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dimensional topology, with parallelism with Megatron-LM on U-Nets, on Perlmutter. For the 28 B

dimensions Gy, X G, odel- Tensor Parallelism model, AxoNN is 2.5x faster than Megatron-LM.
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Fig 1: Schematic diagram for AxoNN’s hybrid parallelism on 8 GPUs with G,, = 2 and and developing methods to autotune configuration parameters.
Ginoda=4- GPU g;; computes on the ith batch shard and j neural network shard. Fig 4: Computing an FC layer with our tensor 2D tensor parallel algorithm on 4 GPUs.
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