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ABSTRACT
Performance analysis is an important part of the oft-repeated, it-
erative process of performance tuning during the development of
parallel programs. Per-process per-thread traces (detailed logs of
events with timestamps) enable in-depth analysis of parallel pro-
gram execution to identify various kinds of performance issues.
Often times, trace collection tools provide a graphical tool to ana-
lyze the trace output. However, these GUI-based tools only support
specific file formats, are difficult to scale when the data is large,
limit data exploration to the implemented graphical views, and do
not support automated comparisons of two or more datasets. In this
poster, we present a programmatic approach to analyzing parallel
execution traces by leveraging pandas, a powerful Python-based
data analysis library. We have developed a Python library, Pipit, on
top of pandas that can read traces in different file formats (OTF2,
HPCToolkit, Projections, Nsight, etc.) and provide a uniform data
structure in the form of a pandas DataFrame. Pipit provides oper-
ations to aggregate, filter, and transform the events in a trace to
present the data in different ways. We also provide several functions
to quickly identify performance issues in parallel executions.

1 INTRODUCTION
We fill the above mentioned gaps in performance analysis of par-
allel execution traces by developing Pipit, a programmatic API to
analyze traces. Pipit provides trace data access to the end user so
that they can explore the data programmatically instead of having
to use a graphical interface. Since traces represent a time series of
events (with categorical and numerical data per event), we leverage
pandas [7], a powerful Python-based data analysis library for an-
alyzing tabular data. Pipit can read traces in different file formats
(OTF2 [5], HPCToolkit [1], Projections [6], Nsight [8], etc.) and pro-
vides a uniform data structure in the form of a pandas DataFrame.
Pipit exposes a programmatic API to the end user with operations
to aggregate, filter, and transform the events in a trace to explore,
manipulate, and visualize the data in different ways.

There are several common data exploration/manipulation tasks
that end users perform when analyzing parallel traces. Some exam-
ples are analyzing a heat map or matrix of communication between
MPI processes, detecting load imbalance across threads or processes,
detecting a critical path in the execution, identifying the most time
consuming functions etc. We have designed and implemented many
of these operations in the Pipit API to reduce user effort in per-
formance analysis tasks. We also present several case studies that
demonstrate the capabilities of Pipit.
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2 THE PIPIT LIBRARY
Our goals in developing the Pipit library were the following: (1) Sup-
port several file formats in which execution traces are collected to
provide users with a unified interface that works with outputs of
many different tracing tools. (2) Provide a programmatic API, which
allows users to write simple code for trace analysis and provides
several benefits such as flexibility of exploration, scalability, repro-
ducibility, and automation/saving of workflows. And (3) Automate
certain common performance analysis tasks for analyzing single
and multiple executions.

3 CASE STUDIES
Below, we present some case studies that demonstrate the utility of
Pipit in simplifying parallel trace analysis.

3.1 Load imbalance analysis
Using the load_imbalance function, we can expose asymmetry in
aggregated runtimes of functions across processes. The code in
Figure 1 demonstrates such an example, where a Projections trace
of Loimos, an epidemic simulation framework, is read. After this,
with just a few lines of code, the output of the load_imbalance
function is filtered by the five most time consuming functions to
identify the imbalance in them.

1 loimos_128 = pipit.Trace.from_projections('loimos_128 ')
2

3 loimos_128.calc_exc_metrics ()
4 imbalance_df = loimos_128.load_imbalance(num_processes =5)
5 imbalance_df = imbalance_df.iloc [0:5]. sort_values(by='

time.exc.imbalance ', ascending=False)

Figure 1: Analyzing Load Imbalance for the 5 Most Time
Consuming Functions

3.2 Utilization over time
The time_profile function provides an overview of the activity or
utilization over time, and allows the user to identify repeating
patterns or functions that might be a significant portion of the total
time. In Figure 2, we show a time profile of a CFD code, Tortuga,
running on 64 processes. The stacked bar chart allows the user
to see what functions are taking up the most amount of time in a
specific bin. Focusing on the middle of the time profile, we observe
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that the computeRhs function (in brown) makes up a significant
portion of the total time. We can see that advanceTimestep_Rk3
and spectralRadius have a pattern and are called periodically in
the middle region. The code at the bottom shows that using two
lines of Python code, a user can glean significant information from
a time profile.

1 tortuga_64 = pipit.Trace.from_otf2("tortuga_64")
2 tortuga_64.plot_time_profile(num_bins =100, normalized=

True)

Figure 2: Time profile of a Tortuga trace with 64 processes.

3.3 Pattern detection
To identify patterns in a trace, we use a Score-P user annotated
Tortuga execution on 16 processes and set the number of itera-
tions to three when running the program. We pass the number of
iterations and a window size (calculated by inspecting the start of
each loop iteration) to the pattern_detection function. The top plot
in Figure 3 presents a time series generated using the exclusive
time values of each enter event in the trace. The bottom plot shows
the corresponding matrix profile. The lowest points in the matrix
profile indicate similar subsequences (vertical dashed lines). For
details about the matrix profiles, we refer the reader to the paper
by Yeh et al. [9]. As we can see, Pipit can detect patterns using this
approach and identify the start of iterations.

3.4 Communication
Figure 4 shows the communication matrix of a Laghos execution on
32 processes, using both a linear colormap (on the left), and a loga-
rithmic colormap (on the right). The code snippet required to gen-
erate the views is shown in the listing at the bottom. The heatmap
shows the total data exchanged between any two processes. We ob-
serve that the matrix is symmetric, and the communication happens
along diagonals. This typically suggests a near-neighbor commu-
nication pattern in an n-dimensional virtual topology. Switching
to logarithmic scale for the colormap makes additional patterns
visible in the data.

4 CONCLUSION
In this paper, we present a new Python-based performance analysis
tool called Pipit for analyzing parallel execution traces. Through
Pipit’s design and implementation, we sought to solve the follow-
ing challenges: (1) Support several file formats in which execution
traces are collected to provide users with a unified interface that
works with outputs of many different tracing tools. (2) Provide a

1 tortuga_16 = pipit.Trace.from_otf2('./ tortuga_16 ')
2 matches = tortuga_16.detect_pattern(window_size ,

iterations , metric='time.exc')
3 tortuga_16.plot_timeline ()

Figure 3: Detecting patterns in a trace. The y-axis in the top
plot shows the exclusive time values for each enter event of a
process. The gray boxes represent the patterns detected. The
vertical dashed lines on the bottom plot (minimum values
on the matrix profile) point to start indices of the similar
subsequences.

1 laghos_32 = pipit.Trace.from_otf2('./ laghos_32 ')
2

3 laghos_32.plot_comm_matrix(mapping='linear ')
4 laghos_32.plot_comm_matrix(mapping='log')

Figure 4: Communication matrix of a Laghos execution on
32 processes, with a linear colormap (left) and logarithmic
colormap (right).

programmatic API, which allows users to write simple code for
trace analysis and provides several benefits such as flexibility of
exploration, scalability, reproducibility, and automation/saving of
workflows. And (3) Automate certain common performance analy-
sis tasks for analyzing single and multiple executions. To the best
of our knowledge, Pipit is unique in its capabilities in terms of
supporting several file formats and providing a programmatic API
to analyze traces. Hatchet is the tool that comes closest to it but
only supports aggregated profiles [2–4]. We believe that Pipit can
revolutionize how HPC developers and performance engineers an-
alyze the performance of their codes, and improve the efficiency of
both parallel programs and HPC programmers.
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