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Abstract—Scientific software in high performance computing
is becoming increasingly complex both in terms of its size
and the number of external dependencies. Correctness and
performance issues can become more challenging in actively
developed software with increasing complexity. This leads to
software developers having to spend larger portions of their
time on debugging, optimizing, and maintaining code. Making
software optimization and maintenance easier for developers
is paramount to accelerating the rate of scientific progress.
Fortunately, there is a wealth of data on scientific coding practices
available implicitly via version control histories. These contain
the state of a code at each stage throughout its development via
commit snapshots. Commit snapshots provide dynamic insight
into the software development process that static analyses of
release tarballs do not. In this abstract we propose a new
machine learning based approach for studying the performance of
source code across code modifications. First, we present a novel
methodology for preparing time-series performance data that
preserves syntactic structure. Then, we train a neural network
to predict if a commit introduces any code changes that will likely
impact performance negatively. We validate the trained model on
performance data from scientific code repositories.

Index Terms—version control history, source code changes,
performance degradation, machine learning model

Modern codebases of computational science and engineer-
ing software are becoming increasingly complex in their
design and scale. Production scientific software can have
hundreds of thousands of lines of code in addition to numer-
ous external dependencies. Maintaining these software stacks
imposes a significant burden on developers. Small changes
can have drastic impacts on organization, correctness, security,
and/or performance. In particular, performance of a code
can change significantly across a codebase’s version control
history. Within a large, complex codebase, it becomes difficult
for developers to predict the performance impacts of code
changes or assign culpability to observed impacts.

Commonly followed practice in software engineering has
centered around addressing issues related to correctness and
performance changes across commit snapshots. For instance,
unit and regression tests are used to help identify correctness
and performance breaking commits. These tests, like many
other detection mechanisms, are incomplete as they are de-
signed by software engineers and prone to the same errors as
the original code. Additionally, they need to be hand-designed,
and need to be executed periodically (after every commit or
nightly) which can be time consuming and expensive.

With the recent explosion of machine learning (ML) re-

search, many works have focused on supplementing human-
designed software engineering tools with ML-based assistance.
These works are particularly timely as a wealth of software
development data exists online through public facing version
control repositories. Most of this research has focused on
developer productivity, correctness, and security [1]–[13].

Applying ML-assisted tools for code to studying perfor-
mance, however, poses many new challenges. Engineering a
meaningful dataset to learn performance metrics from code
structure is not straight forward. First, collecting performance
data involves building a code and its dependencies, and then
executing it with representative input problems. To collect
large amounts of data, this process needs to be automated.
However, build processes vary significantly across code repos-
itories and can even change across commits within a single
repository. Second, performance is often dependent on more
than just code structure. For example, specific code changes
may degrade performance on one instruction set architecture,
but not another. Finally, code changes may only affect certain
code paths, which means dynamic runtime information about
control flow needs to be used to prune the data on code
changes. This makes it difficult to collect large amounts of
performance data for an arbitrary code, which, in turn, makes
training deep neural networks more difficult as they need large
amounts of data.

In this abstract we tackle the data collection challenges
mentioned above by developing a novel methodology for
preparing time-series performance data that preserves syntactic
structure. We develop an end-to-end system for collecting
meaningful performance data across an application’s version
control history. We use the processed data to train a neural
network to predict if a commit introduces any code changes
that will likely impact performance negatively. Additionally,
we demonstrate the effectiveness of this methodology on
scientific code repositories.

Data Collection and Augmentation

To gather performance data on scientific applications, we
choose to collect data on Kripke [14] and Laghos [15].
These are two proxy applications that mimic DOE production
codes. This data includes source code and performance results
for each commit. The performance results are collected by
building and running the commit on the Quartz system at
Lawrence Livermore National Laboratory.



To study the code structure we generate Abstract Syntax
Trees (ASTs) for the source code at each commit. Several
compilers provide functionality to view their generated ASTs
during compilation. We use the clang c++ compiler and its
-ast-dump flag to generate ASTs from c++ source files.

When predicting relative performance we could use the
entire AST as input into the model, however, this may in-
clude inactive regions of code. Some AST changes may have
significant potential impact on performance, but not lie in the
execution path for a particular input. These portions of the
AST may give misleading information to the model during
training and should be pruned out.

To accomplish this we assign run times to branches of the
AST using a profiled CCT. This is done using the file and
line numbers provided by both trees. We use HPCToolkit [16]
and Hatchet [17] to collect and process CCTs. Branches of
the AST which execute below some threshold can be pruned
out. We remove portions whose inclusive runtime is less than
1% of the total runtime. This also removes insignificant code
paths even if they do execute. These are less interesting and
can be removed to reduce the size of the feature space.
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Fig. 1. The F1 score and accuracy of the LSTM on each testing data set.
Both models train to similar results with the model performing better for the
Laghos data set.

To generate a more structured data format from the ASTs
we use the GumTree algorithm [18] to compute edit scripts.
When applied in order, the computed actions in the edit script
map one AST to another. These are not necessarily unique
and, for the GumTree algorithm, optimal, however, they are
often small and intuitive.

Due to the limited number of commits in these repositories
and the demanding requirements of many DL models we need
a way to increase the number of samples in the data set. We
accomplish this in three different ways: making use of the
symmetry in the data points, partitioning the ASTs into code
regions, and expanding the diffs beyond a single commit.

Since each data sample represents the relative code and
performance changes between hash hi and hi+1, then we can
swap the input features and output label to create a new valid
data point. This increases the size of the data set by 2×.

Each AST covers the entirety of code within a commit,
however, it can be split into code regions to gain performance
data at a finer granularity. The code can be partitioned into

any granularity up to a single line. In this work we split each
function into its own sample. This will increase the number of
data points by a multiple of the average number of functions
edited in each commit.
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Fig. 2. The F1 score and accuracies of the different ML models train on
the Laghos data set. Only the LSTM achieves reasonable results, which
emphasizes the necessity of preserving the entire edit script.

We can also consider code changes across multiple commits
as input samples. This can be done with a sliding window over
the existing samples. To add w samples we compute the diffs
for (hi, hi+1) to (hi, hi+w) and use the absolute times to get
the relative performance and assign the output label. For a data
set of size N this will increase the number of samples by w×
up to N2 total samples. We empirically determined the best
window size for our data set to be w = 8.

Edit scripts are sequential and variable in length, so pre-
dicting relative performance based on them is a sequence
classification problem. A common ML model for this type of
task are Long Short Term Memory (LSTM) neural networks.
The network architecture used in this work is

LSTM→ Dropout→ Dense→ Output

The beginning is 2 LSTM layers with 256 hidden units each.
After the LSTM layers is a dropout layer with a 0.2 dropout
rate. Finally, a traditional dense layer feeds into a log-loss
function. We employ the Adam optimizer to fit the network’s
parameters.

After training the model achieves an F1 score of 0.8 and
0.81 on Kripke and Laghos, respectively. Similarly it classifies
their relative performance with 76% and 78% accuracy (see
Figure 1). When compared with non-sequential classification
using summary statistics of the edit scripts the LSTM largely
outperforms the simpler models (see Figure 2). This shows the
representative capacity of the LSTM model.

In summary, we have presented a methodology for overcom-
ing the barriers in performance data collection across version
control history. We then used this data to show how machine
learning can be employed to predict performance degradation
based on code changes in a repository.
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