
PNNL is operated by Battelle for the U.S. Department of Energy 8/18/20 |

For additional information, contact:

The impact of process topology on RMA programming models:
A study on NERSC Perlmutter
Nikodemos Koutsoheras1, Sayan Ghosh2, Joshua Suetterlein2, Nathan Tallent2, Abhinav Bhatele1

IR # PNNL-SA-190071Sayan Ghosh | (509) 375-6323 |
sayan.ghosh@pnnl.gov

Latency Between Two Processes

● SHMEM and MPI RMA demonstrate the best sub-1us latency for
small data sizes

● Two processes measurements not indicative of performance
differences at scale (point-to-point performance exceeds RMA for a
single process/node, but we see opposite trends with more
processes/node)

● The impact of topology is seen from 8 nodes and beyond: gap
between average and 99%-tile latencies surge with nodes

● OSU microbenchmark reports best case latencies with little
variability, whereas gap between average and 99%-tile latencies
surge to orders of magnitude with increasing the node counts
(compare 99%-tile annotations between small and large nodes)

● For regular topologies on 1--64 nodes, both MPI RMA and SHMEM
exceed the performance of point-to-point by up to 3.5x

● For irregular topologies, RMA exceeds the performance of
point-to-point by up to about 2x for medium to large data

● On 8-64 nodes, SHMEM can exceed the performance of MPI RMA
by up to about 2.5x for data sizes beyond 32KiB

● On a single node, SHMEM depicts 30% better performance up to
8KiB (39 less #instructions in SHMEM than MPI RMA)

● MPI RMA demonstrates better performance by up to 1.5x
compared to SHMEM for larger data sizes

● MPI RMA should use XPMEM for single node large message
transfers, but, our emulation (via Intel SDE) does not return any
entry for XPMEM; SHMEM emulation reveals XPMEM usage

Introduction

● Remote Memory Access (RMA) provides an alternate mechanism for data
movement by separating communication with synchronization

● Current benchmarks conduct “best case” measurements assuming fixed
topology, not considering varied process topologies induced by irregular
applications like graph analytics

Process Topology Background

● A process graph topology is the logical arrangement of processes as per
application data distribution in the form of a cartesian multidimensional
grid or a graph (a process is represented as a “node”, with lines or edges
connecting the nodes)

● Each node in a process grid has a fixed number of neighbors; each node in
a process graph can have an arbitrary number of neighbors

Generating Process Topologies

● A Random Geometric Graph (RGG) is generated across processes in parallel,
such that for the baseline topology every process shares data with its two
adjacent processes, depicting a 1D stencil (grid) pattern

● Baseline topology is modified by adding customizable amount of "cross" edges
to original RGG, increasing overall degree of the neighbors in process graph

● An extra 5% of edges could transform the process graph from sparse to dense
● Process graph topology can be saved as a binary file to avoid RGG creation

overhead on simultaneous runs
● We measure communication latencies (less is better) between process pairs in a

topology induced by a customizable RGG

Experimental Setup

● NERSC Perlmutter supercomputer CPU partition: four-way 2.45GHz
AMD Milan EPYC 7763 CPU nodes comprising of 64 cores, 256MB L3
cache, 512GB DDR4 memory with HPE Slingshot interconnect fabric
(based on Dragonfly topology) connected to Cassini NIC

● GCC 11.2 compiler (PrgEnv-gnu/8.3.3), cray-mpich/8.2.25 (MPI) and
cray-openshmemx/11.5.6 (SHMEM)

● SHMEM and MPI RMA use OFI libfabric as the low-level network API
● Latency data collected using NEVE, a proxy application generator for

measuring network performance on distributed systems:
https://github.com/sg0/neve/tree/rma

Latency Between Many Processes Observations

Large #nodes (large topology)
S

m
all #nodes (sm

all topology)

Note: in many process graphs, error bars indicate
the maximum variation in network performance on
an irregular topology produced by adding random
edges proportional to 2% and 5% of overall edges
in the original RGG.

1University of Maryland, College Park, 2Pacific Northwest National Laboratory

https://github.com/sg0/neve/tree/rma

