
Evaluating Performance Portability of GPU Programming Models
Joshua H. Davis, Pranav Sivaraman, Isaac Minn, Abhinav Bhatele

†Department of Computer Science, University of Maryland
College Park, USA

{jhdavis,psivaram,iminn}@umd.edu,bhatele@cs.umd.edu

ABSTRACT
Maintaining a single codebase that can achieve good performance
on a range of accelerator-based supercomputing platforms is of
extremely high value for productive scientific application develop-
ment. However, the large quantity of programmingmodels available
which claim to provide performance portability leaves developers
with a complex choice when picking a model to use, potentially re-
quiring an intensive effort to test each available model with kernels
from their app. In order to better understand the current state of
performance portable programming models, this project evaluates
seven of the most popular programming models using two memory-
bound mini-applications on two leadership-class supercomputers,
Summit and Perlmutter. These results provide a useful evaluation
of how well each programming model provides true performance
portability in real-world usage for memory-bound applications.

KEYWORDS
performance portability, heterogeneous systems, programming
models

1 SUMMARY
Heterogenous architectures in supercomputing platforms have
become the dominant paradigm in high-performance computing.
Eight of the top ten systems in the June 2023 TOP500 list employ
co-processors or accelerators [16], with substantial diversity of hard-
ware vendors and architectures in use. To provide a portable inter-
face for programming such systems, a range of programming mod-
els such as OpenMP, Kokkos, and SYCL and others have emerged,
all aiming to allow developers to maintain just one version of an
application that can run on any desired supercomputing platform.
However, the extent to which these portable programming models
provide performance portability, a stronger property demanding not
just functional portability but good performance across all targets
systems, remains unclear.

From the perspective of a developer working with an application
with no GPU support or GPU support through CUDA1, choosing
one of the numerous available popular programming models is
an intimidating task. The choice is a major commitment in terms
of time invested in both developer training and programming. If
a programming model turns out to be a poor fit for an applica-
tion, achieving unacceptable performance, then that investment
is wasted. A team might decide to extract key kernels from their
app, port them to the various candidate models, and test the perfor-
mance of this resulting “mini-app”. Yet this remains a substantial
development effort, and still requires learning multiple models
and writing multiple versions of the mini-app. Therefore, a deeper

1The non-portable proprietary language extension provided by NVIDIA.

understanding of how well each available programming model
currently enables performance portability would be a tremendous
value to developers.

In order to provide this guidance, in this poster we empirically
evaluate the performance portability enabled by seven of the most
popular programming models for GPUs using two memory-bound
mini-applications, BabelStream and XSBench, and evaluating on
the OLCF Summit and NERSC Perlmutter supercomputers. The
programming models represented in this poster are OpenMP target
offloading, OpenACC, Kokkos, RAJA, SYCL, HIP, and CUDA. In the
poster, we additionally evaluate our results with the well-known
PP metric proposed by Pennycook, Sewall, and Lee [11–13, 15]. We

conclude with general dicussion on the implications of the results
for developers looking to chose a programming model for their
memory-bound application and porting from Summit to Perlmutter.

1.1 Methodology
In this section we discuss the choice of mini-app codes, evaluation
platforms, and software versions used.

1.1.1 Mini-app codes. To identify candidate codes for further study,
we extensively surveyed the range of available proxy applications,
mini-apps, and benchmarks for scientific computing on GPUs at
the onset of this study. We sought out in particular mini-apps that
represented a wide range of application categories, and codes that
already had multiple implementations in different programming
models of interest.

BabelStream is a memory bandwidth benchmark developed by
the University of Bristol High Performance Computing group, pre-
viously evaluated by Deakin et al. and others [1–7, 9, 14]. This work
is, to our knowledge, the first to compartively evalaute the per-
formance of BabelStream from the production Summit system to
the new Perlmutter system, using the hardware and software stack
currently available to users. The BabelStream benchmark includes
five kernels, of which we focus on three: copy, triad, and dot. Dot
contains a reduction operation. We execute BabelStream with the
command line argument -n 800.

XSBench is a memory-bound mini-app representing the con-
tinuous energy macroscopic neutron cross section lookup kernel
from OpenMC (Monte Carlo), a neutron transport code [17]. XS-
Bench has also been used as a performance portability case study
before [8, 10], but to our knowledge no other work has evaluated
XSBench comparitively with all of the seven programming models
we evaluate on the in-production Summit and Perlmutter resources.
XSBench contains one GPU kernel, relatively much larger than the
BabelStream kernels, which processes independent cross-section
lookups (binary searches) in parallel. As a part of this project effort,



, , Davis et al.

we created a new Kokkos port of the XSBench code for perfor-
mance portability evaluation, and are working to create a RAJA
port as well. We execute XSBench with the command line argu-
ments -m event -s large, to obtain an event-based simulation
with the large problem size of 355 isotopes and 11,303 grid points.

1.1.2 Evaluation platforms and software versions. Weevaluate porta-
bility of BabelStream and XSBench between the Summit system and
Perlmutter system at Oak Ridge and Lawrence Berkeley National
Labs, respectively. Summit is an IBM AC922 system employing
22-core IBM POWER9 CPUs and 16GB NVIDIA V100 GPUs. Perl-
mutter is an HPE Cray EX235n system with 64-core AMD EPYC
7763 CPUs and 40GB NVIDIA A100 GPUs. All tests are performed
using a single GPU from the corresponding system.

On the Summit platform, all tests were conducted with the 11.5.2
CUDA module, employing LLVM verion 15 (2022-07-25 build) for
OpenMP offloading and NVHPC 22.11 for OpenACC. On the Perl-
mutter platform, all tests were conducted with the 11.7 CUDA
module, with the exception of OpenMP offloading which used
CUDA 11.4 for compatibility with the system’s LLVM 16 mod-
ule. OpenACC was compiled with NVHPC version 22.7. On both
platforms, HIP 5.4.3, Kokkos 4.1.00, SYCL DPC++ compiler version
sycl-nightly/20230621, and RAJA version 2023.06.0 were used.
In general, compiler and dependency versions were kept as similar
in verion number as possible across systems while still relying on
the available installations for CUDA and compilers on both systems
as users typically would.

1.2 Results

Summit (V100) Perlmutter (A100)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

0.82 0.9
0.82

0.52

1.05

1.65

0.68
0.94

0.77

1.21

1

1.31

XSBench Performance Relative to Baseline

OMPT

ACC

Kokkos

SYCL

HIP

CUDA

Figure 1: Performance comparison of portable programming
models in the XSBench case on Summit and Perlmutter

Figure 1 shows relative performance of XSBench in six different
programming models on a Summit V100 and Perlmutter A100. We
use the CUDA Summit port as a performance baseline, as it uses
the older architecture with the most low-level and vendor-specific
programming model. The strong performance of Kokkos relative to
the CUDA baseline is an immediate surprising insight from Fig. 1,
given that Kokkos is a high-level abstraction. On Summit, other
programming models achieve roughly similar performance, with
SYCL achieving the worst performance and OpenMP and OpenACC
the best compared to CUDA besides Kokkos. On Perlmutter, results
vary much more significantly. All models get a performance benefit
from moving to Perlmutter, as expected, except OpenACC, which
worsens substantially.

Summit (V100) Perlmutter (A100)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

0.03

0.85
0.84

1.21

0.99

1.35

0.77 0.90.93

1.34

1

1.47

1

1.47

Dot Performance Relative to Baseline

OMPT

ACC

Kokkos

RAJA

SYCL

HIP

CUDA

Figure 2: Performance comparison of portable programming
models in the BabelStream dot kernel case on Summit and
Perlmutter

Fig. 2 shows relative performance of the dot kernel from Babel-
Stream in seven different programming models on Summit and
Perlmutter. Again, the CUDA Summit version is the performance
baseline. The dot kernel shows generally less variability across mod-
els when compared to XSBench, which may be due to its relative
simplicity. OpenMP offload on Summit is an extreme low outlier,
also achieving the worst performance on Perlmutter. The poor
performance of some OpenMP compilers for reduction operations
has been previously discussed [2]. OpenACC and RAJA also fall
somewhat short, while the other programming models generally
achieve parity with CUDA. Further results for BabelStream kernels
are shown in the poster, as well as analysis with the PP metric of all
results.

1.3 Conclusion
In summary, we find that Kokkos, CUDA, and HIP achieve the best
performance portability, and OpenMP and OpenACC the worst, for
these two memory-bound mini-apps on the NVIDIA GPU-based
Summit and Perlmutter systems. The results shown here can set
expectations for developers looking to select a programming model
for their memory-bound application, as well as for those looking to
port a memory-bound application from Summit V100s to Perlmutter
A100s. These results are only for systems with NVIDIA GPUs—
porting to the upcoming Frontier and Aurora systems, with their
AMD and Intel GPUs, will certainly prove to be a greater challenge
for performance portability, underscoring the need for additional
guidance on selecting a programming model beyond what we show
here. Future work will include significantly expanding the breadth
of application categories studied in terms of performance portability,
adding new implementations in popular programming models to
obtain full coverage, and carrying out more detailed performance
analysis to give more specific recommendations to developers on
how to select a programming model given the characteristics of
their particular application.

REFERENCES
[1] Hartwig Anzt, Yuhsiang M. Tsai, Ahmad Abdelfattah, Terry Cojean, and Jack

Dongarra. 2020. Evaluating the Performance of NVIDIA’s A100 Ampere GPU
for Sparse and Batched Computations. In 2020 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS).
26–38. https://doi.org/10.1109/PMBS51919.2020.00009

https://doi.org/10.1109/PMBS51919.2020.00009


Evaluating Performance Portability of GPU Programming Models , ,

[2] Joshua Hoke Davis, Christopher Daley, Swaroop Pophale, Thomas Huber, Sunita
Chandrasekaran, and Nicholas J. Wright. 2021. Performance Assessment of
OpenMP Compilers Targeting NVIDIA V100 GPUs. In Accelerator Programming
Using Directives, Sridutt Bhalachandra, Sandra Wienke, Sunita Chandrasekaran,
and Guido Juckeland (Eds.). Springer International Publishing, Cham, 25–44.

[3] TomDeakin, James Cownie,Wei-Chen Lin, and SimonMcIntosh-Smith. 2022. Het-
erogeneous Programming for the Homogeneous Majority. In 2022 IEEE/ACM In-
ternational Workshop on Performance, Portability and Productivity in HPC (P3HPC).
1–13. https://doi.org/10.1109/P3HPC56579.2022.00006

[4] Tom Deakin and Simon McIntosh-Smith. 2020. Evaluating the Performance of
HPC-Style SYCL Applications. In Proceedings of the International Workshop on
OpenCL (Munich, Germany) (IWOCL ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 12, 11 pages. https://doi.org/10.1145/3388333.3388643

[5] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkin-
son, Codrin Popa, and Justin Salmon. 2019. Performance Portability across
Diverse Computer Architectures. In 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). 1–13. https:
//doi.org/10.1109/P3HPC49587.2019.00006

[6] Tom Deakin, Andrei Poenaru, Tom Lin, and Simon McIntosh-Smith. 2020. Track-
ing Performance Portability on the Yellow Brick Road to Exascale. In 2020
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). 1–13. https://doi.org/10.1109/P3HPC51967.2020.00006

[7] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.
Evaluating Attainable Memory Bandwidth of Parallel Programming Models via
BabelStream. Int. J. Comput. Sci. Eng. 17, 3 (jan 2018), 247–262.

[8] Johannes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Geor-
gakoudis, Thomas Scogland, and Konstantinos Parasyris. 2023. Breaking the
Vendor Lock: Performance Portable Programming through OpenMP as Tar-
get Independent Runtime Layer. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques (Chicago, Illinois)
(PACT ’22). Association for Computing Machinery, New York, NY, USA, 494–504.
https://doi.org/10.1145/3559009.3569687

[9] Jeff R. Hammond, Tom Deakin, James Cownie, and Simon McIntosh-Smith. 2022.
Benchmarking Fortran DO CONCURRENT on CPUs and GPUs Using Babel-
Stream. In 2022 IEEE/ACM International Workshop on Performance Modeling,

Benchmarking and Simulation of High Performance Computer Systems (PMBS).
82–99. https://doi.org/10.1109/PMBS56514.2022.00013

[10] JaeHyuk Kwack, John Tramm, Colleen Bertoni, Yasaman Ghadar, Brian Homerd-
ing, Esteban Rangel, Christopher Knight, and Scott Parker. 2021. Evaluation of
Performance Portability of Applications and Mini-Apps across AMD, Intel and
NVIDIA GPUs. In 2021 International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC). 45–56. https://doi.org/10.1109/P3HPC54578.2021.00008

[11] S. John Pennycook and Jason D. Sewall. 2021. Revisiting a Metric for Performance
Portability. In 2021 International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC). 1–9. https://doi.org/10.1109/P3HPC54578.2021.00004

[12] Simon J Pennycook, Jason D Sewall, and Victor W Lee. 2016. A metric for perfor-
mance portability. In Proceedings of the 7th International Workshop in Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems.
https://arxiv.org/abs/1611.07409

[13] Simon J Pennycook, Jason D Sewall, and Victor W Lee. 2019. Implications of
a metric for performance portability. Future Generation Computer Systems 92
(2019), 947–958.

[14] Goutham Kalikrishna Reddy Kuncham, Rahul Vaidya, and Mahesh Barve. 2021.
Performance Study of GPU applications using SYCL and CUDA on Tesla V100
GPU. In 2021 IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
https://doi.org/10.1109/HPEC49654.2021.9622813

[15] Jason Sewall, S. John Pennycook, Douglas Jacobsen, Tom Deakin, and Simon
McIntosh-Smith. 2020. Interpreting and Visualizing Performance Portability
Metrics. In 2020 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC). 14–24. https://doi.org/10.1109/P3HPC51967.
2020.00007

[16] TOP500.org. 2023. June 2023 TOP500. https://www.top500.org/lists/top500/
2023/06/

[17] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014.
XSBench-the development and verification of a performance abstraction for
Monte Carlo reactor analysis. The Role of Reactor Physics toward a Sustainable
Future (PHYSOR) (2014).

https://doi.org/10.1109/P3HPC56579.2022.00006
https://doi.org/10.1145/3388333.3388643
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1109/PMBS56514.2022.00013
https://doi.org/10.1109/P3HPC54578.2021.00008
https://doi.org/10.1109/P3HPC54578.2021.00004
https://arxiv.org/abs/1611.07409
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1109/P3HPC51967.2020.00007
https://doi.org/10.1109/P3HPC51967.2020.00007
https://www.top500.org/lists/top500/2023/06/
https://www.top500.org/lists/top500/2023/06/

	Abstract
	1 Summary
	1.1 Methodology
	1.2 Results
	1.3 Conclusion

	References

