
● FillPatch routine, which does 
ghost cell exchange, dominates 
performance at scale.

● Within FillPatch, non-blocking 
ParallelCopy dominates
○ Global communication to 

obtain curvilinear grid 
points in interpolation

● ParallelCopy also happens in 
Regrid, as seen in scaling

● Compressible CFD solver using a weighted essentially non-oscillatory 
(WENO) bandwidth-optimized finite difference method [1].
○ 4th-order inviscid flux splitting with 4th-order central viscous fluxes
○ Explicit time integration with 3rd-order Runga-Kutta (RK3)

● In below flowchart, Advance contains main numerics kernels, FillPatch 
does ghost exchange between patches with MPI. 
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Accurate modeling of turbulent hypersonic flows has tremendous 
scientific and commercial value, and applies to atmospheric flight, 
supersonic combustion, materials discovery and climate prediction. 
In this poster, we describe our experiences in extending the 
capabilities of and modernizing CRoCCo, an MPI-based, CPU-only 
compressible computational fluid dynamics code. We extend 
CRoCCo to support block-structured adaptive mesh refinement 
using a highly-scalable AMR library, AMReX, and add support for a 
fully curvilinear solver. We also port the computational kernels in 
CRoCCo to NVIDIA GPUs to enable scaling on modern exascale 
systems. We present our techniques for overcoming performance 
challenges and evaluate the updated code, CRoCCo-AMR, on the 
Summit system, demonstrating a 5× to 24× speedup over the CPU-
only version.
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Conclusion and Future Work

● CRoCCo was an MPI-only code in C++ with FORTRAN numerical kernels
● AMReX framework is used for block-structured adaptive mesh refinement (AMR) [2].
○ AMReX also provides functions for communication/ghost cell exchange. 

● We extend the AMReX framework to support curvilinear grids:
1. Grid metrics: store grid in memory, instead of expensively computing 4th-order 

mapping metrics.
2. Interpolation: replace the default AMReX trilinear interpolator with custom 

interpolator accounting for non-uniform grid points.

● Validated and 
benchmarked with 
double mach reflection 
(DMR) problem, which 
has been extensively 
studied [3], using all 
curvilinear code 
features.

● We ran strong/weak scaling of curvilinear DMR on OLCF Summit [4] for GPU runs
(NVIDIA V100, 6 per node) and LLNL Quartz [5] for CPU (Intel Xeon E5, 36 cores/node).
○ “Interp” version shows performance benefit of removing custom curvilinear interpolator

● 5x to 24x speedup over the original CPU version for our new CRoCCo-AMR with GPU.
● The scaling trend of the GPU version worsens due to a communication bottleneck.

● Ported a state of the art CFD code with high-fidelity numerics in 
FORTRAN to modern C++ using a well-supported AMR framework.

● Demonstrated a 5x to 24x speedup on the Summit GPU platform
● Employed a novel methodology for handling curvilinear grids in 

AMReX. 
● Recommendations to developers on similar projects:
○ Expect degraded scaling performance due to shift from compute-

bound to communication-bound characteristics
○ Avoid expensive ParallelCopy operations wherever possible.

● Future work will focus on improving scaling performance
○ Tackle the communication bottleneck from ParallelCopy
○ Optimizing GPU kernels to reduce register usage
○ Further benchmarking on more advanced use cases, and 

performance portability analysis across other GPU vendors (AMD, 
Intel)
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3. Regridding: store the entire grid in memory to avoid expensive I/O when creating new patches in regrid
● We use the AMReX GPU API to provide support for NVIDIA GPUs through CUDA.
○ Requires additional loop layers in many of the major numerics loops to avoid data races in scratch arrays.

RKstage++, level = 0

level++
Start

End

N

N

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1840340. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National 
Science Foundation. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by 
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research used resources of the Livermore Computing 
Division at the Lawrence Livermore National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC52-07NA27344.

https://doi.org/10.1177/10943420211022811
https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/compute-platforms/quartz

	Slide Number 1

