Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph
GNN Training

Aditya K. Ranjan
Department of Computer Science
University of Maryland
College Park, Maryland, USA
aranjan2@umd.edu

Cunyang Wei
Department of Computer Science
University of Maryland
College Park, Maryland, USA
cunyang@umd.edu

Abstract

Graph neural networks (GNNs) leverage the connectivity and struc-
ture of real-world graphs to learn intricate properties and relation-
ships between nodes. Many real-world graphs exceed the memory
capacity of a GPU due to their sheer size, and training GNNs on such
graphs requires techniques such as mini-batch sampling to scale.
The alternative approach of distributed full-graph training suffers
from high communication overheads and load imbalance due to the
irregular structure of graphs. We propose a three-dimensional (3D)
parallel approach for full-graph training that tackles these issues
and scales to billion-edge graphs. In addition, we introduce opti-
mizations such as a double permutation scheme for load balancing,
and a performance model to predict the optimal 3D configuration
of our parallel implementation — Plexus. We evaluate Plexus on
six different graph datasets and show scaling results on up to 2048
GPUs of Perlmutter, and 1024 GPUs of Frontier. Plexus achieves
unprecedented speedups of 2.3—12.5X over prior state of the art,
and a reduction in time-to-solution by 5.2—8.7x on Perlmutter and
7.0—54.2% on Frontier.

CCS Concepts

+ Computing methodologies — Distributed artificial intelli-
gence; Massively parallel algorithms.

Keywords
graph neural networks, training, social networks, GPGPUs, SpMM

ACM Reference Format:

Aditya K. Ranjan, Siddharth Singh, Cunyang Wei, and Abhinav Bhatele.
2025. Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN
Training. In The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC °25), November 16-21, 2025, St Louis,
MO, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3712285.3759890

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC 25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1466-5/2025/11

https://doi.org/10.1145/3712285.3759890

Siddharth Singh
Department of Computer Science
University of Maryland
College Park, Maryland, USA
ssingh37@umd.edu

Abhinav Bhatele
Department of Computer Science
University of Maryland
College Park, Maryland, USA
bhatele@cs.umd.edu

1 Motivation

Graphs are used to represent irregular structures and connections
that are ubiquitous in the real-world, such as molecular structures,
social networks, and financial transaction networks. In recent years,
graph neural networks (GNNs) have emerged as a powerful class of
neural networks capable of leveraging the inherent expressiveness
of graphs to learn complex properties and relationships within them.
Among GNNs, the Graph Convolutional Network (GCN) [19] is the
most popular and widely adopted, and serves as the foundation
for numerous extensions, including the Graph Attention Network
(GAT) [39] and the Graph Isomorphism Network (GIN) [46]. Unlike
traditional convolutional neural networks [21], which operate on
fixed-size neighborhoods, GCNs exploit the irregular structure and
connectivity of graphs.

Real-world graphs are often extremely large, and datasets repre-
senting them frequently exceed the memory capacity of a single
GPU. Kipf et al. [19] recognize this limitation of their seminal work
and suggest mini-batch training for scaling to larger graphs, where
a small subset of nodes is used in each iteration to update the model.
Since efficient and scalable full-graph based approaches are miss-
ing, most modern frameworks such as PyTorch Geometric [13] and
DGL [43] use mini-batch training as their default.

In mini-batch training, in a single GCN layer, nodes in the mini-
batch first collect information from their immediate neighbors. By
aggregating feature embeddings from a node’s neighborhood and
applying a feed-forward transformation, GCNs can address tasks
such as node-level, link-level, and graph-level predictions. For a
model with K such GCN layers, a node aggregates features from its
K-hop neighborhood. However, even for small values of K, this can
quickly result in a phenomenon known as neighborhood explosion,
accessing large portions of the graph and undermining the effi-
ciency of mini-batch training [9]. To mitigate this issue, sampling
algorithms such as GraphSAGE [15] and FastGCN [8] are typically
applied alongside mini-batch training to reduce the number of
neighbors considered, thereby lowering memory consumption.

While sampling is widely used, it comes with inherent limita-
tions. Most notably, sampling introduces approximations that can
lead to degradation in accuracy [17]. Further, CPU-GPU data trans-
fers in sampling often dominate training time and add unnecessary

https://orcid.org/0009-0000-5390-7800
https://orcid.org/0000-0002-2756-4290
https://orcid.org/0009-0001-8910-4951
https://orcid.org/0000-0003-3069-3701
https://doi.org/10.1145/3712285.3759890
https://doi.org/10.1145/3712285.3759890
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712285.3759890

SC ’25, November 16-21, 2025, St Louis, MO, USA

complexity [49]. Full-graph training, on the other hand, can achieve
competitive performance without these trade-offs in many scenar-
ios as shown by Jia et al’s ROC framework [17]. Full-graph training
makes no approximations in the training process and avoids the
complexity of choosing an appropriate sampling strategy with suit-
able hyperparameters. For these reasons, in this work, we focus on
the full-graph training paradigm, avoiding any approximations.

Graphs are typically represented as adjacency matrices with a
non-zero entry for each edge. The non-zero entries are sparsely
and unevenly distributed across the matrix. Among the six graphs
we use for evaluation in this work, the fraction of zeros in the ad-
jacency matrix ranges from 99.79% to 99.99%. The largest of these
graphs has ~111 million vertices and ~1.6 billion directed edges.
These characteristics of graphs introduce several challenges in par-
allelizing the training. First, high memory requirements necessitate
distributing the graph and its features, and the associated com-
putation across multiple GPUs. This incurs high communication
overheads due to the need to synchronize large intermediate acti-
vations and gradients between GPUs. Consequently, parallel GNN
training quickly becomes communication-bound, making it difficult
to scale efficiently to a large number of GPUs. Second, the aggrega-
tion phase involves Sparse Matrix-Matrix Multiplication (SpMM),
which dominates the computational time and suffers from poor
performance on GPUs due to irregular memory access patterns and
low data reuse. Third, unevenly distributed sparsity patterns in the
adjacency matrix can lead to significant computational load imbal-
ance across different GPUs, which can ripple through an epoch,
and impact communication times as well.

In order to address the challenges mentioned above, we propose
a three-dimensional (3D) parallel algorithm that enables scaling to
large graphs by distributing all matrices efficiently across multiple
GPUs, and parallelizes all matrix multiplication computations in-
volved in training. Our approach draws inspiration from Agarwal et
al’s 3D parallel matrix multiplication algorithm [3], which has been
used in several distributed deep learning frameworks, including
Colossal-AT’s unified deep learning system [24], AxoNN [34, 35],
and Eleuther AT’s framework OSLO [1]. We introduce several opti-
mizations in our baseline implementation to improve performance
further. One optimization is a double permutation scheme, which
ensures a near-perfect even distribution of non-zeros across dis-
tributed matrices, which helps eliminate load imbalance. We also
develop a performance model that helps users select an optimal
configuration for mapping computation to a 3D virtual GPU grid.
This eliminates the need for exhaustive testing of different 3D con-
figurations while ensuring robust performance outcomes.

Our key contributions are summarized as follows:

e We present Plexus?!, an open-source 3D parallel framework
for full-graph GNN training that scales to massive graphs
and large GPU-based supercomputers.

e A performance model to identify the optimal configuration
for arranging GPUs within a 3D virtual grid.

o Performance optimizations, including a double permutation
scheme to mitigate load imbalance, and blocked aggregation
to reduce performance variability.

https://github.com/hpcgroup/plexus

Ranjan et al.

e Unprecedented scaling to 1024 GPUs on Frontier at OLCF
and 2048 GPUs on Perlmutter at NERSC - the largest-scale
full-graph GNN training reported to date.

e Significant speedups, achieving 2.3—12.5x faster training
than state-of-the-art frameworks, and cutting time-to-solution
by 5.2—8.7% on Perlmutter and 7.0—54.2X on Frontier.

2 Background and Related Work

In this section, we provide an overview of how GNNs work, different
training paradigms for GNNs, as well as challenges associated with
distributed full-graph GNN training. We also present existing GNN
frameworks and their limitations, motivating the need for our work.

2.1 Mathematical Formulation of a GCN layer

Similar to other ML models, GCNs can have different downstream
tasks depending on the application. They can be used for predicting
whether an edge exists between two nodes, predicting a holistic
property of the whole graph, predicting classes for individual nodes,
etc. In this work, we focus on the node-level classification task.
However, we note that our method can be easily be adapted to
other downstream tasks as well. The primary goal of a GNN in
this setting is not only to learn a function that maps nodes to
their target outputs but also to learn high-quality, low-dimensional
node embeddings that place similar nodes close together in the
embedding space. In this section, we will show how this task is
formulated using a GCN.

The edges in a graph are represented by a sparse adjacency ma-
trix A € RN*N where N is the number of nodes in the graph. Prior
to training, self-loops are added to A so that each node’s learned
representation includes its own features. A is then normalized by
scaling each edge A, , by ﬁ where d,, and d, are the degrees
of nodes u and v respectively. This is common practice to mitigate
numerical instabilities such as exploding/vanishing gradients [19].

The forward pass of a Graph Convolutional Network (GCN) layer
i consists of three key steps:

(1) Aggregation: Each node has a low-dimensional feature vector
associated with it. These feature vectors are stored in the features
matrix ' € RN*P" where D is the features dimension at layer i.
In the first step of the forward pass, every node aggregates the fea-
tures from its immediate neighbors using an aggregation operator
like sum and captures the local graph structure. This is achieved by
performing an SpMM - multiplying the adjacency matrix A with
the features matrix F/ € RN xD! This results in an intermediate
matrix HL € RN*DY
aggregation output
[eereeron ouper
HY = SpMM (A, FY) (2.1)

adjacency matrix T chaturcs matrix

Without loss of generality, this is shown for the undirected case.
For directed graphs, the adjacency matrix can be transposed for
aggregation of features from incoming neighbors.

(2) Combination: The aggregated features are transformed into a
; Li Li
new low-dimensional space using a weight matrix W- € RP™'*P "

. i Li+1
resulting in an intermediate matrix QX € RN*P™"

https://github.com/hpcgroup/plexus

Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN Training

No Sampling

part of
batch

not
part of o 0 0
batch B : 0 0
: 10
(2) 0 1

Sampling

Full-graph

SC ’25, November 16-21, 2025, St Louis, MO, USA

1|
1] 0 0 1 1
ol ! 11 0 0
0
0ol :
1] 0 0 1 0
0 01 0 0
0| |
Mini-batch

Figure 1: Different paradigms of GNN training that can be combined together, shown in four quadrants. Each quadrant shows
a sample graph and its adjacency matrix. Blue nodes are part of the batch and grey nodes are not. Solid lines indicate edges
considered during aggregation, and dashed line represent edges that are not considered. Red values in the adjacency matrix

indicate that an entry has been modified.

combination output

—————

Qli :SGEMM(HY , W) (2.2)

aggregation output

(3) Activation: A non-linear activation function o (e.g. ReLU) is

then applied to Q™, yielding the output matrix for the current layer

FLi+l ¢ RNXD"™! This will be used as the input to the next layer.

output matrix
= o (QLl)
combination output

The corresponding backward pass for layer i involves computing
gradients as follows:

FLi+1 (23)

(1) Compute the gradient of the loss £ with respect to Q:

oL oL o (Q“)

aQLi = OFLi+1
(2) Compute the gradient of the loss with respect to the weight
matrix Wi

(2.4)

oL

awii #3)

:SGEMM((HLi)T ‘M)

’ aQLi
(3) Compute the gradient of the loss with respect to H-:

2L _sGemm (%’ii, (w“)T)

e (2.6)

(4) Compute the gradient of the loss with respect to F-:

oL oL
—— =SpMM |AT, — 2.7
oFLi p (oHLi) ()

The gradient ;F—fo at the first layer is then used to update the

input features and learn meaningful node embeddings.

2.2 Different Paradigms of GNN Training

Four main GNN training paradigms exist (see Figure 1). Full-graph
training (upper-left) uses the entire graph in each iteration, updat-
ing all node features and requiring the entire graph in memory.
This makes no approximations but is memory-intensive. Mini-batch
training (upper-right) updates only a small subset of nodes per iter-
ation (e.g., Nodes 0 and 3), but suffers from neighborhood explosion
in deeper GNNs [9]. To address this, Mini-batch sampling (bottom-
right), the most common paradigm, combines mini-batching with
neighbor sampling at each layer and only uses some edges for ag-
gregation. Finally, Full-graph sampling (bottom-left) uses the entire
graph as a batch but samples edges, which is less common.

While there are some sampling algorithms that have fairly suc-
cessful adoption, they still lack a community standard. Graph-
SAGE [15] samples a fixed number of neighbors per node, while
FastGCN (8] samples per layer. LADIES enhances FastGCN by con-
sidering inter-layer dependencies [52]. Cluster-GCN [11] samples
within dense subgraphs. Recent work explores adaptive sampling
(GRAPES [48]) and handling homophilic/heterophilic graphs (AGS-
GNN [12]). However, sampling introduces a trade-off between ac-
curacy and efficiency, causing bias and variance [25] in training.
The limited scale of graphs used in these studies (max of 2.5 million
nodes) raises concerns about information loss on larger, real-world
datasets with different structural properties. Consequently, the ef-
fectiveness of sampling remains inconclusive, motivating our focus
on distributed full-graph training.

2.3 Distributed Full-graph GNN Training

Early distributed full-graph GNN training frameworks include
ROC [17], which partitions graphs using online linear regression
and balances CPU-GPU transfer with GPU memory. CAGNET [38]
uses tensor-parallel algorithms (1D, 1.5D, 2D, 3D) for SpMM. While
the 2D and 3D algorithms offer asymptotic communication reduc-
tion, the 1D and 1.5D algorithms scale better due to lower constants.
A sparsity-aware version of CAGNET’s 1D/1.5D algorithms [26]
improves performance by communicating only necessary features.

SC ’25, November 16-21, 2025, St Louis, MO, USA

Ranjan et al.

3D Virtual
. Foo | F10 ~. | Woo|Wo1
GPU Grid 4 5 Ao/ Arr E,N L Wl w Fio/ F11
x X§ — ; x < — 3
Ato/ A1t O T L WerlW — Fio/ Fnn / |2
S y /A /Ao Foo | F10 5 00[Wo1 Foo /For
>
MIEE Fo1 [F1q All-reducey Wio|W14
2|3 LO Lo
A F H wko FL1

Figure 2: An overview of the 3D tensor parallel algorithm for GNN training. Eight GPUs are arranged in a 3D grid (X=Y=Z=2)
and matrices in layer 0 of the network are distributed across different planes (shown in different colors).

MG-GCN [6] optimizes CAGNET with communication-computation
overlap. RDM [20] builds on CAGNET with near communication-
free training by replicating one of the matrices.

Other full-graph frameworks introduce approximations for scala-
bility. BNS-GCN [41] partitions with METIS and samples boundary
nodes, but its convergence on diverse datasets needs further vali-
dation. PipeGCN [42] pipelines communication and computation,
potentially causing stale features/gradients, with sensitivity vary-
ing across graphs. DGCL [7] minimizes communication using graph
characteristics and cluster topology. NeutronTP [4] uses tensor par-
allelism by only distributing the features to avoid load imbalance.

Table 1: Summary of state of the art in distributed full-graph
GNN training. The number of nodes and edges of the graph
datasets, and number of GPUs are the largest values reported
in each paper.

Name Year #Nodes #Edges # GPUs
AdaQP [40] 2023 25M 114M 8
RDM [20] 2023 3M 117M 8
MG-GCN [6] 2022 111M 1.6B 8
Sancus [30] 2022 111M 1.6B 8
MGG [45] 2023 111M 1.6B 8
DGCL [7] 2021 3M 117M 16
ROC [17] 2020 9.5M 232M 16
NeutronStar [44] 2022 42M 1.5B 16
GraNNDis [36] 2024 111M 1.6B 16
NeutronTP [4] 2024 244M 1.7B 16
CDFGNN [50] 2024 111M 1.8B 16
PipeGCN [42] 2022 111M 1.6B 32
CAGNET [38] 2020 142M 231M 125
BNS-GCN [41] 2022 111M 1.6B 192
SA+GVB [26] 2024 111M 1.6B 256

Plexus (this work) 2025 111M 1.6B 2048

Table 1 shows limited scaling across many GPUs in existing full-
graph works, with a handful using more than 16 GPUs. Many focus
on 1D SpMM variants, lacking a practical scalable 3D algorithm
despite its theoretical communication advantages. This motivates
Plexus, our framework aiming for approximation-free, scalable 3D
full-graph training for large graphs and high GPU counts.

3 A Three-dimensional Tensor Parallel
Approach to Full-graph GNN Training

We now describe our approach to parallelizing a GCN layer and
the entire network, and our adaptation of Agarwal’s 3D parallel
matrix multiply algorithm for GNN training in Plexus.

3.1 Parallelizing a Single GCN Layer

Tensor parallelism is a popular strategy for parallelizing GNN train-
ing. While previous works have experimented with 1D to 3D tensor
parallel approaches, in this work, we focus on 3D tensor parallelism.
We take inspiration from Agarwal et al’s three-dimensional (3D)
parallel matrix multiplication algorithm [3] for distributing matri-
ces and parallelizing matrix multiplication kernels across multiple
GPUs. Below, we describe how we adapt this 3D matrix multiplica-
tion approach to parallelize GNN training and Sparse Matrix-Matrix
Multiplication (SpMM) computations.

Given a number of GPUs, G, in a job allocation, we first arrange
the GPUs into a 3D virtual grid. We refer to the number of GPUs
along each dimension as Gy, Gy, and G, respectively, such that
G = Gx X Gy X G,. Each GPU creates process groups that allow it
to communicate with its neighbors in each of the three dimensions
of the grid. The matrices in a layer are then distributed across this
grid. Here, we describe how this is done for the first layer of the
GCN, and this can be applied similarly to the other layers.

First, we shard (divide and map to different GPUs) the sparse
adjacency matrix, A, across the ZX-plane and replicate it across the
Y-parallel process group (see Figure 2). Then we shard the input
features matrix, FL°, across the X Y-plane and further shard it across
the Z-parallel process group. The reason that FX? is sharded and not
replicated across the third process group is to save memory. Since
the input features are made trainable to learn node embeddings,
they have gradients and optimizer states associated with them
which are additional memory requirements. Finally, we shard the
weights across the YX-plane and also further across the Z-parallel
process group due to the additional memory requirements of the
gradients and optimizer states. Figure 3 shows the shapes of the
matrix shards (sub-blocks or sub-matrices) for layer 0.

Pseudo code for the forward and backward pass of layer 0 is
shown in Algorithm 1 and 2 respectively. Before describing the
algorithm, note that when we refer to any matrix, it is a shard
of that matrix on a given GPU. Lines 3-5 show the aggregation
step, in which the input features matrix shard F is all-gathered

Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN Training

DLO
Gy DLl
N G
N G, oo o 2-Woo
G, G,
N N
A H —Hoo F
G. 00 00 G. 00 00

(1) Aggregation (2) Combination

Figure 3: Shapes of the matrix shards (sub-blocks) in the first
layer on a single GPU, showing two key matrix multiplica-
tions in the forward pass.

across the Z-parallel process group since it is additionally sharded
across this dimension of the grid. The adjacency matrix shard A is
then multiplied with F to get the aggregation output H. Since this
results in a partial output, an all-reduce is performed on H across
the X-parallel process group.

Algorithm 1 Forward Pass of Layer 0

1: function FORWARD(A, F, W)

2: // Step 1: Aggregation

3: All-gather F across Z-parallel group
4 H = SpMM(A, F)

5 All-reduce H across X-parallel group

6: // Step 2: Combination

7: All-gather W across Z-parallel group
& Q=SGEMM(H W)

9 All-reduce Q across Y-parallel group
10: // Step 3: Non-linear Activation

11 F=0(Q)

12: Return F

13: end function

Lines 7-9 show the next combination step. First, the weights
matrix shard W is all-gathered across the Z-parallel process group
since it is additionally sharded across this dimension of the grid.
The intermediate output from the aggregation is then multiplied
by the weights matrix. This again results in a partial output Q,
which is all-reduced across the Y-parallel process group. Finally,
we apply a non-linear activation on this and return it to be used in
the next layer (lines 11-12). These series of matrix multiplications
and all-reduce steps are also demonstrated visually in Figure 2. The
backward pass for the first layer is shown in Algorithm 2.

3.2 Parallelizing All Layers in the Network

The parallelization of other layers in the GNN is similar to the
first layer but we need to address a subtle but important detail
first. As can be seen in Figure 2, the output of the first layer FL!
is sharded across the ZX-plane. However, this will also be the
input to the next layer, which becomes an issue since the adjacency

SC ’25, November 16-21, 2025, St Louis, MO, USA

Algorithm 2 Backward Pass of Layer 0

1: function BACKWARD(%)
2 95 =SGEMM(H, %5)
oL

3 Reduce-scatter ;- across Z-parallel group

4 All-gather W across Z-parallel group
s 2L =SGEMM(25, W)

50"
6: All-reduce % across X-parallel group

7 2L =spMM(AT, L)

8 Reduce-scatter % across Z-parallel group
9: Return 2£ 9L

9F > oW
10: end function

matrix A of the next layer is also sharded across the ZX-plane,
and so the dimensions of the two matrices are incompatible. To
resolve this, we either need to communicate F'! to the XY-plane
or communicate A to the YZ-plane. Unfortunately, these solutions
would add increased communication complexity and are non-trivial
to implement efficiently.

To address this problem, we store a separate shard of the adja-
cency matrix AL! that is sharded across the YZ-plane for the next
layer L1. Similarly, for the third layer L2, we store a shard of the
adjacency matrix A2 that is sharded across the XY-plane. This
ensures that the dimensions of the matrices are compatible for local
computations. This scheme is shown in Figure 4, where we can see
how the three adjacency matrix shards allow for the output of one
layer to be used as the input for the next layer. Importantly, this
does not result in needing more than three unique shards of the ad-
jacency matrix. The output of the third layer F® is sharded across
the XY-plane, which is the same plane that FI° is sharded across.
So for the fourth layer L3, we can now reuse A and then repeat
using the same adjacency matrix shards for subsequent layers.

This process of cycling through three different adjacency shards
for different layers also changes a few communication steps in Al-
gorithm 1. For subsequent layers after the first one, the features
matrix F will only be sharded across two dimensions of the grid
since it does not have optimizer states like the input features. This
means that the first all-gather in the forward pass (line 2) will not
take place. Likewise, the last reduce-scatter (line 8) in the backward
pass is changed to an all-reduce since the gradients are replicated
across the third process group. Using different shards of the adja-
cency matrix is the main change to parallelize all the layers of the
model and the core idea remains the same.

4 Performance Model

Next, we describe the performance model we have developed to
identify near-optimal 3D configurations of the virtual GPU grid.
We model both the SpMM computation and communication times.

4.1 Modeling Computation

Plexus shards matrices such that local matrix operations should
take the same amount of time across different 3D configurations,

SC ’25, November 16-21, 2025, St Louis, MO, USA

Layer O

5 Foo |F10
Ato/ An o IF Fio/ F11
i Ago /Aot i |\ Foo /Fo1

01

X
(A1
1

X e —
—

Layer 1

Fio/ F1n !

Foo /For Fof Foi
Fio/ Fia e
Foo /Fo1

Ao/ A Fio/ F H
M ADO1OAD1’H FOU F1U FODWUFMH E q A1q
Fo1 | F1q
ALO FLO FL1 AL1 FL1
l A

Ranjan et al.

Layer 2

Ago | Ao Foo | F1o
Aot | At ol o For | F11

— Fod o ! x Fan Fod
T e
" | Aoo [Arg i &L o0 | F10
v Ao [An Fo1|F11

AL2 FL2

L A

FL3

Figure 4: Applying the 3D tensor parallel algorithm to all layers of a 3-layer GCN, connecting the output of one layer to the
input of the next using unique shards of the adjacency matrix.

assuming a uniform distribution of nonzeros. We show this in the
derivation below, where we see that the total number of FLOPs
needed to calculate the aggregation output H is a term that is
constant across all configurations for G = Gy x Gy, X G, GPUs.
Given the number of nodes in the graph N and the input features
dimension D, the number of elements in H in the first layer is:

number of nodes input features dimension

—_— v
N DLO

G X G (4.1)
z y

Given the number of nonzeros in the adjacency matrix NNZ, the
number of floating point operations per element is:

number of nonzeros

2X NNZ

O| ——— 4.2
N X Gy “2)
Hence, the total number of floating point operations to calculate
the aggregation output H is a result of multiplying the expressions
in equations (4.1) and (4.2) together:

2 x NNZ x DM
o|————— (4.3)
G

number of GPUs

Despite expecting similar computation times for different 3D
configurations, in practice, we observe that SpMM times vary across
configurations. We hypothesize that shorter-fatter dense matrices
lead to more efficient SpMMs. This is consistent with the literature
optimizing tall-skinny dense SpMM. Yang et al. [47] propose row-
splitting for coalesced memory access, which they note is more
efficient with fewer nonzeros per row. This is achieved by con-
figurations in our algorithm reducing the common dimension of
local multiplications. Selvitopi et al. [32] show non-ideal scaling of
SpMM time with the number of processors and that the algorithm
choice can impact scaling.

To test our hypothesis, we took the adjacency and feature matri-
ces from ogbn-products and multiplied them under two different
configurations for 64 GPUs. In config U, G, = 64 and the common
dimension is sharded by 64, reducing the number of nonzeros per
row. In config V, G, = 64 and the columns of the dense matrix

are sharded by 64, making it skinny. Both of these have the same
workload in terms of the number of FLOPs. However, we observed
that V was ~8x slower. After profiling with Nsight Compute [28]
(metrics in Table 2), we noticed that it launched ~64 times more
blocks, which is proportional to its 64X larger common dimen-
sion size. This means less work per block and a higher number of
smaller memory requests. Consequently, V’s L2 Cache and DRAM
throughput were drastically lower, and uncoalesced global memory
accesses were much higher, indicating poor memory access pat-
terns and suboptimal memory utilization in the tall-skinny dense
SpMM regime.

Table 2: Nsight Compute metrics for SpMM(A, H) on a single
GPU for two configurations of Plexus - U (G, = 1, G, = 64,
Gy=1)and V (G, =1,G, =1,G, = 64).

Metric U \Y%
Grid Size 20,223 1,313,241
Uncoalesced Global Memory Access Sectors 84,960 3,939,912
L2 Cache Throughput 61.31 12.65
DRAM Throughput 72.83 8.24

In Plexus, we introduce a computational model to predict which
configurations result in more efficient SpMMs. The model is shown
for the first layer using the equations below:

flops_cost = NNZ x DY

N Gy
fwd Ity = — X —
wd_penalty . = Do

N Gy

bwd_penalty = G X Dio

comp_cost = +/flops_cost

X (1 + fwd_penalty + bwd_penalty)

(4.4)

The first term flops_cost is proportional to the total FLOPs, which
is the number of nonzeros NNZ in the sparse matrix A multiplied
by the number of columns D in the dense matrix F. The second
term fwd_penalty ranks certain configurations as better than others
based on the matrix shape. This term is first weighted proportional
to the size of the matrix F’s first dimension: N/G, (the common
dimension). It is then weighted inversely proportional to the size of

Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN Training

the second dimension of F: D'°/G,. This penalizes configurations
causing tall-skinny dense matrices. A similar calculation is done
for the backward pass SpMM.

The final computational cost is calculated as the square root of
flops_cost (to reduce outlier impact of larger matrices), multiplied
by penalty terms to account for poor matrix shapes, and summed
across all layers. To convert this to time, we performed runs on
Perlmutter across various datasets, configurations, and GPU counts
(including all ogbn-products configurations on 64 GPUs). We then
used scikit-learn [29] to fit a linear regression model to these 67
data points, determining coefficients for our three terms to predict
SpMM time for any configuration.

To validate our model, we used a random train-test split of 70-30
for 1000 independent iterations. We recorded an average R? of 0.89
and RMSE of 16.8 ms for the train splits, and an average R? value
of 0.79 and RMSE of 20.1 ms for the test splits, indicating that the
model is able to predict the SpMM time with a relatively high degree
of accuracy and can generalize fairly well. The learned coefficients
for the three terms are approximately 7.8 X 107%,7.8 x 1071% and
—-2.6x10710.

4.2 Modeling Communication

Different 3D grid configurations significantly impact communi-
cation time and overall performance, especially at scale. Optimal
configuration selection is non-trivial. Several works model com-
munication time for distributed deep learning, such as ATP [10],
Alpa [51], AxoNN [34, 35], Oases [23], and DGCL [7]. Plexus adapts
AxoNN’s communication model [35], which uses ring algorithm
equations from Thakur et al. [37] and Rabenseifner [31]. The latency
term is omitted since the messages are large and bandwidth-bound.
The all-reduce time for a buffer of size M across G GPUs with
bandwidth f can be modeled as:

time
— » [G-1
Tall-reduce = — X G

bandwidth

Plexus extends this across layers by using the appropriate matrix
dimensions and process group sizes for each layer, as described in
Section 3.2. The model considers GPU topology, prioritizing Y, X,
and then Z parallelism within a node. If a process group is within
a node, it can utilize intra-node bandwidth fipr,. Otherwise, it is
bound by inter-node bandwidth finter, which can potentially be
lower due to link contention. We show how this is calculated for S,
bandwidth along the Z-parallel group, in the following equation:

ﬁintra
ﬁz = { Pinter

min(Gpoge.Gx XGy)

number of GPUs

X M (4.5)

if Gx X Gy X G, < Gpode

4.6
otherwise (4.6)

where Gyode is the number of GPUs within a node.

After the effective bandwidths are similarly calculated for §, and
By, we can plug them in to the equations for each collective and
calculate the predicted communication times for each configuration.

4.3 Unified Performance Model

We combine predicted SpMM time and communication time to
estimate total epoch time for each configuration, neglecting smaller

SC ’25, November 16-21, 2025, St Louis, MO, USA

dense computation and loss calculation. Figure 5 shows results for
ogbn-products on 64 Perlmutter GPUs, indicating better perfor-
mance for 3D configurations over 2D and 1D. The three-layer GCN
favors symmetric configurations for balanced communication and
SpMM efficiency. As we can observe, a strong correlation exists
between predicted and observed epoch times, accurately predicting
top configurations.

Predicted vs. observed time for ogbn-products on 64 GPUs (Perimutter)

210 P
® 3D configurations e
®m 2D configurations rd
180 - . » a
A ID configurations a
= ."/ 4
E 150 e R
_5 e []
2 |
: S
2120
o /.
g -
5 904 ,;I!
8 e
k] /.'-
® 60 %
e e
o ,,’
30 i
0+ T T

0 30 60 9% 120 15 180 20
Observed time per epoch (ms)

Figure 5: Validating the performance model for the ogbn-
products dataset on 64 GPUs of Perlmutter.

5 Performance Optimizations

Parallelizing graph neural networks can pose unique challenges
in the form of load imbalance caused by uneven sparsity patterns
and high communication overheads arising due to the extremely
large sizes of graphs. We address some of these issues in Plexus by
introducing several optimizations that improve the performance of
our framework.

5.1 Double Permutation for Load Balancing

The sparse and uneven distribution of nonzeros in the adjacency
matrix can cause load imbalance among matrix shards assigned
to different GPUs, leading to computational stragglers and slower
training. Graph partitioners such as METIS [18] can be used to par-
tition graphs to minimize edge cuts and balance vertices, which is
beneficial for fine-grained communication. However, the all-reduce
in Plexus is performed on dense aggregation outputs and does not
require graph structure awareness for communication. While graph
partitioners distribute rows/nodes, our 2D matrix decomposition
requires even nonzeros to be evenly distribution across 2D shards.

Node permutation offers a simple solution without complex opti-
mization or graph structure knowledge. Unlike graph partitioning,
which requires re-partitioning for different GPU counts, permuta-
tion is a one-time preprocessing step for each graph dataset. The
naive permutation scheme uses a permutation matrix P to map
original node indices to permuted indices.

SC ’25, November 16-21, 2025, St Louis, MO, USA

output features adjacency matrix

FIU = 0'((P A PT) (P FLo) wio) (.1)

permutation matrix T input fcaturcsT

Fli=g ((PAPT) FLHWLi’l) (.2)

Equation (5.1) is used for the first layer and (5.2) is used for all
subsequent layers. The same permutation is applied to adjacency
matrix columns and input features rows to maintain output consis-
tency for subsequent layers. This preprocessing step significantly
reduces load imbalance. However, due to dense graph clusters, a
single permutation is insufficient, as nonzeros remain concentrated
around diagonal blocks. To further disrupt community coupling,
we apply distinct permutations (P, for rows, P, for columns) to the
adjacency matrix, repeating this two-permutation scheme every
two layers for more effective nonzero redistribution. This requires
storing two adjacency matrix versions.

permutation matrix for rows

Fll=g ((1§, APT) (PCFLO) WLO) (5.3)

Fli=g ((PCAP,T) FLHWLH) (5.4)

Alternating between two permutations (P, and P.) further bal-
ances computation by disrupting tightly coupled communities. Ta-
ble 3 shows near-perfect load balance on the europe_osm dataset
(8x8 shards) with double permutation, outperforming the naive
single permutation.

Table 3: Comparison of different permutation methods, show-
ing the ratio of the maximum number of non-zeros to the
mean across 8x8 shards of the adjacency matrix for the eu-
rope_osm dataset.

Method Max/Mean
Original 7.70
Single permutation 3.24

Double permutation (this work) 1.001

Adopting this optimization increases the memory required to
store each adjacency matrix shard by a factor of two. Since the
number of such shards is min(3, L) for L GCN layers, the memory
overhead of storing the shards after applying this optimization
then becomes min(6, L). Given that the number of GCN layers is
typically small (two to four) to avoid oversmoothing [22], this is a
reasonable trade-off for improved load balance and performance.

5.2 Blocked Aggregation

While our double permutation achieves near-perfect adjacency
matrix load balance, we observed performance variability in the
forward pass SpMM across epochs on larger datasets (Isolate-3-8M,
products-14M) for a modest number of GPUs (8-32). This leads to
load imbalance in the subsequent all-reduce and increased average
epoch time. To address this, we optimized the aggregation by block-
ing the sparse adjacency matrix into smaller row-blocks, since we
did not observe this for smaller matrices. After each block’s SpMM,

Ranjan et al.

an all-reduce is performed on it, and blocks are concatenated at
the end. This mitigated performance variability in the SpMM, and
significantly reduced communication also as a side effect, as shown
in Figure 6 (left).

Impact of Blocking (Perlmutter) Impact of Tuning (Frontier)

z 836.7 BEE Communication 7 | EEE Grad W Mawmul EEEE Other
= 80 B3 Computation = 400

5 5

o

g 600 % 2412 2482

g £

g g

[= [=

£
0
o
c
b

EN
w
N

Figure 6: Impact of blocked aggregation on performance for
Isolate-3-8M on 16 and 32 GPUs of Perlmutter (left). Impact
of dense matrix multiplication tuning on performance for
products-14M on 512 and 1024 GCDs of Frontier (right).

5.3 Dense Matrix Multiplication Tuning

Despite dense matrix multiplication taking a small amount of time
in our workloads, we observed scaling issues on Frontier at high
GCD counts (>= 512 GCDs) with large datasets (such as Isolate-3-8M
and products-14M) for the % calculation, where the first matrix
was transposed. GEMM BLAS kernels have NN, NT, TN, TT modes
with varying performance (e.g., NT and TN can be slower [33]). We
optimized these dense kernels by reversing the multiplication order:

T
% = (SGEMM (%T, H)) . Figure 6 (right) shows a significant
time reduction for this GEMM on Isolate-3-8M (from ~50 ms to

negligible), enabling Plexus to scale to 1024 GCDs on Frontier.

5.4 Parallel Data Loading

Many GNN frameworks load entire datasets into CPU memory
before transferring shards to the GPU, which is unsustainable for
large graphs. Plexus implements a parallel data loader to avoid
this. It shards processed data into 2D files offline (e.g., 8x8), and
the data loader for each GPU only loads, merges, and extracts the
shards it needs. This significantly reduces CPU memory usage and
data loading time. For ogbn-papers100M on 64 GPUs, CPU memory
requirements decreased from 146 GB to 9 GB (16x16 shards), and
loading time from 139s to 7s with parallel data loading.

6 Experimental Setup

Below, we provide details of the experimental setup used to evaluate
Plexus, including the supercomputer platforms and datasets used,
model details, and other state-of-the-art (SOTA) frameworks we
compare against.

6.1 Details of Supercomputer Platforms

Our experiments were conducted on Perlmutter at NERSC, Lawrence
Berkeley National Laboratory, and Frontier at OLCF, Oak Ridge
National Laboratory. The GPU partition of Perlmutter is connected
by the HPE Slingshot 11 network, and has two kinds of compute

Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN Training

nodes. 1,536 nodes have four NVIDIA A100 GPUs each with 40 GB
of HBM2 memory per GPU. 256 additional nodes have four A100
GPUs with 80 GB of HBM2 memory per node. We use the 80 GB
nodes for runs on 64 and 128 GPUs for the largest dataset. Frontier
is also a Slingshot 11 supercomputer with 9,856 compute nodes.
Each node on Frontier has four AMD Instinct MI250X GPUs, each
with 128 GB of HBM2E memory. Each MI250X GPU is partitioned
into two Graphic Compute Dies (GCDs) and each GCD appears as
a separate device for launching GPU kernels. The A100 GPU has
a peak of 19.5 FP32 Tflop/s, and the MI250X GPU has a peak of
47.9 FP32 Tflop/s. There are four NICs per node on both systems
with an injection bandwidth of 25 GB/s. We use PyTorch Geometric
2.6.1, and PyTorch 2.6.0 with CUDA 12.4 on Perlmutter, and ROCm
6.2.4 on Frontier.

6.2 Description of Graph Datasets and the GNN

We conduct experiments using graph datasets of varying sizes, as
shown in Table 4. The Reddit dataset is available through PyTorch
Geometric, and contains post data from September 2014, with indi-
vidual posts as nodes and edges connecting two posts if the same
user commented on both [15]. The ogbn-products dataset is part
of the Open Graph Benchmark (OGB) [16], and depicts Amazon’s
product co-purchasing network, where nodes are products sold
and edges indicate that the products are purchased together. The
ogbn-papers100M dataset, also part of OGB, represents the Mi-
crosoft Academic Graph (MAG), where nodes are papers and edges
indicate citation relationships. For the Reddit, ogbn-products, and
ogn-papers-100M datasets, we used the input features and labels
that were provided with the datasets.

The products-14M datasets is a larger Amazon products net-
work [27]. The Isolate-3-8M dataset is a subgraph of a protein simi-
larity network in HipMCL’s data repository [5]. The europe_osm
dataset, part of the 10th DIMACS Implementation Challenge [14],
represents OpenStreetMap data for Europe, where nodes corre-
spond to geographical locations, and edges represent roads con-
necting these points. For the Isolate-3-8M, products-14M, and eu-
rope_osm datasets, we randomly generated input features with
a size of 128, and generated labels with 32 classes based on the
distribution of node degrees.

Table 4: Details of graph datasets used for experiments.

Dataset # Nodes #Edges #Non-zeros # Features # Classes
Reddit 232,965 57,307,946 114,848,857 602 41
ogbn-products 2,449,029 61,859,140 126,167,053 100 47
Isolate-3-8M 8,745,542 654,620,251 1,317,986,044 128 32
products-14M 14,249,639 115,394,635 245,036,907 128 32
europe_osm 50,912,018 54,054,660 159,021,338 128 32
ogbn-papers100M 111,059,956 1,615,685,872 1,726,745,828 100 172

For all the experiments, we create a GNN with three GCN layers
and a hidden dimension of 128, as increasing the model size beyond
that has diminishing returns on the model’s generalization capa-
bilities as shown in Jia et al. [17]. We train for ten epochs in each
trial, and take the average performance of the last eight epochs
to account for initial fluctuations. For each experiment, we run
three independent trials and report the average epoch time over

SC ’25, November 16-21, 2025, St Louis, MO, USA

three trials. We validated Plexus against PyTorch Geometric for
correctness as shown in Figure 7.

Validation of Plexus against Pytorch Geometric (Perlmutter)

40
350 | — XIY2Z8
\ — XIYI6ZI
301 — PG
825 — X2Y8Z|
25 — X2Y4Z22
£ X4Y1Z4
€15
= XIYIZ16
1.0 X8Y122
0.5
0.0+ : e —
0 200 400 600 800 1000

Figure 7: Validating Plexus against a serial PyTorch Geomet-
ric baseline on 16 GPUs of Perlmutter with ogbn-products.

6.3 Comparison with Other Frameworks

We compare the performance of Plexus with that of SA, a sparsity-
aware implementation of CAGNET [26], and BNS-GCN [41], two
SOTA frameworks for distributed full-graph GNN training that
have previously been run on hundreds of GPUs as seen in Table 1.
We also compare with a variant of SA that uses datasets parti-
tioned using GVB [2], a graph partitioner used by the authors to
improve performance (SA+GVB). We contacted the authors to con-
firm that SA is the most recent and best performing implementation
of CAGNET.

For BNS-GCN, we use a boundary sampling rate of 1.0 since
Plexus makes no approximations and we are interested in compar-
ing with similar settings. This is akin to vanilla partition parallelism
with METIS. We made a small modification to the BNS-GCN code
that resolved a bug that led to crashes during training when the
boundary size was 0. We also contacted the authors of BNS-GCN
regarding unexpectedly high runtimes with METIS, but did not
receive a response in time to compare against it. We only compare
with these frameworks on Perlmutter as we encountered frequent
stability issues and memory errors on Frontier, preventing us from
running experiments reliably.

7 Scaling Results

Finally, we present the results of our scaling experiments across
six graph datasets on both Perlmutter and Frontier, and compare
Plexus with SA, SA+GVB, and BNS-GCN.

7.1 Comparison with SOTA Frameworks

We compare Plexus to the other frameworks only on the Reddit,
Isolate-3-8M, and products-14M datasets. ogbn-papers100M results
were limited due to partitioning timeouts after 5 hours (BNS-GCN)
and out-of-memory issues (SA, SA+GVB). Figure 8 shows these
comparative evaluation results. For Reddit, SA performs better at
4 GPUs, but does not scale beyond that. SA+GVB demonstrates

SC ’25, November 16-21, 2025, St Louis, MO, USA

Strong scaling on Reddit (Perlmutter)

Strong scaling on Isolate-3-8M (Perlmutter)

Ranjan et al.

Strong scaling on products-14M (Perlmutter)

300 700 20000
% 200 . - 10000 . -§ -sA+GvB
£ £.400 £ 5000 : RIS
5 100 < =), —§- BNS-GCN
3 3 S . —F—Plexus
o €0 200 & 10007 g b
5 40| —f- BNS-GCN 5 5 500 gy m
(=% .I SA [aN =%
[
£ 200 -1-sascve £ 1001 _§ ens.aen E
= —F— Plexus = —F— Plexus = 100
10 ‘ ’ ; ‘ ‘ 50 ‘ ‘ ‘ : ‘ : 50
4 8 16 32 64 128 16 32 64 128 256 512 1024 8 16 32 64 128 256 512 1024
Number of GPUs Number of GPUs Number of GPUs

Figure 8: Comparison of strong scaling performance of Plexus, SA, SA+GVB, and BNS-GCN for several datasets on Perlmutter.

somewhat better performance than SA upto 64 GPUs, but also with
poor scaling. BNS-GCN scales similarly to SA but is slower in terms
of absolute time. Plexus is the only framework that achieves good
strong scaling up to 128 GPUs, and a 6X speedup over BNS-GCN
on 32 GPUs and 9% over SA on 128 GPUs.

On Isolate-3-8M, both SA and SA+GVB failed to run due to out-
of-memory issues. BNS-GCN scales well to 64 GPUs, but quickly
degrades in performance beyond this point. Plexus achieves a 3.8x
speedup over BNS-GCN at 256 GPUs, and scaling further to 1024
GPUs. BNS-GCN’s fine-grained communication is good at a small
scale, but has two key issues at larger scales. First, the partitioner
starts to divide denser subgraphs, resulting in a larger number of
boundary nodes. Second, BNS-GCN utilizes the all-to-all collective
during communication. Compared to ring-based collectives used
in Plexus where GPUs only communicate with their neighbors,
all-to-alls send more long-distance messages, which leads to higher
latency. Without sampling boundary nodes, METIS is insufficient
for BNS-GCN to achieve comparable performance at scale.

For the products-14M dataset, we observe a similar pattern to
Isolate-3-8M, where BNS-GCN scales well till 64 GPUs, but then
the performance drops sharply following that. SA, on the other
hand, starts off with a higher absolute time but is able to scale
comparatively better up to 128 GPUs. We tried running it on 256
GPUs, but the job timed out at 20 minutes. SA+GVB performs better
than SA for 8 and 16 GPUs, but has a drastic increase in time after
that. We observe that Plexus scales up to 1024 GPUs and performs
better than both frameworks. It achieves a 2.3x speedup over SA
on 128 GPUs and a 4x speedup over BNS-GCN on 256 GPUs.

In order to understand the inflection point between BNS-GCN
and Plexus at 64 GPUs further, we look at the breakdown of epoch
times in Figure 9. At 32 GPUs, BNS-GCN completes an epoch faster
than Plexus primarily due to having a lower communication time,
which can be attributed to the fine-grained communication pattern
of partition parallelism. In Plexus, on the other hand, the commu-
nication time is higher since the collectives are performed on the
full dense outputs, and Plexus does not have sparsity-aware modi-
fications like SA. The inefficiency of the all-to-all communication
pattern employed by BNS-GCN becomes evident at 64 GPUs.

Another interesting observation is that the computation scaling
for the two frameworks also differs. While Plexus shows notable
improvements in the computation time from 32 GPUs to 256 GPUs,
BNS-GCN’s computation time increases with the number of GPUs.

Breakdown of BNS-GCN and Plexus (Perlmutter)

700
B Communication
A600< B8 Computation
(%]
£.500+
S
0 400 -
o
[0
& 300
o
[
£ 200+
l—
100 1
0‘ 1 %] " 1%] w
p4 Z Z Z
0 ¥ o g 0 £ o f
Q = QO = QO = QO =
wv [%2] wv [%2]
Z Z Z Z
o) o) o
#GPUs 32 64 128 256

Figure 9: Breakdown of epoch times for BNS-GCN and Plexus
on 32-256 GPUs of Perlmutter with products-14M.

After further investigation, we found that the total number of nodes
across partitions, including boundary nodes, increased from 18M to
22M for BNS-GCN when going from 32 to 256 GPUs. This explains
why the local computation of a partition also increases in addition
to the poor scaling of communication.

Overall, Plexus outperforms BNS-GCN, SA, and SA+GVB across
the three datasets. While BNS-GCN and SA are more efficient at
small scales due to sparsity-aware communication, they struggle
at larger scales. Plexus scales well to 1024 GPUs with the lowest
absolute epoch times. Its scaling is also more consistent across
datasets, even performing competitively at small scales. All of this
is achieved without a graph partitioner. Unlike METIS, which timed
out for some datasets, and GVB, which ran out of memory on obgn-
papers100M at 32 GPUs (as noted by SA’s authors in [26]), Plexus’
double permutation scheme mitigates load imbalance scalably with
minimal overheads.

7.2 Strong Scaling of Plexus

In addition to the three datasets discussed above, we also ran Plexus
on three other datasets to demonstrate its strong scaling capabilities

Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN Training

Strong scaling on all datasets (Perlmutter)

|04-

|03-

|02-

Time per epoch (ms)

10" 1— T T T T T T T T T
4 8 6 32 64 128 256 512 1024 2048

Number of GPUs

—}— ogbn-papers|00M §- europe_osm

—§— products-14M

SC ’25, November 16-21, 2025, St Louis, MO, USA

Strong scaling on all datasets (Frontier)

|04_

103 -

|02_

Time per epoch (ms)

10!

4 8 16 32 64 128 256 512 1024 2048
Number of GCDs

-¢ Isolate-3-8M -¥ ogbn-products Reddit

Figure 10: Strong scaling performance of Plexus for six graph datasets of different sizes (Table 4) on both Perlmutter (left) and
Frontier (right). Note that the x-axis shows GPUs for Perlmutter and GCDs for Frontier.

on both Perlmutter and Frontier (Figure 10). The sparsity level of
a graph determines the communication to computation ratio in
Plexus. As a result, Plexus scales better with Reddit, a denser graph
compared to ogbn-products on Perlmutter (left plot). When training
with ogbn-products, Plexus becomes communication-dominated
quicker than Reddit, explaining the increasing gap between the
performance for the two datasets (on Perlmutter). This effect can
similarly be seen with Isolate-3-8M and products-14M. Even though
products-14M has more nodes than Isolate-3-8M, the latter is denser.
This explains why Plexus is slower with Isolate-3-8M at 16 GPUs
where the computation cost is significant, but for products-14M,
which is more communication dominated, eventually Plexus takes
longer beyond 64 GPUs. We also show results for europe_osm on
1024 GPUs and ogbn-papers100M on 2048 GPUs of Perlmutter. We
observe that the scaling with ogbn-papers100M starts to slow down
at 2048 GPUs, at which point the computation cost is marginal.
This is, to the best of our knowledge, the largest number of GPUs
that have been used for parallel full-graph GNN training to date.

On Frontier (right plot), we notice generally better trends with
all datasets when compared to those on Perlmutter. This is be-
cause the SpMM times on AMD GPUs were an order of magnitude
higher than on NVIDIA GPUs, allowing Plexus to scale better. The
trends observed on Perlmutter for Reddit and ogbn-products do not
hold here, and we do not observe a growing gap between the two
datasets. Similarly, Plexus is consistently slower with Isolate-3-8M
than with products-14M since the former has a higher number of
edges. We also observe that Plexus demonstrates poorer scaling
with europe_osm, a sparser graph than both products-14M and
Isolate-3-8M. Finally, we observe that Plexus demonstrates impres-
sive scaling for ogbn-papers100M, which is the largest graph dataset
we ran with, on up to 2048 GCDs.

8 Conclusion

GNN training has often relied on approximations such as mini-batch
sampling due to the high memory requirements of large graphs.

In the absence of efficient and scalable full-graph alternatives, this
approach has become the default in many modern frameworks. In
this work, we present Plexus, a three-dimensional parallel frame-
work for full-graph GNN training that adapts Agarwal et al’s 3D
parallel matrix multiplication algorithm [3] to scale training with
billion-edge graphs to thousands of GPUs. Plexus includes a per-
formance model that selects an optimal 3D configuration based on
communication and computation costs, and incorporates several op-
timizations to further enhance performance. These include a double
permutation scheme to reduce load imbalance, and blocked aggre-
gation to minimize variability. Plexus also offers an easy-to-use API,
eliminating the need for a graph partitioner and featuring a parallel
data loading utility that reduces CPU memory usage. Overall, this
work marks a significant step forward in making full-graph GNN
training, a notoriously challenging problem to scale, both practical
and efficient.

Acknowledgments

This material is based upon work supported in part by the National
Science Foundation (NSF) under Grant No. 2047120. This research
used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-000R22725. This research also used resources of the
National Energy Research Scientific Computing Center, a DOE
Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 using NERSC award NERSC DDR-ERCAP0034262.

References

[1] 2021. OSLO: Open Source for Large-scale Optimization. https://github.com/
EleutherAl/oslo.

[2] Seher Acer, Oguz Selvitopi, and Cevdet Aykanat. 2016. Improving performance of
sparse matrix dense matrix multiplication on large-scale parallel systems. Parallel
Comput. 59, C (Nov. 2016), 71-96. doi:10.1016/j.parco.2016.10.001

[3] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. 1995. A
three-dimensional approach to parallel matrix multiplication. IBM Journal of

https://github.com/EleutherAI/oslo
https://github.com/EleutherAI/oslo
https://doi.org/10.1016/j.parco.2016.10.001

SC ’25, November 16-21, 2025, St Louis, MO, USA

[4

(5

[9

[10

[11

[12

[13
[14

(15

[17

[18

[19

[20

[21

[22

[23

[24

=

=

=

]

]

]

]

]

]

Research and Development 39, 5 (1995), 575-582. doi:10.1147/rd.395.0575

Xin Ai, Hao Yuan, Zeyu Ling, Qiange Wang, Yanfeng Zhang, Zhenbo Fu, Chaoyi
Chen, Yu Gu, and Ge Yu. 2024. NeutronTP: Load-Balanced Distributed Full-
Graph GNN Training with Tensor Parallelism. arXiv:2412.20379 [cs.DC] https:
//arxiv.org/abs/2412.20379

Ariful Azad, Georgios A Pavlopoulos, Christos A Ouzounis, Nikos C Kyrpides,
and Aydin Bulug. 2018. HipMCL: a high-performance parallel implementation
of the Markov clustering algorithm for large-scale networks. Nucleic Acids
Research 46, 6 (01 2018), e33-e33. arXiv:https://academic.oup.com/nar/article-
pdf/46/6/e33/24525991/gkx1313.pdf doi:10.1093/nar/gkx1313

Muhammed Fatih Balin, Kaan Sancak, and Umit V. Catalyiirek. 2021. MG-GCN:
Scalable Multi-GPU GCN Training Framework. arXiv:2110.08688 [cs.LG] https:
//arxiv.org/abs/2110.08688

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: an efficient communication library for distributed GNN training. In Pro-
ceedings of the Sixteenth European Conference on Computer Systems (Online Event,
United Kingdom) (EuroSys "21). Association for Computing Machinery, New York,
NY, USA, 130-144. doi:10.1145/3447786.3456233

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. arXiv:1801.10247 [cs.LG]
https://arxiv.org/abs/1801.10247

Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Con-
volutional Networks with Variance Reduction. arXiv:1710.10568 [stat.ML]
https://arxiv.org/abs/1710.10568

Shenggan Cheng, Ziming Liu, Jiangsu Du, and Yang You. 2023. ATP: Adaptive
Tensor Parallelism for Foundation Models. arXiv preprint arXiv:2301.08658 (2023).
Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD °19). ACM. doi:10.1145/
3292500.3330925

Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo
Serra, and Alex Pothen. 2024. AGS-GNN: Attribute-guided Sampling for Graph
Neural Networks. arXiv:2405.15218 [cs.LG] https://arxiv.org/abs/2405.15218
Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. arXiv:1903.02428 [cs.LG] https://arxiv.org/abs/1903.02428
Geofabrik GmbH. 2010. DIMACS10/europe_osm. SuiteSparse Matrix Collection.
https://sparse.tamu.edu/DIMACS10/europe_osm

William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation
Learning on Large Graphs. arXiv:1706.02216 [cs.SI] https://arxiv.org/abs/1706.
02216

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2021. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv:2005.00687 [cs.LG] https://arxiv.org/
abs/2005.00687

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving
the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc.
In Proceedings of Machine Learning and Systems, 1. Dhillon, D. Papailiopoulos,
and V. Sze (Eds.), Vol. 2. 187-198. https://proceedings.mlsys.org/paper_files/
paper/2020/file/91fc23ceccb664ebb0cf4257e1badc51-Paper.pdf

George Karypis and Vipin Kumar. 1999. Kumar, V.: A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing 20(1), 359-392. Siam Journal on Scientific Computing 20 (01 1999).
doi:10.1137/51064827595287997

Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907
http://arxiv.org/abs/1609.02907

Siireyya Emre Kurt, Jinghua Yan, Aravind Sukumaran-Rajam, Prashant Pandey,
and P. Sadayappan. 2023. Communication Optimization for Distributed Execution
of Graph Neural Networks. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 512-523. doi:10.1109/IPDPS54959.2023.00058
Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard,
Wayne Hubbard, and Lawrence Jackel. 1990. Handwritten Digit Recognition with
a Back-Propagation Network. In Advances in Neural Information Processing Sys-
tems, D. Touretzky (Ed.), Vol. 2. Morgan-Kaufmann, 396-404. https://proceedings.
neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Ap-
plications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence (New Orleans, Louisiana, USA)
(AAAT'18/IAAT'18/EAAT'18). AAAI Press, Article 433, 8 pages.

Shengwei Li, Zhiquan Lai, Yanqi Hao, Weijie Liu, Keshi Ge, Xiaoge Deng, Dong-
sheng Li, and Kai Lu. 2023. Automated Tensor Model Parallelism with Over-
lapped Communication for Efficient Foundation Model Training. arXiv preprint
arXiv:2305.16121 (2023).

Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang
Liu, Boxiang Wang, and Yang You. 2023. Colossal-AI: A Unified Deep Learning

[25

[26

~
=

(28]

[29

@
=

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[42

Ranjan et al.

System For Large-Scale Parallel Training. In Proceedings of the 52nd International
Conference on Parallel Processing (, Salt Lake City, UT, USA,) (ICPP ’23). Association
for Computing Machinery, New York, NY, USA, 766-775. doi:10.1145/3605573.
3605613

Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan. 2021.
Sampling methods for efficient training of graph convolutional networks: A
survey. arXiv:2103.05872 [cs.LG] https://arxiv.org/abs/2103.05872

Ujjaini Mukhopadhyay, Alok Tripathy, Oguz Selvitopi, Katherine Yelick, and
Aydin Buluc. 2024. Sparsity-Aware Communication for Distributed Graph Neural
Network Training. In Proceedings of the 53rd International Conference on Parallel
Processing (Gotland, Sweden) (ICPP °24). Association for Computing Machinery,
New York, NY, USA, 117-126. doi:10.1145/3673038.3673152

Jianmo N1, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for
Computational Linguistics, Hong Kong, China, 188-197. doi:10.18653/v1/D19-
1018

NVIDIA. [n.d.]. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-
compute.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong
Cao. 2022. Sancus: staleness-aware communication-avoiding full-graph decen-
tralized training in large-scale graph neural networks. Proc. VLDB Endow. 15, 9
(May 2022), 1937-1950. doi:10.14778/3538598.3538614

Rolf Rabenseifner. 2004. Optimization of Collective Reduction Operations. In
Computational Science - ICCS 2004, Marian Bubak, Geert Dick van Albada, Pe-
ter M. A. Sloot, and Jack Dongarra (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1-9.

Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and
Aydin Bulug. 2021. Distributed-memory parallel algorithms for sparse times tall-
skinny-dense matrix multiplication. In Proceedings of the 35th ACM International
Conference on Supercomputing (Virtual Event, USA) (ICS "21). Association for Com-
puting Machinery, New York, NY, USA, 431-442. doi:10.1145/3447818.3461472
Shaohuai Shi, Pengfei Xu, and Xiaowen Chu. 2017. Supervised Learning Based
Algorithm Selection for Deep Neural Networks. In 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS). 344-351. doi:10.1109/
ICPADS.2017.00053

Siddharth Singh and Abhinav Bhatele. 2022. AxoNN: An asynchronous, message-
driven parallel framework for extreme-scale deep learning. In Proceedings of the
IEEE International Parallel & Distributed Processing Symposium (IPDPS "22). IEEE
Computer Society.

Siddharth Singh, Prajwal Singhania, Aditya Ranjan, John Kirchenbauer, Jonas
Geiping, Yuxin Wen, Neel Jain, Abhimanyu Hans, Manli Shu, Aditya Tomar, Tom
Goldstein, and Abhinav Bhatele. 2024. Democratizing Al: Open-source Scalable
LLM Training on GPU-based Supercomputers. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC "24).

Jaeyong Song, Hongsun Jang, Jaewon Jung, Youngsok Kim, and Jinho Lee. 2024.
GraNNDis: Efficient Unified Distributed Training Framework for Deep GNNs on
Large Clusters. arXiv:2311.06837 [cs.LG] https://arxiv.org/abs/2311.06837
Rajeev Thakur and William D. Gropp. 2003. Improving the Performance of
Collective Operations in MPICH. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Jack Dongarra, Domenico Laforenza, and Salvatore
Orlando (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 257-267.

Alok Tripathy, Katherine Yelick, and Aydin Bulug. 2020. Reducing communication
in graph neural network training. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia)
(SC °20). IEEE Press, Article 70, 17 pages.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML] https://arxiv.org/abs/1710.10903

Borui Wan, Juntao Zhao, and Chuan Wu. 2023. Adaptive Message
Quantization and Parallelization for Distributed Full-graph GNN Training.
arXiv:2306.01381 [cs.LG] https://arxiv.org/abs/2306.01381

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. 2022. BNS-GCN:
Efficient Full-Graph Training of Graph Convolutional Networks with Partition-
Parallelism and Random Boundary Node Sampling. arXiv:2203.10983 [cs.LG]
https://arxiv.org/abs/2203.10983

Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung
Kim, and Yingyan Lin. 2022. PipeGCN: Efficient Full-Graph Training
of Graph Convolutional Networks with Pipelined Feature Communication.
arXiv:2203.10428 [cs.LG] https://arxiv.org/abs/2203.10428

https://doi.org/10.1147/rd.395.0575
https://arxiv.org/abs/2412.20379
https://arxiv.org/abs/2412.20379
https://arxiv.org/abs/2412.20379
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/46/6/e33/24525991/gkx1313.pdf
https://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/46/6/e33/24525991/gkx1313.pdf
https://doi.org/10.1093/nar/gkx1313
https://arxiv.org/abs/2110.08688
https://arxiv.org/abs/2110.08688
https://arxiv.org/abs/2110.08688
https://doi.org/10.1145/3447786.3456233
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1710.10568
https://arxiv.org/abs/1710.10568
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://arxiv.org/abs/2405.15218
https://arxiv.org/abs/2405.15218
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://sparse.tamu.edu/DIMACS10/europe_osm
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://proceedings.mlsys.org/paper_files/paper/2020/file/91fc23ceccb664ebb0cf4257e1ba9c51-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/91fc23ceccb664ebb0cf4257e1ba9c51-Paper.pdf
https://doi.org/10.1137/S1064827595287997
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1109/IPDPS54959.2023.00058
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://doi.org/10.1145/3605573.3605613
https://doi.org/10.1145/3605573.3605613
https://arxiv.org/abs/2103.05872
https://arxiv.org/abs/2103.05872
https://doi.org/10.1145/3673038.3673152
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.18653/v1/D19-1018
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://doi.org/10.14778/3538598.3538614
https://doi.org/10.1145/3447818.3461472
https://doi.org/10.1109/ICPADS.2017.00053
https://doi.org/10.1109/ICPADS.2017.00053
https://arxiv.org/abs/2311.06837
https://arxiv.org/abs/2311.06837
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2306.01381
https://arxiv.org/abs/2306.01381
https://arxiv.org/abs/2203.10983
https://arxiv.org/abs/2203.10983
https://arxiv.org/abs/2203.10428
https://arxiv.org/abs/2203.10428

Plexus: Taming Billion-edge Graphs with 3D Parallel Full-graph GNN Training

[43] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2020. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv:1909.01315 [cs.LG] https:
//arxiv.org/abs/1909.01315

[44] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and
Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Dependency
Management. In Proceedings of the 2022 International Conference on Manage-
ment of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing
Machinery, New York, NY, USA, 1301-1315. doi:10.1145/3514221.3526134

[45] Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng, Kevin Barker, Ang Li, and
Yufei Ding. 2023. MGG: Accelerating Graph Neural Networks with Fine-Grained
Intra-Kernel Communication-Computation Pipelining on Multi-GPU Platforms.
In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). USENIX Association, Boston, MA, 779-795. https://www.usenix.org/
conference/osdi23/presentation/wang-yuke

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks? arXiv:1810.00826 [cs.LG] https://arxiv.org/abs/

1810.00826

Carl Yang, Aydin Buluc, and John D. Owens. 2018. Design Principles for Sparse

Matrix Multiplication on the GPU. doi:10.48550/ARXIV.1803.08601

[47

[48

[49

[50

(52

SC ’25, November 16-21, 2025, St Louis, MO, USA

Taraneh Younesian, Daniel Daza, Emile van Krieken, Thiviyan Thanapalasingam,
and Peter Bloem. 2024. GRAPES: Learning to Sample Graphs for Scalable Graph
Neural Networks. arXiv:2310.03399 [cs.LG] https://arxiv.org/abs/2310.03399
Hao Yuan, Yajiong Liu, Yanfeng Zhang, Xin Ai, Qiange Wang, Chaoyi Chen, Yu
Gu, and Ge Yu. 2024. Comprehensive Evaluation of GNN Training Systems: A
Data Management Perspective. arXiv:2311.13279 [cs.LG] https://arxiv.org/abs/
2311.13279

Shuai Zhang, Zite Jiang, and Haihang You. 2024. CDFGNN: a Systematic Design
of Cache-based Distributed Full-Batch Graph Neural Network Training with
Communication Reduction. arXiv:2408.00232 [cs.DC] https://arxiv.org/abs/2408.
00232

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E. Gonzalez,
and Jon Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Parallelism for
Distributed Deep Learning. CoRR abs/2201.12023 (2022). arXiv:2201.12023
Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. arXiv:1911.07323 [cs.LG] https://arxiv.org/abs/1911.
07323

https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://doi.org/10.1145/3514221.3526134
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://doi.org/10.48550/ARXIV.1803.08601
https://arxiv.org/abs/2310.03399
https://arxiv.org/abs/2310.03399
https://arxiv.org/abs/2311.13279
https://arxiv.org/abs/2311.13279
https://arxiv.org/abs/2311.13279
https://arxiv.org/abs/2408.00232
https://arxiv.org/abs/2408.00232
https://arxiv.org/abs/2408.00232
https://arxiv.org/abs/2201.12023
https://arxiv.org/abs/1911.07323
https://arxiv.org/abs/1911.07323
https://arxiv.org/abs/1911.07323

	Abstract
	1 Motivation
	2 Background and Related Work
	2.1 Mathematical Formulation of a GCN layer
	2.2 Different Paradigms of GNN Training
	2.3 Distributed Full-graph GNN Training

	3 A Three-dimensional Tensor Parallel Approach to Full-graph GNN Training
	3.1 Parallelizing a Single GCN Layer
	3.2 Parallelizing All Layers in the Network

	4 Performance Model
	4.1 Modeling Computation
	4.2 Modeling Communication
	4.3 Unified Performance Model

	5 Performance Optimizations
	5.1 Double Permutation for Load Balancing
	5.2 Blocked Aggregation
	5.3 Dense Matrix Multiplication Tuning
	5.4 Parallel Data Loading

	6 Experimental Setup
	6.1 Details of Supercomputer Platforms
	6.2 Description of Graph Datasets and the GNN
	6.3 Comparison with Other Frameworks

	7 Scaling Results
	7.1 Comparison with SOTA Frameworks
	7.2 Strong Scaling of Plexus

	8 Conclusion
	Acknowledgments
	References

