
Pipit: Simplifying Parallel Trace Analysis
Alexander Movsesyan, Rakrish Dhakal, Aditya Ranjan, Jordan Marry, Onur Cankur, Abhinav Bhatele

Department of Computer Science, University of Maryland
College Park, Maryland, USA

{amovsesy,rakrish,aranjan2,jmarry,ocankur}@umd.edu,bhatele@cs.umd.edu

ABSTRACT
Performance analysis is an important part of the oft-repeated, it-
erative process of performance tuning during the development of
parallel programs. Per-process per-thread traces (detailed logs of
events with timestamps) enable in-depth analysis of parallel pro-
gram execution to identify various kinds of performance issues.
Often times, trace collection tools provide a graphical tool to ana-
lyze the trace output. However, these GUI-based tools only support
specific file formats, are difficult to scale when the data is large,
limit data exploration to the implemented graphical views, and do
not support automated comparisons of two or more datasets. In this
poster, we present a programmatic approach to analyzing parallel
execution traces by leveraging pandas, a powerful Python-based
data analysis library. We have developed a Python library, Pipit, on
top of pandas that can read traces in different file formats (OTF2,
HPCToolkit, Projections, Nsight, etc.) and provide a uniform data
structure in the form of a pandas DataFrame. Pipit provides oper-
ations to aggregate, filter, and transform the events in a trace to
present the data in different ways. We also provide several functions
to quickly identify performance issues in parallel executions.

1 INTRODUCTION
We fill the above mentioned gaps in performance analysis of par-
allel execution traces by developing Pipit, a programmatic API to
analyze traces. Pipit provides trace data access to the end user so
that they can explore the data programmatically instead of having
to use a graphical interface. Since traces represent a time series of
events (with categorical and numerical data per event), we leverage
pandas [7], a powerful Python-based data analysis library for an-
alyzing tabular data. Pipit can read traces in different file formats
(OTF2 [5], HPCToolkit [1], Projections [6], Nsight [8], etc.) and pro-
vides a uniform data structure in the form of a pandas DataFrame.
Pipit exposes a programmatic API to the end user with operations
to aggregate, filter, and transform the events in a trace to explore,
manipulate, and visualize the data in different ways.

There are several common data exploration/manipulation tasks
that end users perform when analyzing parallel traces. Some exam-
ples are analyzing a heat map or matrix of communication between
MPI processes, detecting load imbalance across threads or processes,
detecting a critical path in the execution, identifying the most time
consuming functions etc. We have designed and implemented many
of these operations in the Pipit API to reduce user effort in per-
formance analysis tasks. We also present several case studies that
demonstrate the capabilities of Pipit.

SC ’23, November, 2023, Denver, CO
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 THE PIPIT LIBRARY
Our goals in developing the Pipit library were the following: (1) Sup-
port several file formats in which execution traces are collected to
provide users with a unified interface that works with outputs of
many different tracing tools. (2) Provide a programmatic API, which
allows users to write simple code for trace analysis and provides
several benefits such as flexibility of exploration, scalability, repro-
ducibility, and automation/saving of workflows. And (3) Automate
certain common performance analysis tasks for analyzing single
and multiple executions.

3 CASE STUDIES
Below, we present some case studies that demonstrate the utility of
Pipit in simplifying parallel trace analysis.

3.1 Load imbalance analysis
Using the load_imbalance function, we can expose asymmetry in
aggregated runtimes of functions across processes. The code in
Figure 1 demonstrates such an example, where a Projections trace
of Loimos, an epidemic simulation framework, is read. After this,
with just a few lines of code, the output of the load_imbalance
function is filtered by the five most time consuming functions to
identify the imbalance in them.

1 loimos_128 = pipit.Trace.from_projections('loimos_128 ')
2

3 loimos_128.calc_exc_metrics ()
4 imbalance_df = loimos_128.load_imbalance(num_processes =5)
5 imbalance_df = imbalance_df.iloc [0:5]. sort_values(by='

time.exc.imbalance ', ascending=False)

Figure 1: Analyzing Load Imbalance for the 5 Most Time
Consuming Functions

3.2 Utilization over time
The time_profile function provides an overview of the activity or
utilization over time, and allows the user to identify repeating
patterns or functions that might be a significant portion of the total
time. In Figure 2, we show a time profile of a CFD code, Tortuga,
running on 64 processes. The stacked bar chart allows the user
to see what functions are taking up the most amount of time in a
specific bin. Focusing on the middle of the time profile, we observe

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC ’23, November, 2023, Denver, CO Movsesyan et al.

that the computeRhs function (in brown) makes up a significant
portion of the total time. We can see that advanceTimestep_Rk3
and spectralRadius have a pattern and are called periodically in
the middle region. The code at the bottom shows that using two
lines of Python code, a user can glean significant information from
a time profile.

1 tortuga_64 = pipit.Trace.from_otf2("tortuga_64")
2 tortuga_64.plot_time_profile(num_bins =100, normalized=

True)

Figure 2: Time profile of a Tortuga trace with 64 processes.

3.3 Pattern detection
To identify patterns in a trace, we use a Score-P user annotated
Tortuga execution on 16 processes and set the number of itera-
tions to three when running the program. We pass the number of
iterations and a window size (calculated by inspecting the start of
each loop iteration) to the pattern_detection function. The top plot
in Figure 3 presents a time series generated using the exclusive
time values of each enter event in the trace. The bottom plot shows
the corresponding matrix profile. The lowest points in the matrix
profile indicate similar subsequences (vertical dashed lines). For
details about the matrix profiles, we refer the reader to the paper
by Yeh et al. [9]. As we can see, Pipit can detect patterns using this
approach and identify the start of iterations.

3.4 Communication
Figure 4 shows the communication matrix of a Laghos execution on
32 processes, using both a linear colormap (on the left), and a loga-
rithmic colormap (on the right). The code snippet required to gen-
erate the views is shown in the listing at the bottom. The heatmap
shows the total data exchanged between any two processes. We ob-
serve that the matrix is symmetric, and the communication happens
along diagonals. This typically suggests a near-neighbor commu-
nication pattern in an n-dimensional virtual topology. Switching
to logarithmic scale for the colormap makes additional patterns
visible in the data.

4 CONCLUSION
In this paper, we present a new Python-based performance analysis
tool called Pipit for analyzing parallel execution traces. Through
Pipit’s design and implementation, we sought to solve the follow-
ing challenges: (1) Support several file formats in which execution
traces are collected to provide users with a unified interface that
works with outputs of many different tracing tools. (2) Provide a

1 tortuga_16 = pipit.Trace.from_otf2('./ tortuga_16 ')
2 matches = tortuga_16.detect_pattern(window_size ,

iterations , metric='time.exc')
3 tortuga_16.plot_timeline ()

Figure 3: Detecting patterns in a trace. The y-axis in the top
plot shows the exclusive time values for each enter event of a
process. The gray boxes represent the patterns detected. The
vertical dashed lines on the bottom plot (minimum values
on the matrix profile) point to start indices of the similar
subsequences.

1 laghos_32 = pipit.Trace.from_otf2('./ laghos_32 ')
2

3 laghos_32.plot_comm_matrix(mapping='linear ')
4 laghos_32.plot_comm_matrix(mapping='log')

Figure 4: Communication matrix of a Laghos execution on
32 processes, with a linear colormap (left) and logarithmic
colormap (right).

programmatic API, which allows users to write simple code for
trace analysis and provides several benefits such as flexibility of
exploration, scalability, reproducibility, and automation/saving of
workflows. And (3) Automate certain common performance analy-
sis tasks for analyzing single and multiple executions. To the best
of our knowledge, Pipit is unique in its capabilities in terms of
supporting several file formats and providing a programmatic API
to analyze traces. Hatchet is the tool that comes closest to it but
only supports aggregated profiles [2–4]. We believe that Pipit can
revolutionize how HPC developers and performance engineers an-
alyze the performance of their codes, and improve the efficiency of
both parallel programs and HPC programmers.

Pipit: Simplifying Parallel Trace Analysis SC ’23, November, 2023, Denver, CO

ACKNOWLEDGMENTS
This material is based upon work supported in part by the National
Science Foundation under Grant No. 2047120.

REFERENCES
[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,

John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for perfor-
mance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685–701.

[2] Alexandre Bergel, Abhinav Bhatele, David Boehme, Patrick Gralka, Kevin Griffin,
Marc-Andre Hermanns, Dusan Okanovic, Olga Pearce, and Tom Vierjahn. 2019.
Visual Analytics Challenges in Analyzing Calling Context Trees. In Programming
and Performance Visualization Tools (Lecture Notes in Computer Science, Vol. 11027).
https://link.springer.com/chapter/10.1007/978-3-030-17872-7_14

[3] Abhinav Bhatele, Stephanie Brink, and Todd Gamblin. 2019. Hatchet: Pruning
the Overgrowth in Parallel Profiles. In Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC
’19). http://doi.acm.org/10.1145/3295500.3356219 LLNL-CONF-772402.

[4] Stephanie Brink, Ian Lumsden, Connor Scully-Allison, Katy Williams, Olga Pearce,
Todd Gamblin, Michela Taufer, Katherine E Isaacs, and Abhinav Bhatele. 2020.

Usability and Performance Improvements in Hatchet. In 2020 IEEE/ACM Interna-
tional Workshop on HPC User Support Tools (HUST) and Workshop on Programming
and Performance Visualization Tools (ProTools). IEEE, 49–58.

[5] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolf-
gang E Nagel, and Felix Wolf. 2012. Open trace format 2: The next generation of
scalable trace formats and support libraries. In Applications, Tools and Techniques
on the Road to Exascale Computing. IOS Press, 481–490.

[6] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. 2006. Scal-
ing Applications to Massively Parallel Machines Using Projections Performance
Analysis Tool. In Future Generation Computer Systems Special Issue on: Large-Scale
System Performance Modeling and Analysis, Vol. 22. 347–358.

[7] Wes McKinney. 2017. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. O’Reilly Media.

[8] NVIDIA. [n. d.]. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-
systems.

[9] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. 2016.
Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That
Includes Motifs, Discords and Shapelets. In 2016 IEEE 16th International Conference
on Data Mining (ICDM). 1317–1322. https://doi.org/10.1109/ICDM.2016.0179

https://link.springer.com/chapter/10.1007/978-3-030-17872-7_14
http://doi.acm.org/10.1145/3295500.3356219
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://doi.org/10.1109/ICDM.2016.0179

	Abstract
	1 Introduction
	2 The Pipit Library
	3 Case Studies
	3.1 Load imbalance analysis
	3.2 Utilization over time
	3.3 Pattern detection
	3.4 Communication

	4 Conclusion
	Acknowledgments
	References

