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ABSTRACT
In the past year a large number of large language model (LLM)
based tools for software development have been released. These
tools have the capability to assist developers with many of the diffi-
culties that arise from the ever-growing complexity in the software
stack. As we enter the exascale era, with a diverse set of emerging
hardware and programming paradigms, developing, optimizing,
and maintaining parallel software is becoming burdensome for de-
velopers. While LLM-based coding tools have been instrumental
in revolutionizing software development, mainstream models are
not designed, trained, or tested on High Performance Computing
(HPC) problems. In this abstract we present a LLM fine-tuned on
HPC data and demonstrate its effectiveness in HPC code generation,
OpenMP parallelization, and performance modeling.

1 INTRODUCTION
As we enter the exascale era the scale and complexity of scientific
software grows at an unprecedented rate. Developing and man-
aging software is becoming increasingly difficult for developers.
Sophisticated development tools are needed to help developers
write code, debug issues, and optimize performance. In the past
year, large language models (LLMs) have been shown to be effec-
tive at many of these tasks. However, most LLMs are not designed
for, trained on, or tested on HPC problems. This abstract primarily
addresses this problem.

In our approach we first collect a large corpus of HPC code. Then,
we fine-tune three LLMs, namely GPT-2 [5], GPT-Neo [2], and
PolyCoder [6], on this data set. After comparing the performance
of these models, we select the best performing model for further
evaluation. This model is then used to generate HPC code, label for
loops with OpenMP pragmas, and predict the relative performance
of HPC routines.

2 DATA COLLECTION
In order to fine-tune a LLM to be able to perform HPC tasks we
need a large corpus of HPC code. To obtain this we collect code
from a large number of GitHub repositories. We select those that
have greater ≥ 3 stars, C/C++/Fortran as a primary language, and
an HPC related tag.

The source files from these repositories are then deduplicated
and filtered. The deduplication is accomplished by computing the
sha256 hash of each file and removing those that have the same
hash. According to Allamanis [1], removing duplicate data when
training LLMs can significantly improve performance. Finally, files
over 1MB and under 15 tokens are filtered out in order to exclude
large library headers and small metadata files. Before deduplication
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and filtering, the data set contains ≈ 2GB of data with only ≈ 1.6GB
being left afterwards.

3 FINE-TUNING
Using the HPC data set we fine-tune three language models: GPT-2,
GPT-Neo, and PolyCoder. These are selected based on their pre-
training data set and model size. GPT-2 is the smallest model with
1.5B parameters and was trained on a web crawl data set consisting
of only natural language. GPT-Neo is a larger model with 2.7B
parameters and was trained on a combination of web crawl data
and code data. Finally, PolyCoder is the same size as GPT-Neo but
was trained on a data set of only code.

Figure 1: Perplexity during fine-tuning.

We fine-tune each of these models on the HPC data set for next
token prediction where model learns to predict the next token in a
sequence given the previous tokens. Figure 1 shows the perplexity
of the models on the training and validation sets over the course of
an epoch. The perplexity is a measure of how well the model is able
to predict the next token in a sequence and is also the exponential
of the loss (lower is better). All models train to a low perplexity
demonstrating that they are able to model the HPC data set. GPT-
Neo and PolyCoder score higher than GPT-2 likely due to their
larger size and pre-training data.

4 TEXT GENERATION
Using the fine-tuned models we generate a set of HPC specific
functions and evaluate the correctness and performance of the gen-
erated code. The HPC functions include sequential, OpenMP, and
MPI based parallelism. For each of these functions we generate
1, 10, and 100 samples and compute the pass rate for each set of
samples. Figure 2 shows the pass rate for each model and number of
samples. Notably, native PolyCoder is bad at writing HPC and par-
allel code. By fine-tuning it on HPC data we are able to improve its
performance significantly. Furthermore, PolyCoder+HPC, performs
better than GPT-Neo+HPC and GPT-2+HPC.
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Figure 2: Fine-tuning models on HPC data significantly im-
proves performance when generating HPC code.

We also evaluate the performance of the generated code by
comparing it to an original implementation. Figure 3 shows the
speedup of the generated code over the original implementation
with PolyCoder+HPC. The speedup is always >1 indicating that
the generated code is not just correct, but also performant.

Figure 3: Speedup of generated code from PolyCoder+HPC
over original implementations. The model not only gener-
ates correct code, but also performant code.

5 OPENMP PRAGMA LABELLING
In addition to text generation we also evaluate the ability of the
models to label for loops with OpenMP pragmas. We accomplish
this by first extracting all the for loops with OpenMP pragmas
from the data set. We then fine-tune the models to take a for loop
as input and generate the OpenMP pragma for that loop. The ac-
curacy is computed by comparing the generated pragma to the
original pragma in two ways: textual and functional equivalence.
Figure 4 shows the accuracy of the models on both of these metrics.
PolyCoder, when fine-tuned on HPC data, is able to label OpenMP

pragmas with up to 97% accuracy, outperforming the native Poly-
Coder.

Figure 4: PolyCoder+HPC exhibits significantly higher accu-
racy than native PolyCoder for OpenMP labelling.

6 PERFORMANCE MODELING
We also test the model’s ability to model performance attributes
of HPC code by using it to predict relative performance across
git commits. We accomplish this by first running all the commits
of the Kripke [4] and Laghos [3] repositories for a total of 830
commits. The models are further fine-tuned to take the code before
and after a commit as input and predict whether the code got faster
(1) or stayed the same/slower (0). Figure 5 shows the accuracy of
the models on this task. Both models perform well at predicting
whether code got faster or slower across a git commit, however,
PolyCoder+HPC performs slightly better with an accuracy of 88%.

Figure 5: Both models perform well at predicting whether
code got faster or slower across a git commit.
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