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Adaptive optimizers, which adjust the learning rate for individual parameters, have become 
the standard for training deep neural networks. AdamW [1] is a popular adaptive method 
that maintains two optimizer state values (momentum and variance) per parameter, 
doubling the model’s memory usage during training. Several memory-efficient optimizers 
claim to match AdamW’s performance but lack its desirable qualities such as robustness to 
learning rate changes. This quality is especially desirable when pre-training LLMs, where 
experimenting with different hyperparameters is infeasible. We propose Eve, a Memory 
Efficient AdaptiVe Moment Estimation algorithm that saves memory by reducing the 
variance term while also preserving AdamW’s desirable properties across different training 
hyperparameter settings.
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● Linear layers comprise the majority of  parameters in modern neural networks
● For every linear layer’s weight matrix (MxN), AdamW stores two MxN matrices for the 

momentum and variance terms
● We compress AdamW’s optimizer state by performing a per-row average of  the 

variance matrix, reducing it to an Mx1 vector for each linear layer
● This reduces the optimizer state from storing 2xMxN values to only Mx(N+1) values 

for a linear layer

 Conclusion
● We introduce Eve, a memory efficient optimizer that matches AdamW’s performance across a range of  learning rates 

while using a much smaller memory footprint
● We save memory by maintaining a scalar per row of  the variance matrix for all linear layers
● We present an ablation study, where we compare Eve with other established memory-efficient optimizers for different 

model sizes and learning rates and show better training stability
● We train Llama 2 70B on 64 A100 GPUs, where we use 20% less GPU memory compared to AdamW
● As future work, we plan to pre-train larger models using our optimizer and investigate how and why Eve is able to 

approximate AdamW so well
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● Eve matches AdamW across all learning rates, whereas other optimizers are less performant, especially for GPT2-350M
● Yao et al. [3] empirically showed that a PPL difference > 0.5 is the difference between an X and a 2X parameter model, 

so the PPL differences above may be non-trivial
● Adam-mini is close to AdamW for smaller learning rates, but AdamW and Eve perform better at higher learning rates

Fig 1: Final validation PPLs across different learning rates and optimizers for two models after 200K steps

Note: Line 8 is mathematically equivalent to 
taking the row_mean of  the variance matrix. 
Also, we perform bias correction on the 
momentum and variance terms in the same 
fashion as AdamW (not shown here).

● We utilize AxoNN [4] to parallelize model training for 
models ranging from 1.1B to 70B parameters on 64 
NVIDIA A100 (40 GB) GPUs using tensor parallelism

● For Llama 2 70B, we save 267 GBs, or 20.27%, more 
memory than AdamW, the equivalent of  ~7 more A100 
(40 GB) GPUs!

● This not only helps reduce monetary costs but also saves 
energy and makes training large models more accessible

● Moreover, as the model size increases, the amount of  
memory saved also increases

Fig 3: Comparison of  total memory utilization across all 64 
GPUs between AdamW and Eve for LLMs

Fig 4: Zero-shot evaluations for final GPT2-124M and GPT2-350M checkpoints with best learning rates

Fig 2: Validation loss curves (zoomed-in and out) using best learning rates for GPT2-124M and GPT2-350M for 200K 
steps. We find that Eve very closely follows AdamW throughout pre-training with no spikes or instabilities
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