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I. INTRODUCTION

The past two years have shown how global pandemics
can wreak havoc and inflict significant social, economic and
personal losses. However, properly tailoring public health re-
sponses that could help mitigate those losses to circumstances
on the ground is far from easy, and requires studying the
potential impact and efficacy of a wide range of measures in a
chaotic human-disease system. Simulating epidemic diffusion
and possible interventions can help us in this goal. Agent-
based models provide one method which has been used effec-
tively in the past to model contagion processes, like diseases.
We present Loimos, a highly parallel simulation of epidemic
diffusion written on top of the Charm++ asynchronous task-
based system. Loimos uses a hybrid between time-stepping
and discrete-event simulation to model disease spread. We
demonstrate that our implementation of Loimos is able to scale
on to large core counts on different HPC platforms such as
Theta at ALCF and Cori at NERSC.

II. METHODOLOGY

A. Model

We use an alternative approach to the coupled-rate equations
commonly used in traditional compartmental models. Our
method uses a combination of network theory, discrete event
simulations, and agent-based modeling to study epidemics.

In Loimos, we model population behavior in terms of
scheduled visits by people to locations. In order to determine
which people are at the same location at the same time, we
run a separate discrete event simulation at each location and
maintain lists of infectious and susceptible people throughout
the day. When a person leaves a location, they have a chance
to infect each susceptible person currently there if they are
infectious (or be infected by each infectious person currently
there, if they are susceptible). Once a person is infected, they
progress through various disease states stochastically in the
manner prescribed by a disease model representing the disease
being modeled.

B. Parallel Implementation

While each step of the discrete event simulation technically
depends on every prior step at every other location, we can
treat visits and infections taking place on the same day as
independent of each other if we assume that the incubation
time for the disease being modelled is at least a day (which
is generally true for any real disease). This allows us to
parallelize across people and locations within a given day.

In order to implement this parallel scheme, we used
Charm++, a task-based parallel Framework built around com-
bined work-data units called chares [1]. We use two distinct
sets of chares in our implementation, one for people and one
for locations, and perform computations in three phases, each
of which is parallelized across the relevant chares. First, the
people chares read in each person’s visit schedule for the day
and send visit messages. Next, the location chares process
all visits to each location for the day and send interaction
messages describing their chances of being infected. Lastly,
the people chares process all interactions for each person,
determine whether or not they were infected, and update their
disease state.

TABLE I
POPULATIONS USED IN SYNTHETIC SCALING EXPERIMENT (SYN) AND

REAL DATA USED IN THE INTERVENTION CASE STUDIES.

Dataset name visits people locations

REAL (CoC) 1,332,029 41,119 19,203
SYN (MD) 32,500,000 6,250,000 1,254,400
SYN (CA) 202,800,130 39,000,025 7,225,344
SYN (US) 1,715,829,570 329,967,225 80,281,600

C. Experimental Setup

We test the scalability on two separate HPC platforms:
Cori [2] at Lawrence Berkeley National Lab and Theta [3]
at Argonne National Lab. Both platforms are Intel-based Cray
XC40 systems with an Aries dragonfly interconnect [4], but
have different node configurations. Notably Cori consists of
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Fig. 1. Strong scaling performance of Loimos on Cori (left) and Theta (right) for three different datasets of 6.25, 39, and 330 million people.
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Fig. 2. Case Study Of Self-Isolation Intervention In Real CoC Dataset

two 16-core Haswell processors per node while Theta has a
single 64-core Xeon Phi processor. All experiments were ran
with Protobuf version 3.14.0 and Charm version 6.10.2.

We begin by performing extensive scalability studies using
the best Charm parameters we found on both systems. Using
a synthetic graph generation scheme, we create 3 realistically-
sized datasets: two based on the states of California and
Maryland, and one for the entire United States. Table I
describes the number of people, locations, and total visits for
all these datasets and for the real dataset used for the case
study. We run the California and Maryland datasets for 180
days total and the US dataset for 30 days.

Lastly, we perform an intervention case study using a
real dataset collected on the city of Charlottesville (CoC)
in Virginia, USA. This dataset is based on surveys, phone
data, and other anonymous sources and represents a week of
realistic social interactions. We simulate case infectious rates
depending on differing levels of compliance to a self-isolation
policy. Individuals self-isolate (cease all interactions) if they
have been infected and show symptoms. Note that individuals
can be infectious yet asymptomatic; these people will continue
to spread the disease even with 100% compliance. We test
compliance levels from 0% to 100% with this intervention.

III. RESULTS

In order to understand how Loimos would enable large scale
simulations we performed classical scaling analysis. Figure 1
shows the strong scaling results of the simulator when running
the three synthetic data sets listed in Table I on Cori and Theta.
The general trend for the MD and CA datasets on both systems
shows that the speedup keeps increasing up to 128 nodes. On
Theta, for both datasets, problem size over-decomposition and
communications costs seem to impact performance after 256
nodes. On Cori, an approximate speedup of 28 is obtained
for both MD and CA datasets when running on 4k cores. On
Theta a 40.81 acceleration is achieved for the CA dataset when
running on 8k cores (128 nodes).

As for the US-sized synthetic data set, we started scaling
from 8 nodes due to memory constraints on lower node counts.
The trend observed on Theta is positive as speedup keeps
increasing significantly up to 30k cores (512 nodes) achieving
a 20.76 speedup. Following the acceleration curve, bigger
speedups are expected for higher node counts for this dataset.

Figure 2 demonstrates the daily number of infectious in-
dividuals under a self-isolation intervention given five differ-
ent levels of compliance. This intervention depends on each
person’s characteristics and demonstrates how a intervention
could change people’s schedules based on their disease status.

IV. CONCLUSIONS

In this work, we outlined the methods we used to develop
this simulation framework and to optimize it for production
HPC systems. We described the models underpinning our work
as well as various optimizations we have made to enable the
code to scale well. We demonstrate our code’s efficient use of
resources during strong scaling runs on the NERSC Cori and
ALCF Theta supercomputers, and show how the application
can be used to model the impact of interventions on the
progression of an outbreak. Together, these runs demonstrate
the potential uses of Loimos for policy makers as a fast,
scalable epidemic simulator which is robust enough to capture
the effects of policy interventions.
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