
Noncommital Commits: Predicting Performance Slowdowns in 
Version Control History

Acknowledgements

Daniel Nichols1, Dilan Gunawardana1, Aniruddha Marathe2, Todd Gamblin2, Abhinav Bhatele1

1University of Maryland, College Park, 2Lawrence Livermore National Laboratory

Scientific software in high performance computing is becoming 
increasingly complex both in terms of its size and the number of external 
dependencies. Correctness and performance issues can become more 
challenging in actively developed software with increasing complexity. 
This leads to software developers having to spend larger portions of their 
time on debugging, optimizing, and maintaining code. Making software 
optimization and maintenance easier for developers is paramount to 
accelerating the rate of scientific progress.  Fortunately, there is a wealth 
of data on scientific coding practices available implicitly via version 
control histories. These contain the state of a code at each stage 
throughout its development via commit snapshots. Commit snapshots 
provide dynamic insight into the software development process that 
static analyses of release tarballs do not.  In this poster, we present a 
methodology for:
○ Collecting performance data across version control history
○ Pruning Abstract Syntax Trees (AST) based on profiled Calling Context 

Trees (CCT)
○ Computing edit scripts that map one AST to another
○ Using deep learning to predict performance degradation based on 

code changes

References

Abstract

Data Collection & Preprocessing

Machine Learning Pipeline Training Results

Conclusion and Future Work

We collect performance data at each commit for 2 proxy applications: 
Kripke1 and Laghos2. Each commit is run on the Quartz system at 
Lawrence Livermore National Laboratory (LLNL).

Augmentation Method Kripke Data Set # 
Samples

Laghos Data Set # 
Samples

None 107 1168

Reflection 214 2336

Commit Windows 1712 18,688

Splitting by Function 5071 31,140

Commit hash 1

Commit hash 2

Prune ASTs with run time data

Compute edit script with GumTree Algorithm3

LSTM 
Model

Edit Script

Actions

Will commit 2 be slower 
than commit 1?

Long short-term memory 
(LSTM) model classifies 
with up to 0.81 F1 score 

and 78% accuracy 
when cross-validated on 

data set.

The model used is
LSTM→Dropout→ Dense
with two 256 unit LSTM 
layers and 0.2 dropout.

Simpler models are 
trained on summary 

statistics of edit scripts.

LSTM outperforms 
simpler models and 

shows the 
representative capacity 

of the edit scripts.

To get more training samples we augment the data set with 3 methods:
● Reflection: swap commits and output label
● Commit Windows: use all commit pairs within a range of commits
● Splitting by Function: split commit by changes per function

We have shown that by using data engineering techniques we can 
utilize deep learning to predict performance degradation in version 
control history. In future work we plan to:

● Use transfer learning to extend to new applications
● Use causal learning to gain insight into what types of code changes 

cause performance degradation
● Improve end-result by predicting relative performance
● Suggest code improvements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-838438)

[1] https://github.com/LLNL/Kripke
[2] https://github.com/CEED/Laghos
[3] J.-R. Falleri, et al, “Fine-grained and accurate source code differencing,” in ASE ’14.

Build & Run

AST 
Generation

Source Code

Source Code

CCT & AST

CCT & AST

AST

AST

0 or 1
The GumTree algorithm computes a list of actions called an edit 

script that maps one AST to another. The 4 types of actions 
(update, move, delete, and insert) operate on AST nodes.


