
● FillPatch routine, which does
ghost cell exchange, dominates
performance at scale.

● Within FillPatch, non-blocking
ParallelCopy dominates
○ Global communication to

obtain curvilinear grid
points in interpolation

● ParallelCopy also happens in
Regrid, as seen in scaling

● Compressible CFD solver using a weighted essentially non-oscillatory
(WENO) bandwidth-optimized finite difference method [1].
○ 4th-order inviscid flux splitting with 4th-order central viscous fluxes
○ Explicit time integration with 3rd-order Runga-Kutta (RK3)

● In below flowchart, Advance contains main numerics kernels, FillPatch
does ghost exchange between patches with MPI.

Extreme -scale Computational Fluid Dynamics with AMR on GPUs

Acknowledgements

Joshua Hoke Davis1, Justin Shafner2, Daniel Nichols1, Nathan Grube2, Pino Martin2, Abhinav Bhatele1

1Dept. of Computer Science, University of Maryland 2Dept. of Aerospace Engineering, University of Maryland

Accurate modeling of turbulent hypersonic flows has tremendous
scientific and commercial value, and applies to atmospheric flight,
supersonic combustion, materials discovery and climate prediction.
In this poster, we describe our experiences in extending the
capabilities of and modernizing CRoCCo, an MPI-based, CPU-only
compressible computational fluid dynamics code. We extend
CRoCCo to support block-structured adaptive mesh refinement
using a highly-scalable AMR library, AMReX, and add support for a
fully curvilinear solver. We also port the computational kernels in
CRoCCo to NVIDIA GPUs to enable scaling on modern exascale
systems. We present our techniques for overcoming performance
challenges and evaluate the updated code, CRoCCo-AMR, on the
Summit system, demonstrating a 5× to 24× speedup over the CPU-
only version.

References

Abstract

CRoCCo Application

Curvilinear Support and GPU Porting Method

Benchmarking CRoCCo-AMR

Performance Profiling

Conclusion and Future Work

● CRoCCo was an MPI-only code in C++ with FORTRAN numerical kernels
● AMReX framework is used for block-structured adaptive mesh refinement (AMR) [2].
○ AMReX also provides functions for communication/ghost cell exchange.

● We extend the AMReX framework to support curvilinear grids:
1. Grid metrics: store grid in memory, instead of expensively computing 4th-order

mapping metrics.
2. Interpolation: replace the default AMReX trilinear interpolator with custom

interpolator accounting for non-uniform grid points.

● Validated and
benchmarked with
double mach reflection
(DMR) problem, which
has been extensively
studied [3], using all
curvilinear code
features.

● We ran strong/weak scaling of curvilinear DMR on OLCF Summit [4] for GPU runs
(NVIDIA V100, 6 per node) and LLNL Quartz [5] for CPU (Intel Xeon E5, 36 cores/node).
○ “Interp” version shows performance benefit of removing custom curvilinear interpolator

● 5x to 24x speedup over the original CPU version for our new CRoCCo-AMR with GPU.
● The scaling trend of the GPU version worsens due to a communication bottleneck.

● Ported a state of the art CFD code with high-fidelity numerics in
FORTRAN to modern C++ using a well-supported AMR framework.

● Demonstrated a 5x to 24x speedup on the Summit GPU platform
● Employed a novel methodology for handling curvilinear grids in

AMReX.
● Recommendations to developers on similar projects:
○ Expect degraded scaling performance due to shift from compute-

bound to communication-bound characteristics
○ Avoid expensive ParallelCopy operations wherever possible.

● Future work will focus on improving scaling performance
○ Tackle the communication bottleneck from ParallelCopy
○ Optimizing GPU kernels to reduce register usage
○ Further benchmarking on more advanced use cases, and

performance portability analysis across other GPU vendors (AMD,
Intel)

[1] M. Martin et al., “Bandwidth-optimized weno scheme for the direct numerical simulation of compressible turbulence,” J. Comp. Phys. , vol. 220, pp. 270–289, 2006.
[2] W. Zhang, et al., “AMReX: Block-structured adaptive mesh refinement for multiphysics
applications,” The International Journal of High Performance Computing Applications, vol. 35, no. 6, pp. 508–526, 2021. [Online]. Available: https://doi.org/10.1177/10943420211022811
[3] F. Kemm, “On the proper setup of the double Mach reflection as a test case for the resolution of gas dynamics codes,” Computers & Fluids, vol. 132, pp. 72–75, 2016.
[4] “Summit, Oak Ridge National Laboratory” https://www.olcf.ornl.gov/summit/
[5] “Quartz, Lawrence Livermore National Laboratory” https://hpc.llnl.gov/hardware/compute-platforms/quartz

Regrid

Regrid
step?

FillPatch

Advance

Update

Last RK3
stage?

Last AMR
level?

Y

N

Y

Y

3. Regridding: store the entire grid in memory to avoid expensive I/O when creating new patches in regrid
● We use the AMReX GPU API to provide support for NVIDIA GPUs through CUDA.
○ Requires additional loop layers in many of the major numerics loops to avoid data races in scratch arrays.

RKstage++, level = 0

level++
Start

End

N

N

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1840340. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research used resources of the Livermore Computing
Division at the Lawrence Livermore National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC52-07NA27344.

https://doi.org/10.1177/10943420211022811
https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/compute-platforms/quartz

	Slide Number 1

