
Modeling Parallel Programs using Large Language Models

Acknowledgements

Daniel Nichols1, Aniruddha Marathe2, Harshitha Menon2, Todd Gamblin2, Abhinav Bhatele1

1Department of Computer Science, University of Maryland 2Lawrence Livermore National Laboratory

In the past year, a large number of large language model (LLM)-based tools for software
development have been released. These tools have the capability to assist developers with
many of the difficulties that arise from the ever-growing complexity in the software stack.
As we enter the exascale era, with a diverse set of emerging hardware and programming
paradigms, developing, optimizing, and maintaining parallel software is becoming
burdensome for developers. While LLM-based coding tools have been instrumental in
revolutionizing software development, mainstream models are not designed, trained, or
tested on High Performance Computing (HPC) software and problems. In this poster, we
present a LLM fine-tuned on HPC data and demonstrate its effectiveness in HPC code
generation, OpenMP parallelization, and performance modeling.

References

Abstract

Overview of Our Approach

Fine-tuning Large Language Models with HPC data

Task 1: Text Generation

Task 2: OpenMP Pragma Labeling

Task 3: Performance Modeling

HPC Source Data Collection

HPC Source
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-Tuning

● Create a dataset of
HPC source code

● All GitHub repos
with ≥ 3 stars,
C/C++/Fortran, and
HPC-related tags

● Deduplicate dataset to improve training performance and prevent overfitting
● Deduplicate by sha256 hash of file contents
● Remove files > 1MB or < 25 tokens
● 18% of files or 0.4 GB are removed

● Select three LLMs that can run on a single consumer GPU and have a
variety of pre-training data: natural language, natural language+code,
and code.

● Train models on the HPC dataset for next token prediction.
● Compare models by their validation perplexity after one epoch of

training.

● Lower perplexity means the LLM models the language’s underlying
distribution better

● All three models train to low perplexity after one epoch
● GPT-2 is the worst due to smaller model size (1.5 billion) and a natural

language only pre-training task
● PolyCoder performs slightly better than GPT-Neo, however, their

training results are comparable
● Results are comparable when pre-trained on source code or source

code + natural language

Conclusion and Future Work

● Generate function bodies for 25 custom
HPC kernels

● Sequential, OpenMP and MPI kernels
● Compare pass rate: the percentage of

functionally correct solutions
● PolyCoder trained on HPC data has the

best pass rate

● Standard PolyCoder performs
poorly on HPC tasks

● Source code pre-training gives
better performance than mixed
natural language and code

● Generated parallel code is
efficient

● Scrape all OpenMP-labeled for
loops in dataset

● Fine-tune models to add
OpenMP pragmas to for loops

● Compare textual equivalence and
functional correctness

● PolyCoder fine-tuned on HPC
data gets up to 97% of samples
correct

● Standard PolyCoder only gets up
to 67% correct

● Build and run every commit in
Kripke and Laghos git repositories

● Train models to predict relative
performance across code changes

● Classification prediction: positive
for improved performance and
negative for degraded or same
performance

● Both models get high accuracy
● PolyCoder fine-tuned on HPC data

scores slightly better than standard
PolyCoder

● State-of-the-art LLMs that can run on
consumer GPUs are bad at HPC tasks

● Fine-tuning LLMs on HPC data can
improve parallel code generation

● LLMs understand parallel data
movement enough to correctly label
OpenMP data clauses

● LLMs can be used to model code
performance and perform best at this
task when fine-tuned on HPC data

● In the future, we will
○ study larger and better LLMs as they

are released rapidly
○ study how well LLMs perform at

writing more complicated parallel
structures

○ train LLMs to write faster code

[1] Frank F. Xu, et al., 2022. A systematic evaluation of large language models of code. In International Symposium on Machine Programming (MAPS 2022).
[2] L. Gao et al., The Pile: An 800GB Dataset of Diverse Text for Language Modeling. 2020.
[3] S. Black, et al., GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. Zenodo, 2021. doi: 10.5281/zenodo.5297715.
[4] A. Radford, et al., “Language Models are Unsupervised Multitask Learners,” 2019.

This material is based upon work supported in part by the National Science Foundation under Grant No. 2047120. This work was performed in part under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-855166)

