AxoNN: Hybrid Asynchronous Algorithms for Parallel Deep Learning

Siddharth Singh, Abhinav Bhatele
Department of Computer Science, University of Maryland

Abstract

1. Due to high communication overheads, training multi-billion parameter neural networks at scale is a challenging problem.
2. We present AxoNN, an asynchronous hybrid parallel framework for training such models on networked GPU clusters.
3. AxoNN features two highly scalable implementations of inter-layer and tensor parallelism for efficiently training models that do not fit on a single GPU.
4. On 256 A100 GPUs, AxoNN trains a 28B parameter CNN 2.5x faster than the state-of-the-art.

Designing a Hybrid Parallel Framework

1. AxoNN’s parallelism is a hybrid of data and model parallelism.
2. Organize GPUs in a virtual two-dimensional topology, with dimensions G_{dat} x C_{mod}.

![Image 261x1604 to 162x1685]

3. Data Parallelism – Each row of GPUs computes on an equally sized shard of the input batch.

![Image 81x1604 to 162x1685]

Inter-Layer Parallelism

1. Distribute neural network layers equally within model parallel GPUs.
2. Divide batch shard into microbatches and execute them in a pipelined fashion.
3. An asynchronous, message-driven communication backend to effectively overlap communication with computation [1].
4. An efficient memory optimization algorithm that moves optimizer data to the GPU and saves 4x memory [1].
5. We then exploit the saved memory to greatly reduce point-to-point communication volume [1].

Tensor Parallelism

1. A novel asynchronous two-dimensional (2D) algorithm for parallelizing the computation of every layer of the neural network across model parallel GPUs.
2. Communication models to derive communication-optimal configurations for arbitrary models.

![Image 158x330 to 878x737]

![Image 938x312 to 1757x530]

Fig 1: Schematic diagram for AxoNN’s hybrid parallelism on 8 GPUs with G_{dat} = 2 and C_{mod}=4. GPU G_0 computes on the i^{th} batch shard and j^{th} neural network shard.

Fig 2: Distribution of neural network compute under inter-layer parallelism, across GPUs in the first row of Figure 1.

Fig 3: Batch time breakdown for a 12B parameter GPT on 48 GPUs of Summit.

Fig 4: Comparing an FC layer with our tensor 2D tensor parallel algorithm on 4 GPUs.

![Image 1358x139 to 1765x258]

Fig 5: Trace of our tensor parallel algorithm for a 10B parameter GPT on 8 A100 GPUs.

![Image 1849x1139 to 2552x1404]

Conclusion and Future Work

1. Presented AxoNN, an asynchronous hybrid parallel framework for parallel deep learning.
2. Developed highly optimized implementations of inter-layer and tensor parallelism with a focus on minimizing communication time.
3. Future work involves combining inter-layer and pipeline parallelism and developing methods to autotune configuration parameters.

References

[1] Singh et al., AxoNN: An asynchronous, message-driven parallel framework for extreme-scale deep learning, IPDPS 2022

Acknowledgements

This work was supported by funding provided by the University of Maryland College Park Foundation. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research also used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award ERCAP0025593.