts to develop LLM tools to translate parallel code exist.
First, CodeRosetta [22] proposes an encoder-decoder transformer
model to translate between C++ and CUDA as well as Fortran and
C++. Unfortunately, its approach is evaluated only using the Code-
BLEU similar score, without genuine runtime data. Similarly, Code-
Scribe utilizes a scoped code hierarchy and retrieval-augmented
generation (RAG) to guide LLM-based translations from Fortran
to C++, ensuring compatibility through intermediate Fortran-C
APIs [9]. LASSI, on the other hand, focuses on translating parallel
programming models, such as CUDA and OpenMP, using iterative
compilation and runtime feedback for self-correction [7]. Similarly,
the dataset introduced in by Lei et al. [14] focuses on CPU OpenMP
Fortran and C++. but does not extend or generalize to other pro-
gramming models like Kokkos or OpenMP GPU offloading, and
relies on only the CodeBLEU similar metric and human evaluation.

While these strategies demonstrate progress in translating par-
allel code, they often do not consider genuine code functionality,
instead employing CodeBLEU code similarity scores to assess trans-
lation quality. Furthermore, many employ translation tasks that
have already have publicly-available implementations. For example,
LASSI relies on HeCBench, which include reference implementa-
tions for CUDA and OpenMP already. This creates a risk of training
dataset contamination with test problems, making it possible for
LLMs to recite already-seen translated code rather than reasoning
through the problem and carrying out a genuine translation.

10 Conclusion

Converting an entire application codebase to use a new program-
ming model is a tedious but necessary task to take advantage of the
hardware available on flagship supercomputing platforms. Leverag-
ing large language models to automate this effort has the potential
to enormously improve HPC application developer productivity. In
this paper, we have described ParEval-Repo, a collection of HPC

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Davis et al.

application translation tasks covering multiple parallel program-
ming models and a range of application sizes. We have evaluated a
range of state-of-the-art LLMs using both non-agentic and agentic
approaches to full application translations, and find that existing
techniques largely fail to translate applications beyond trivial scale.
We identify that generating working build systems is a major ob-
stacle to successful full-repository translation, and furthermore
identify categories of compilation failures that occur across LLMs
and only for specific LLMs. The insights gained from our analysis
will be critical for designing future approaches that can successfully
translate large applications. We conclude with a cost analysis of the
most token-economic open-source and commercial LLMs for our
translation tasks using our proposed metric for expected token cost,
𝐸𝜅 . Given the difficulty LLMs encounter in generating compilable
translations, opportunities for future work include constructing a
dataset of complete HPC code repositories for use in fine-tuning
LLMs or including in prompt context for few-shot learning.

Acknowledgments

This material is based upon work supported in part by the National
Science Foundation (NSF) under Grant No. 2047120, and the NSF
Graduate Research Fellowship Programunder Grant No. DGE 2236417.
This material is based upon work supported in part by the U.S. De-
partment of Energy (DOE), Office of Science, Office of Advanced Sci-
entific Computing Research, through solicitation DE-FOA-0003264,
“Advances in Artificial Intelligence for Science”, under Award Num-
ber DE-SC0025598. This work was performed under the auspices of
the U.S. DOE by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-855581).

This research is supported by the National Artificial Intelligence
Research Resource (NAIRR) Pilot and the Delta advanced computing
and data resource which is supported by the NSF (award NSF-OAC
2005572) and the State of Illinois. The authors acknowledge the
University of Maryland supercomputing resources made available
for conducting the research reported in this paper.

References

[1] 2024. Llama 3.3 Model Card and Prompt Format. https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_3/

[2] 2024. QwQ: Reflect Deeply on the Boundaries of the Unknown. https://qwenlm.
github.io/blog/qwq-32b-preview/

[3] 2025. o3 and o4-mini System Card. https://cdn.openai.com/pdf/2221c875-02dc-
4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

[4] Waseem Ahmed, Mohsin Khan, Adeel Ahmed Khan, Rashid Mehmood, Abdullah
Algarni, Aiiad Albeshri, and Iyad Katib. 2018. A Framework for Faster Porting of
Scientific Applications Between Heterogeneous Clouds. In Smart Societies, Infras-
tructure, Technologies and Applications, Rashid Mehmood, Budhendra Bhaduri,
Iyad Katib, and Imrich Chlamtac (Eds.). Springer International Publishing, Cham,
27–43.

[5] Joshua H Davis, Justin Shafner, Daniel Nichols, Nathan Grube, Pino Martin, and
Abhinav Bhatele. 2023. Porting a computational fluid dynamics code with amr
to large-scale gpu platforms. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 602–612.

[6] JoshuaH. Davis, Pranav Sivaraman, Joy Kitson, Konstantinos Parasyris, Harshitha
Menon, Isaac Minn, Giorgis Georgakoudis, and Abhinav Bhatele. 2025 (to ap-
pear). Taking GPU Programming Models to Task for Performance Portability. In
Proceedings of the International Conference on Supercomputing (ICS ’25).

[7] Matthew TDearing, Yiheng Tao, XingfuWu, Zhiling Lan, and Valerie Taylor. 2024.
LASSI: An LLM-basedAutomated Self-Correcting Pipeline for Translating Parallel
Scientific Codes. In 2024 IEEE International Conference on Cluster Computing
Workshops (CLUSTER Workshops). IEEE, 136–143.

[8] DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501.
12948

[9] Akash Dhruv and Anshu Dubey. 2025. Leveraging Large Language Mod-
els for Code Translation and Software Development in Scientific Computing.
arXiv:2410.24119 [cs.SE] https://arxiv.org/abs/2410.24119

[10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The Llama 3 Herd of Models. Technical Report.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (Portland, Oregon) (KDD’96). AAAI Press, 226–231.

[12] William F Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Balaprakash, and
Jeffrey S Vetter. 2024. Large language model evaluation for high-performance
computing software development. Concurrency and Computation: Practice and
Experience 36, 26 (2024), e8269.

[13] Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi, Muhammad Salman Abid,
Rangeet Pan, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Repository-level
compositional code translation and validation. arXiv:2410.24117 [cs.SE] https:
//arxiv.org/abs/2410.24117

[14] Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, and Chunhua Liao. 2023. Creating
a Dataset for High-Performance Computing Code Translation using LLMs: A
Bridge Between OpenMP Fortran and C++. arXiv:2307.07686 [cs.SE] https:
//arxiv.org/abs/2307.07686

[15] Nicholas Malaya, Bronson Messer, Joseph Glenski, Antigoni Georgiadou, Justin
Lietz, Kalyana Gottiparthi, Marc Day, Jackie Chen, Jon Rood, Lucas Esclapez,
et al. 2023. Experiences readying applications for exascale. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–13.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs.CL]
https://arxiv.org/abs/1301.3781

[17] Christian Munley, Aaron Jarmusch, and Sunita Chandrasekaran. 2023.
LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation.
arXiv:2310.04963 [cs.AI]

[18] Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav
Bhatele. 2024. Can Large Language Models Write Parallel Code?. In Proceedings
of the 33rd International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’24). Association for Computing Machinery, New York, NY,
USA.

[19] OpenAI, Aaron Hurst, and et al. 2024. GPT-4o System Card.
arXiv:2410.21276 [cs.CL] https://arxiv.org/abs/2410.21276

[20] OpenMP4 2013. OpenMP Application Program Interface. Version 4.0. July 2013.
[21] Gemini Team. 2023. Gemini: A Family of Highly Capable Multimodal Models.

arXiv:2312.11805 [cs.CL]
[22] Ali Tehrani, Arijit Bhattacharjee, Le Chen, Nesreen K Ahmed, Amir Yazdan-

bakhsh, and Ali Jannesari. 2024. CodeRosetta: Pushing the Boundaries of Un-
supervised Code Translation for Parallel Programming. Advances in Neural
Information Processing Systems 37 (2024), 100965–100999.

[23] John R. Tramm, Geoffrey Gunow, Tim He, Kord S. Smith, Benoit Forget, and
Andrew R. Siegel. 2016. A task-based parallelism and vectorized approach to
3D Method of Characteristics (MOC) reactor simulation for high performance
computing architectures. Computer Physics Communications 202 (2016), 141 –
150. doi:10.1016/j.cpc.2016.01.007

[24] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014.
XSBench-the development and verification of a performance abstraction for
Monte Carlo reactor analysis. The Role of Reactor Physics toward a Sustainable
Future (PHYSOR) (2014).

[25] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the
Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
805–817. doi:10.1109/TPDS.2021.3097283

[26] Pedro Valero-Lara, William F Godoy, Keita Teranishi, Prasanna Balaprakash,
and Jeffrey S Vetter. 2024. ChatBLAS: The First AI-Generated and Portable
BLAS Library. In SC24-W: Workshops of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 19–24.

[27] Ben Van Werkhoven and Pieter Hijma. 2015. An integrated approach to porting
large scientific applications to GPUs. In 2015 IEEE 11th International Conference
on e-Science. IEEE, 57–66.

[28] Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo, Jiachi Chen, John Grundy,
Xilin Liu, Yuchi Ma, Mingzhi Mao, Hongyu Zhang, and Zibin Zheng. 2024. Repo-
TransBench: A Real-World Benchmark for Repository-Level Code Translation.
arXiv:2412.17744 [cs.SE] https://arxiv.org/abs/2412.17744

[29] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. 2024. Swe-agent: Agent-computer interfaces enable
automated software engineering. Advances in Neural Information Processing
Systems 37 (2024), 50528–50652.

https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.24119
https://arxiv.org/abs/2410.24119
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2307.07686
https://arxiv.org/abs/2307.07686
https://arxiv.org/abs/2307.07686
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2310.04963
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2312.11805
https://doi.org/10.1016/j.cpc.2016.01.007
https://doi.org/10.1109/TPDS.2021.3097283
https://arxiv.org/abs/2412.17744
https://arxiv.org/abs/2412.17744

	Abstract
	1 Introduction
	2 Background
	2.1 LLMs and reasoning LLMs
	2.2 LLMs for code generation
	2.3 Software engineering agents
	2.4 Scientific application translation

	3 Techniques for Repo-level Translation
	3.1 Non-agentic method
	3.2 Top-down agentic method
	3.3 SWE-agent

	4 Large Language Models Evaluated
	5 The ParEval-Repo Suite of Translation Tasks
	5.1 Applications selected
	5.2 Programming model translation pairs selected

	6 Metrics for Repo-level Translation Correctness and Performance
	6.1 Metrics for correctness
	6.2 Metric for token economy
	6.3 Identifying and classifying translation errors

	7 Experimental Setup
	7.1 Inference setup
	7.2 Evaluation setup

	8 Results
	8.1 Examples of successful and unsuccessful translations
	8.2 Translation correctness
	8.3 Error clustering
	8.4 Inference token economy

	9 Related Work
	9.1 Repository-level code translation
	9.2 Parallel code translation

	10 Conclusion
	Acknowledgments
	References

