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Abstract
Adaptive optimizers, which adjust the learning rate for individ-
ual parameters, have become the standard for training deep neu-
ral networks. One such optimizer is AdamW, a popular adaptive
method that maintains two optimizer state values (momentum and
variance) per parameter, doubling the model’s memory usage dur-
ing training. Many proposed memory efficient optimizers claim to
match AdamW’s performance but lack its desirable qualities such
as robustness to learning rate changes. This quality is especially
desirable when pre-training LLMs, where experimenting with dif-
ferent combinations of hyperparamters to attain the ideal setting is
infeasible due to time, cost, and compute constraints. We propose
Eve, a Memory Efficient AdaptiVe Moment Estimation algorithm
that saves memory by reducing the variance term while also pre-
serving AdamW’s desirable properties across different training
settings. We finetune Llama 2 70B on 64 GPUs and show memory
savings of 20% over AdamW. We also compare our method to a
recent well-received memory-efficient optimizer called Adam-mini
and demonstrate better training stability across various learning
rates.
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1 Introduction
The per-parameter adaptivity of optimizers like AdamW allow
them to outperform non-adaptive methods like stochastic gradient
descent in converging quickly to good minimizers, even in high
dimensional spaces [2]. But, the memory requirements for train-
ing with such optimizers is extremely high due to the extra states
maintained by them. As a result, manymemory-efficient approxima-
tions to AdamW’s algorithm have been proposed. However, these
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methods either lose valuable qualities of AdamW, such as its ro-
bustness to a wider range of learning rates, or require highly tuned
and crafted conditions to reach the same minimizers as AdamW.
These constraints are unacceptable in a setting where compute and
time are limited resources, which is why current memory efficient
optimizers have not yet replaced AdamW convincingly.

To this end, we propose Eve, a very simple approximation of
the AdamW algorithm that saves a significant amount of memory
while preserving the single most important quality of AdamW:
robustness to learning rates.

2 Eve: A Memory Efficient Optimizer
In modern neural networks like the transformer, linear layers com-
prise the majority of parameters. Moreover, for every linear layer’s
weight matrix of shape 𝑀 × 𝑁 , AdamW stores two additional
𝑀 × 𝑁 matrices for the momentum and variance terms. To com-
press AdamW’s optimizer state, we maintain a scalar per row of
the variance matrix, reducing it to an𝑀 × 1 vector. This prunes the
optimizer state from storing 2 ×𝑀 × 𝑁 values to only𝑀 × (𝑁 + 1)
values for a linear layer. As𝑀 and 𝑁 grow larger for bigger models,
the +1 term is amortized, essentially reducing the 2×𝑀 ×𝑁 values
to𝑀 × 𝑁 values.

We show ourmethod inAlgorithm 1 and illustrate the row_mean
operation in Figure 1.

Algorithm 1 Eve: Memory Efficient Adaptive Moment Estimation
1: 𝑚0 ← 0 (Initialize MxN momentum matrix)
2: 𝑣0 ← 0 (Initialize Mx1 variance vector)
3: 𝑡 ← 0 (Initialize timestep)
4: while 𝜃𝑡 not converged do
5: 𝑡 ← 𝑡 + 1
6: 𝑔𝑡 ← ∇𝜃 𝑓 (𝜃𝑡−1) (Get gradients w.r.t. objective function at

timestep 𝑡 )
7: 𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1) · 𝑔𝑡 (Update momentum matrix)
8: 𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1− 𝛽2) · row_mean(𝑔2𝑡 ) (Update variance

vector)
9: 𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ·𝑚𝑡/(

√
𝑣𝑡 + 𝜖) (Update parameters)

10: end while
11: return 𝜃𝑡 (Resulting parameters)
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Figure 1: Eve takes the per-row average of the variancematrix.
Note that Algorithm 1 Line 8 is mathematically equivalent
to this

3 Experiments
We perform a model size and learning rate ablation study. We train
two models, GPT2-124M and GPT2-350M [3], using Eve, AdamW,
Adafactor [4], SM3 [1], and Adam-mini, which is a recent memory
efficient optimizer introduced by Zhang et al. [8]. For each model,
we train for 100B tokens with different learning rates. We record
the final validation perplexities in Figure 2.

Across all learning rates, we observe that Eve matches AdamW
for both models, whereas the other memory-efficient optimizers are
either unstable or simply less performant, especially for the 350M
model. For smaller learning rates, Adam-mini matches AdamW and
Eve’s performance. However, note that AdamW and Eve together
achieve the best PPL at higher learning rates, like 1e-3, where
the other optimizers struggle to do the same. Moreover, Yao et
al. [7] empirically show that a PPL difference greater than 0.5 is
the difference between an X and a 2X parameter model, so the PPL
differences in Figure 2 can be considered non-trivial.

We include validation loss curves corresponding to the best learn-
ing rate for each optimizer in Figure 3. We also run downstream
tasks on the final trained models, as shown in Figure 4.

4 Memory Savings
We utilize AxoNN [5, 6] to distribute and train models ranging
from 1.1B up to 70B parameters on 64 NVIDIA A100 (40 GB each)
GPUs using tensor parallelism. As seen in Figure 5, for Llama 2
70B, we save 267 GBs, or 20.27% more memory than AdamW, the
equivalent of ∼ 7 more A100 (40 GB) GPUs! This not only helps
reduce monetary costs but also saves energy and makes training
large models more accessible.

5 Conclusion
In this paper, we introduced Eve, a memory efficient optimizer that
matches AdamW’s performance across a range of learning rates
while using a much smaller memory footprint. We compared Eve
with other established memory-efficient optimizers for different
model sizes and learning rates and showed better training stability.
We trained Llama 2 70B on 64 A100 GPUs, where we used 20% less
GPU memory compared to AdamW. As future work, we plan to
pre-train larger models using our optimizer and investigate how
Eve is able to approximate AdamW so well.
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Figure 2: Final validation PPLs across different learning rates
for all optimizers on GPT2-124M and GPT2-350M after 200K
steps (100B tokens)
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Figure 4: Zero-shot evaluations for final GPT2-124M and
GPT2-350M checkpoints with best learning rates
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64 GPUs between AdamW and Eve for LLMs
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Figure 3: Validation loss curves using best learning rates for
GPT2-124M and GPT2-350M for 200K steps (100B tokens)
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