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In the past year, a large number of  large language model (LLM)-based tools for software 
development have been released. These tools have the capability to assist developers with 
many of  the difficulties that arise from the ever-growing complexity in the software stack. 
As we enter the exascale era, with a diverse set of  emerging hardware and programming 
paradigms, developing, optimizing, and maintaining parallel software is becoming 
burdensome for developers. While LLM-based coding tools have been instrumental in 
revolutionizing software development, mainstream models are not designed, trained, or 
tested on High Performance Computing (HPC) software and problems. In this poster, we 
present a LLM fine-tuned on HPC data and demonstrate its effectiveness in HPC code 
generation, OpenMP parallelization, and performance modeling.
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● Create a dataset of  
HPC source code

● All GitHub repos 
with ≥ 3 stars, 
C/C++/Fortran, and 
HPC-related tags

● Deduplicate dataset to improve training performance and prevent overfitting
● Deduplicate by sha256 hash of  file contents
● Remove files > 1MB or < 25 tokens
● 18% of  files or 0.4 GB are removed

● Select three LLMs that can run on a single consumer GPU and have a 
variety of  pre-training data: natural language, natural language+code, 
and code.

● Train models on the HPC dataset for next token prediction.
● Compare models by their validation perplexity after one epoch of  

training.

● Lower perplexity means the LLM models the language’s underlying 
distribution better

● All three models train to low perplexity after one epoch
● GPT-2 is the worst due to smaller model size (1.5 billion) and a natural 

language only pre-training task
● PolyCoder performs slightly better than GPT-Neo, however, their 

training results are comparable
● Results are comparable when pre-trained on source code or source 

code + natural language

Conclusion and Future Work

● Generate function bodies for 25 custom 
HPC kernels

● Sequential, OpenMP and MPI kernels
● Compare pass rate: the percentage of  

functionally correct solutions
● PolyCoder trained on HPC data has the 

best pass rate

● Standard PolyCoder performs 
poorly on HPC tasks

● Source code pre-training gives 
better performance than mixed 
natural language and code

● Generated parallel code is 
efficient

● Scrape all OpenMP-labeled for 
loops in dataset

● Fine-tune models to add 
OpenMP pragmas to for loops

● Compare textual equivalence and 
functional correctness

● PolyCoder fine-tuned on HPC 
data gets up to 97% of  samples 
correct

● Standard PolyCoder only gets up 
to 67% correct

● Build and run every commit in 
Kripke and Laghos git repositories

● Train models to predict relative 
performance across code changes

● Classification prediction: positive 
for improved performance and 
negative for degraded or same 
performance

● Both models get high accuracy
● PolyCoder fine-tuned on HPC data 

scores slightly better than standard 
PolyCoder

● State-of-the-art LLMs that can run on 
consumer GPUs are bad at HPC tasks

● Fine-tuning LLMs on HPC data can 
improve parallel code generation

● LLMs understand parallel data 
movement enough to correctly label 
OpenMP data clauses

● LLMs can be used to model code 
performance and perform best at this 
task when fine-tuned on HPC data

● In the future, we will
○ study larger and better LLMs as they 

are released rapidly
○ study how well LLMs perform at 

writing more complicated parallel 
structures

○ train LLMs to write faster code
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