
Eve: Less Memory, Same Might
Aditya Tomar

adityatomar@berkeley.edu
Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley
Berkeley, California, USA

Siddharth Singh (advisor)
ssingh37@umd.edu

Department of Computer Science, University of Maryland
College Park, Maryland, USA

Tom Goldstein (advisor)
tomg@cs.umd.edu

Department of Computer Science, University of Maryland
College Park, Maryland, USA

Abhinav Bhatele (advisor)
bhatele@cs.umd.edu

Department of Computer Science, University of Maryland
College Park, Maryland, USA

Abstract
Adaptive optimizers, which adjust the learning rate for individ-
ual parameters, have become the standard for training deep neu-
ral networks. One such optimizer is AdamW, a popular adaptive
method that maintains two optimizer state values (momentum and
variance) per parameter, doubling the model’s memory usage dur-
ing training. Many proposed memory efficient optimizers claim to
match AdamW’s performance but lack its desirable qualities such
as robustness to learning rate changes. This quality is especially
desirable when pre-training LLMs, where experimenting with dif-
ferent combinations of hyperparamters to attain the ideal setting is
infeasible due to time, cost, and compute constraints. We propose
Eve, a Memory Efficient AdaptiVe Moment Estimation algorithm
that saves memory by reducing the variance term while also pre-
serving AdamW’s desirable properties across different training
settings. We finetune Llama 2 70B on 64 GPUs and show memory
savings of 20% over AdamW. We also compare our method to a
recent well-received memory-efficient optimizer called Adam-mini
and demonstrate better training stability across various learning
rates.

Keywords
adaptive optimization, memory efficiency, approximation, training
stability

1 Introduction
The per-parameter adaptivity of optimizers like AdamW allow
them to outperform non-adaptive methods like stochastic gradient
descent in converging quickly to good minimizers, even in high
dimensional spaces [2]. But, the memory requirements for train-
ing with such optimizers is extremely high due to the extra states
maintained by them. As a result, manymemory-efficient approxima-
tions to AdamW’s algorithm have been proposed. However, these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’24, November 17-22, 2024, Atlanta, GA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/10.1145/nnnnnnn.nnnnnnn

methods either lose valuable qualities of AdamW, such as its ro-
bustness to a wider range of learning rates, or require highly tuned
and crafted conditions to reach the same minimizers as AdamW.
These constraints are unacceptable in a setting where compute and
time are limited resources, which is why current memory efficient
optimizers have not yet replaced AdamW convincingly.

To this end, we propose Eve, a very simple approximation of
the AdamW algorithm that saves a significant amount of memory
while preserving the single most important quality of AdamW:
robustness to learning rates.

2 Eve: A Memory Efficient Optimizer
In modern neural networks like the transformer, linear layers com-
prise the majority of parameters. Moreover, for every linear layer’s
weight matrix of shape 𝑀 × 𝑁 , AdamW stores two additional
𝑀 × 𝑁 matrices for the momentum and variance terms. To com-
press AdamW’s optimizer state, we maintain a scalar per row of
the variance matrix, reducing it to an𝑀 × 1 vector. This prunes the
optimizer state from storing 2 ×𝑀 × 𝑁 values to only𝑀 × (𝑁 + 1)
values for a linear layer. As𝑀 and 𝑁 grow larger for bigger models,
the +1 term is amortized, essentially reducing the 2×𝑀 ×𝑁 values
to𝑀 × 𝑁 values.

We show ourmethod inAlgorithm 1 and illustrate the row_mean
operation in Figure 1.

Algorithm 1 Eve: Memory Efficient Adaptive Moment Estimation
1: 𝑚0 ← 0 (Initialize MxN momentum matrix)
2: 𝑣0 ← 0 (Initialize Mx1 variance vector)
3: 𝑡 ← 0 (Initialize timestep)
4: while 𝜃𝑡 not converged do
5: 𝑡 ← 𝑡 + 1
6: 𝑔𝑡 ← ∇𝜃 𝑓 (𝜃𝑡−1) (Get gradients w.r.t. objective function at

timestep 𝑡 )
7: 𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡 (Update momentum matrix)
8: 𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1− 𝛽2) · row_mean(𝑔2𝑡 ) (Update variance

vector)
9: 𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ·𝑚𝑡/(

√
𝑣𝑡 + 𝜖) (Update parameters)

10: end while
11: return 𝜃𝑡 (Resulting parameters)

https://doi.org/10.1145/nnnnnnn.nnnnnnn


SC ’24, November 17-22, 2024, Atlanta, GA Tomar et al.




v11 v12 . . . v1N
v21 v22 . . . v2N
...

...
. . .

...
vM1 vM2 . . . vMN




in features︷ ︸︸ ︷



ou
t
fe
at
u
re
s mean −−−→

mean −−−→
...

mean −−−→




v̄1
v̄2
...
¯vM




1︷ ︸︸ ︷



ou
t
featu

res

varianceM×N varianceM×1

1

Figure 1: Eve takes the per-row average of the variancematrix.
Note that Algorithm 1 Line 8 is mathematically equivalent
to this

3 Experiments
We perform a model size and learning rate ablation study. We train
two models, GPT2-124M and GPT2-350M [3], using Eve, AdamW,
Adafactor [4], SM3 [1], and Adam-mini, which is a recent memory
efficient optimizer introduced by Zhang et al. [8]. For each model,
we train for 100B tokens with different learning rates. We record
the final validation perplexities in Figure 2.

Across all learning rates, we observe that Eve matches AdamW
for both models, whereas the other memory-efficient optimizers are
either unstable or simply less performant, especially for the 350M
model. For smaller learning rates, Adam-mini matches AdamW and
Eve’s performance. However, note that AdamW and Eve together
achieve the best PPL at higher learning rates, like 1e-3, where
the other optimizers struggle to do the same. Moreover, Yao et
al. [7] empirically show that a PPL difference greater than 0.5 is
the difference between an X and a 2X parameter model, so the PPL
differences in Figure 2 can be considered non-trivial.

We include validation loss curves corresponding to the best learn-
ing rate for each optimizer in Figure 3. We also run downstream
tasks on the final trained models, as shown in Figure 4.

4 Memory Savings
We utilize AxoNN [5, 6] to distribute and train models ranging
from 1.1B up to 70B parameters on 64 NVIDIA A100 (40 GB each)
GPUs using tensor parallelism. As seen in Figure 5, for Llama 2
70B, we save 267 GBs, or 20.27% more memory than AdamW, the
equivalent of ∼ 7 more A100 (40 GB) GPUs! This not only helps
reduce monetary costs but also saves energy and makes training
large models more accessible.

5 Conclusion
In this paper, we introduced Eve, a memory efficient optimizer that
matches AdamW’s performance across a range of learning rates
while using a much smaller memory footprint. We compared Eve
with other established memory-efficient optimizers for different
model sizes and learning rates and showed better training stability.
We trained Llama 2 70B on 64 A100 GPUs, where we used 20% less
GPU memory compared to AdamW. As future work, we plan to
pre-train larger models using our optimizer and investigate how
Eve is able to approximate AdamW so well.

1e
-4

3e
-4

6e
-4

1e
-3

3e
-3

Learning Rate

AdamW

Eve

Adam-mini

Adafactor

SM3

Op
tim

ize
r

19.49 18.53 18.25 18.19 18.50

19.53 18.47 18.16 18.06 18.45

19.67 18.72 18.44 18.45 19.39

19.24 18.28 18.10 18.07 18.60

30.43 22.58 20.76 19.90 18.86

GPT2-124M - Validation Perplexity at 200K Steps

18.5

19.0

19.5

1e
-4

3e
-4

6e
-4

1e
-3

3e
-3

Learning Rate

AdamW

Eve

Adam-mini

Adafactor

SM3

Op
tim

ize
r

16.58 15.85 15.50 15.29 15.71

16.55 15.89 15.55 15.29 15.34

16.59 15.88 15.58 15.55 24158.70

17.42 16.73 16.14 15.77 15.60

21.51 18.72 18.22 18.26 17.83

GPT2-350M - Validation Perplexity at 200K Steps

15.5
16.0
16.5
17.0
17.5
18.0

Figure 2: Final validation PPLs across different learning rates
for all optimizers on GPT2-124M and GPT2-350M after 200K
steps (100B tokens)

References
[1] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. 2019. Memory Efficient

Adaptive Optimization. In Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/
paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf

[2] Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight Decay Regularization in
Adam. CoRR abs/1711.05101 (2017). arXiv:1711.05101 http://arxiv.org/abs/1711.
05101

[3] Alec Radford, JeffWu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
2019. Language Models are Unsupervised Multitask Learners. Technical Report.

[4] Noam Shazeer and Mitchell Stern. 2018. Adafactor: Adaptive Learning Rates with
Sublinear Memory Cost. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy
and Andreas Krause (Eds.). PMLR, 4596–4604. https://proceedings.mlr.press/v80/
shazeer18a.html

[5] Siddharth Singh and Abhinav Bhatele. 2022. AxoNN: An asynchronous, message-
driven parallel framework for extreme-scale deep learning. In Proceedings of the
IEEE International Parallel & Distributed Processing Symposium (IPDPS ’22). IEEE
Computer Society.

https://proceedings.neurips.cc/paper_files/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html


Eve: Less Memory, Same Might SC ’24, November 17-22, 2024, Atlanta, GA

HellaSwag ARC-e piqa
Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 %

32
.4

41
.6

63
.5

32
.7

40
.9

62
.6

31
.9

40
.7

63
.3

32
.4

40
.7

63
.3

31
.1

39
.2

62
.5

25
.0

25
.0

50
.0

Zero-shot Evaluation of GPT2-124M
AdamW
Eve
Adam-mini
Adafactor
SM3
Random Performance

HellaSwag ARC-e piqa
Task

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 % 39
.2 43

.2

66
.2

39
.0 44

.3

65
.3

38
.5 44

.4

64
.1

38
.8 43

.2

65
.7

35
.4

42
.0

64
.0

25
.0

25
.0

50
.0

Zero-shot Evaluation of GPT2-350M
AdamW
Eve
Adam-mini
Adafactor
SM3
Random Performance

Figure 4: Zero-shot evaluations for final GPT2-124M and
GPT2-350M checkpoints with best learning rates

TinyLlama-1.1B Llama2-7B Llama2-13B Llama2-70B
Model

0

200

400

600

800

1000

1200

1400

M
em

or
y 

Co
ns

um
pt

io
n 

(G
B)

56.5

184.3

301.9

1317.2

52.5
159.8

254.0

1050.2

Memory Consumption by Model and Optimizer
AdamW
Eve

Figure 5: Comparison of total memory utilization across all
64 GPUs between AdamW and Eve for LLMs

0K 25K 50K 75K 100K 125K 150K 175K 200K
Steps

2.85

2.90

2.95

3.00

3.05

3.10

Va
lid

at
io

n 
Lo

ss

GPT2-124M
SM3
Adam-mini
Adafactor
Eve
AdamW

0K 25K 50K 75K 100K 125K 150K 175K 200K
Steps

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Va
lid

at
io

n 
Lo

ss

GPT2-350M

SM3
Adam-mini
Adafactor
Eve
AdamW

Figure 3: Validation loss curves using best learning rates for
GPT2-124M and GPT2-350M for 200K steps (100B tokens)

[6] Siddharth Singh, Prajwal Singhania, Aditya K. Ranjan, Zack Sating, and Abhinav
Bhatele. 2024. A 4D Hybrid Algorithm to Scale Parallel Training to Thousands of
GPUs. arXiv:2305.13525 [cs.LG]

[7] Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. 2023.
ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Compre-
hensive Study to Low Rank Compensation. arXiv:2303.08302 [cs.LG] https:
//arxiv.org/abs/2303.08302

[8] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye,
Zhi-Quan Luo, and Ruoyu Sun. 2024. Adam-mini: Use Fewer Learning Rates To
Gain More. arXiv:2406.16793 [cs.LG] https://arxiv.org/abs/2406.16793

https://arxiv.org/abs/2305.13525
https://arxiv.org/abs/2303.08302
https://arxiv.org/abs/2303.08302
https://arxiv.org/abs/2303.08302
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2406.16793

	Abstract
	1 Introduction
	2 Eve: A Memory Efficient Optimizer
	3 Experiments
	4 Memory Savings
	5 Conclusion
	References

