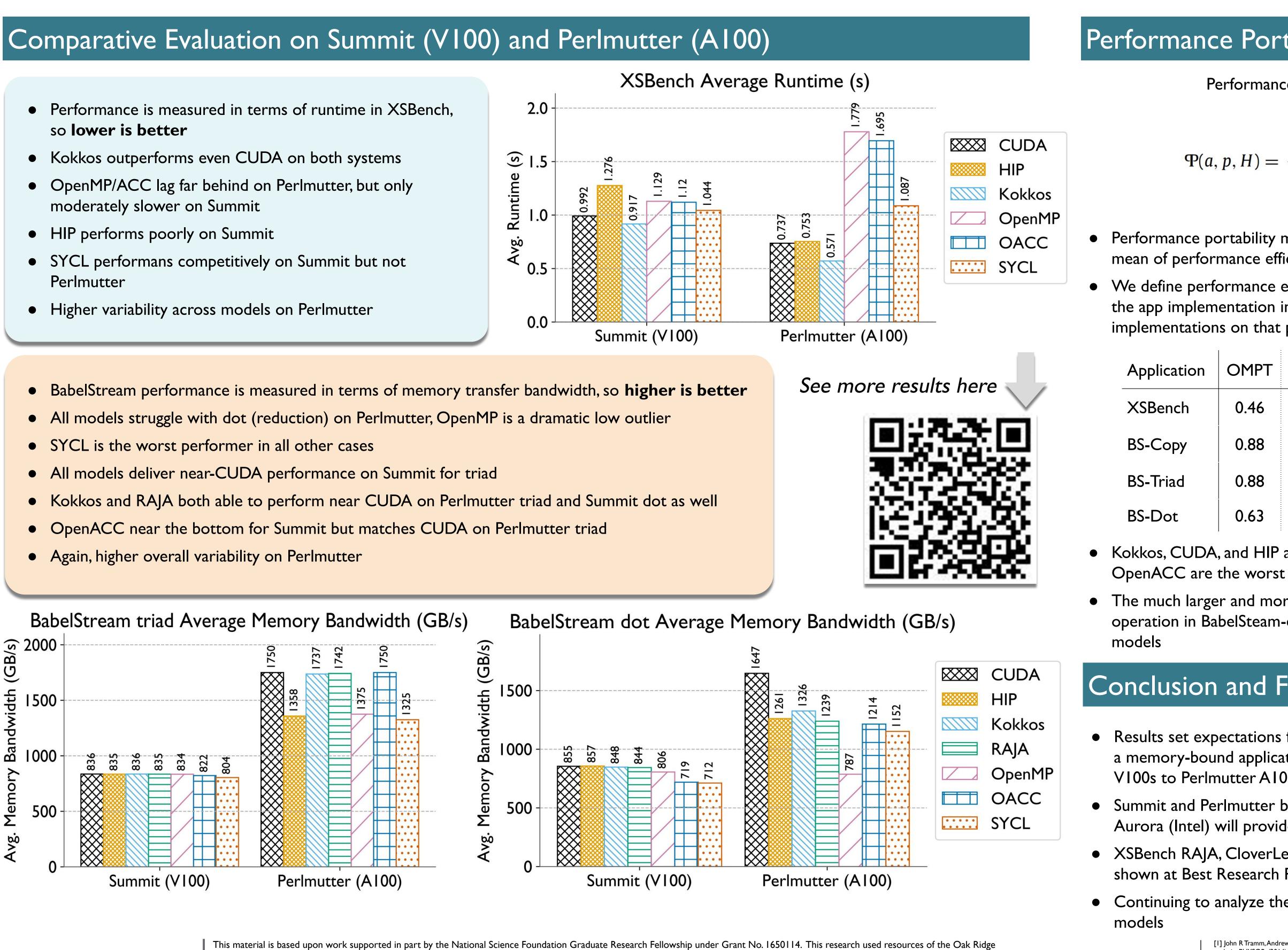


Abstract

Maintaining a single codebase that can achieve good performance on a range of accelerator-based supercomputing platforms is of extremely high value for productive scientific application development. However, the large quantity of programming models available that claim to provide performance portability leaves developers with a complex choice when picking a model to use. In order to better understand the current state of performance portable programming models, this project evaluates seven of the most popular programming models using two memory-bound proxy applications on two leadership-class supercomputers, Summit and Perlmutter. These results provide a useful evaluation of how well each programming model provides performance portability in real-world usage for memory-bound applications.

What is Performance Portability?

- **Performance Portability**: the ability for a single-source application to run on a range of hardware platforms while maintaining good performance
- OpenMP target offload (OMPT), OpenACC (ACC), Kokkos, RAJA, SYCL and HIP are programming models providing portable abstractions


Methodology for Evaluating Perf. Portability

- We surveyed available proxy applications and benchmarks, and selected those with the most available implementations. This poster focuses on two memory-bound codes.
- **XSBench** [1]: memory-bound proxy app from OpenMC (Monte Carlo), evaluated with the large problem size (355 isotopes, 11303 grid points)
- We implemented a new Kokkos port of XSBench for this effort
- **BabelStream [2]**: a memory bandwidth benchmark. We evaluate the dot, triad, and copy kernels for 800 iterations each
- Evaluation platforms:
- OLCF Summit: IBM Power 9 CPU and NVIDIA **VI00** GPU
- NERSC Perlmutter: AMD EPYC CPU and NVIDIA **A100** GPU

Evaluating Performance Portability of GPU Programming Models

Joshua H. Davis, Pranav Sivaraman, Isaac Minn, Abhinav Bhatele **Department of Computer Science, University of Maryland**

- so lower is better
- moderately slower on Summit
- Perlmutter

Acknowledgements

Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award m2404 for 2023.

Performance Portability Metric and Discussion

Performance Portability Metric (Pennycook et al., [3])

$$(a, p, H) = \begin{cases} \frac{|H|}{\sum_{i \in H} \frac{1}{e_i(a, p)}} & \text{if } i \text{ is supported } \forall i \in H \\ 0 & \text{otherwise} \end{cases}$$

• Performance portability metric from Pennycook et al. [3] is defined as the harmonic mean of performance efficiency

• We define performance efficiency as **application efficiency**, the performance of the app implementation in a model divided by peak performance achieved across all implementations on that platform

OMPT	ACC	Kokkos	RAJA	SYCL	HIP	CUDA
0.46	0.48	1.00	0.84	0.66	0.74	0.84
0.88	0.98	0.99	1.00	0.85	0.88	1.00
0.88	0.99	I.00	1.00	0.85	0.87	I.00
0.63	0.78	0.89	0.85	0.76	0.87	I.00

• Kokkos, CUDA, and HIP achieve the best performance portability, OpenMP and

• The much larger and more complex kernel in XSBench and the reduction operation in BabelSteam-dot lead to worse performance portability for most

Conclusion and Future Work

Modeling, Benchmarking and Simulation of High Performance Computer Systems

References

• Results set expectations for developers looking to select a programming model for a memory-bound application, and for those porting their application from Summit VI00s to Perlmutter AI00s

• Summit and Perlmutter both use NVIDIA GPUs – moving to Frontier (AMD) and Aurora (Intel) will provide even greater challenge.

• XSBench RAJA, CloverLeaf, su3 bench, and Frontier results are available and will be shown at Best Research Poster session.

• Continuing to analyze the performance of additional applications and programming

^[1] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XSBench-the development and verification of a performance abstraction for Monte Carlo reactor analysis, PHYSOR. (2014). [2] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018. Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream. Int. J. Comput. Sci. Eng. 17, 3 (Jan 2018), 247–262. [3] Simon J Pennycook, Jason D Sewall, and Victor W Lee. 2016. A metric for performance portability. In Proceedings of the 7th International Workshop in Performance