
In order to inform policy decision effectively, an 
infectious disease model needs to:

1. simulate large populations
2. handle flexible interventions
3. account for uncertainty with large numbers of 

replicates
4. do all the above while maintaining a quick turn 

around time (at most a day)
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Motivation

The rate at which new emerging infectious 
diseases (EIDs) appear is increasing. Taken 
from [1].

• COVID-19 has made the costs of the spread 
of infectious diseases all too clear

• We need to be ready for the next outbreak, 
whether a new COVID-19 variant or an 
emerging infectious disease (EID)

• Responding quickly and intelligently will 
require modeling a variety of intervention 
scenarios in a short period of time

• We set out to design a scalable simulation of 
epidemic diffusion to meet that need

Experimental DesignParallel Implementation

Results

1.
2.
3.

4.

The simulation model relies on several assumptions:
• People will not become infectious on the same 

day they are infected
• All transitions between disease states besides 

initial infections are known when each day starts
• Each person’s visit schedule is known at the start 

of each day
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• Switch to using real state population datasets
• Combine real state population datasets into 

full-US dataset
• Repeat scaling studies on realistic datasets
• Implement graph-based static load 

balancing

• Investigate influence of social contact graph 
characteristics on performance

• Implement arbitrary intervention model
• Validate simulation output against related 

application results
• Compare simulation output with real-world 

case data

On Theta:
• The full-US dataset scales linearly up to 32K 

cores (512 nodes)
• The California and Maryland datasets only 

scale linearly up to 8K cores (128 nodes)
• Above 8K cores, they begin to suffer from 

overhead
• Loimos achieves a speedup of ~40.81 on 

the CA dataset when running on 8k cores

Case Study:
• Infections are reduced the more people 

follow the self-isolation intervention
• However, the shape of the epidemic curve 

does not change in our simulation

We perform three experiments:
• Two strong scaling studies, on Cori at NERSC and 

Theta at ALCF
• An intervention case study on self-isolation, with 

varying levels of compliance

Systems used for experiments

We present a scalable parallel simulation
framework for modeling contagion processes, 
Loimos, and demonstrate its capabilities.

We show that Loimos can:
1. Efficiently utilize resources on the NERSC Cori 

and ALCF Theta machines 
2. Model the impact of interventions on a 

population of interest

1.

2.

Model
0 for each day:
1   for each people chare pc:
2     for each person p:
3       pc.send(p.visits)
4   for each location chare lc:
5     for each location l:
6       visits = lc.receive(l)
7 intrs =

find_interactions(visits)
8 lc.send(intrs)
9   for each people chare pc:
10    for each person p:
11      if p.is_infected():
12        p.update_state()
13      else:
14        intrs = pc.receive(p)
15        was_infected =

process_interactions(intrs)
16        p.update_state(was_infected)

Loimos Algorithm
We implement Loimos in the Charm++ parallel 
framework. Charm++ is built around organizing code 
into combined work-data units called chares. In 
Loimos, we use two types of chares:

Location chares:
• Process visits
• Compute 

infection 
likelihood 

• Send 
interaction 
messages

People chares:
• Send visit 

messages
• Process 

interactions to 
determine if an 
infection occurs

• Update disease 
states

We represent diseases using finite state 
automata (FSA):
• Each state represents a different stage in the 

progression of the disease
• Each person maintains a disease state 

throughout the course of the simulation
• This state determines whether or they can 

infect – or be infected by – other people

• Every person starts in a susceptible state, 
moves to an exposed state after being 
infected, and progresses through subsequent 
states stochastically

• Simulating a new disease is as simple as 
making a new FSA to represent it

Recovered
Infectivity: 0.0 
Susceptibility: 0.0
Symptomatic:     

Symptomatic
Infectivity: 1.0 
Susceptibility: 0.0
Symptomatic:     

Susceptible
Infectivity: 0.0 
Susceptibility: 1.0
Symptomatic:     

Asymptomatic
Infectivity: 1.0 
Susceptibility: 0.0
Symptomatic:     

Dead
Infectivity: 0.0 
Susceptibility: 0.0
Symptomatic:     

2. On each simulated day, locations receive a list 
of visits, then process the arrivals and departures
in order of occurrence, keeping track of who is at 
the same location at the same time.

1. Each person has a schedule detailing which 
locations they visit and when on each day of the 
week.

3. When each person leaves a location, we calculate 
the likelihood that they infected someone else or were 
infected themselves:
• Infectious people have a chance of infecting each 

susceptible person at the location when they leave
• Susceptible people have a change of being 

infected by each infectious person at the location 
when they leave

Interventions can act on these models in several ways:
• When a person meets some criteria, they adjust 

their visit schedule
• When a location meets some criteria, visits to that 

location are adjusted
• When a person meets some condition, their disease 

state is changed to one with a different infectivity or 
susceptibility
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Datasets used for experiments

On Cori:
• Loimos obtains a speedup of ~28 on the 

CA dataset when running on 4k cores (128 
nodes)
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