Creating Code LLMs for HPC: It’s LLMs All the Way Down
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Abstract

Large language models (LLMs) are increasingly being used by soft-
ware developers, researchers, and students to assist them in coding
tasks. While newer LLMs have been improving their coding abili-
ties with regards to serial coding tasks, they consistently perform
worse when it comes to parallelism and HPC-related coding tasks.
Bridging this gap and creating HPC-capable code LLMs could dras-
tically improve the quality and quantity of code research software
developers can write. The current poor performance of LLMs on
HPC-related problems can be partially attributed to the lack of
significant HPC data in their training, which is what we address
in this poster. We present HPC Coder v2, a new LLM created by
fine-tuning a previous code LLM using HPC synthetic data. We
demonstrate that it is one of the most capable open-source LLMs
for generating parallel code to date.

1 Synthetic Data Generation
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Figure 1: Synthetic data generation process

Previous work has demonstrated that fine-tuning smaller LLMs

on synthetic data can improve their performance on specific tasks [5].

We focus on fine-tuning HPC Coder v2 with purely synthetic data
that is artificially generated using multiple state-of-the-art LLMs.
In order to collect more diverse data samples, we use open source
codebases to collect seed text snippets to inspire the LLM. Our
prompt template is divided into four different categories: program-
ming, translation, optimization and parallelization problems. By
using different kinds of prompt templates we intend to increase
the model’s competence in solving different kinds of problems and
make it more creative. The LLM is then tasked with generating
a problem statement and solution based on the prompt. This pro-
cess is highlighted in Figure 1. An example response can be seen
in Figure 2. Our final dataset, HPC-Instruct, consists of over 120k
samples of data generated with Gemini-Pro, DBRX, Llama-3-70B,
and Mixtral-7B. By leveraging these models, we collect a large
amount of data that encapsulates HPC tasks which will help us
improve HPC Coder v2’s understanding of HPC coding problems.
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Seed

TRANSA=C' or 'c', op(A) = A"*T.

Y

Prompt Template
Please gain inspiration from the random code snippet
below to create a high-quality programming
problem.

Large Language
Model

Y Y

Solution
Here's the translated OpenMP code:
void op(float *A, float *result) {
#pragma omp parallel for

Problem Statement
Here is a CUDA kernel that computes the transpose of a matrix
A. translate to OPENMP
__global_ void op(float *A, float *result) {

Figure 2: Example synthetic data generation output.

2 Fine-Tuning

Using HPC-Instruct we finetune Deepseek-Coder-1.3B and Deepseek-
Coder-6.7B [2] with AxoNN [4] on four Perlmutter nodes with four
80GB A100 GPUs per node. The fine-tuning experiments result
in four variations of each model: the base and instruct models,
with and without instruction masking. Instruction masking is a
technique where parts of the input data are intentionally hidden
from the LLM during fine-tuning. The models are fine-tuned in
bfloat16 with a batch size of 128 and sequence length of 8192 for
two epochs. The total fine-tuning time was 208 node hours for all
eight models Figure 4.

3 Evaluation Results

In this section we evaluate how HPC Coder v2 performs against
other models in various code generation tasks.

3.1 Generation of Serial and Parallel Code

We use ParEval [3] and HumanEval [1] to evaluate the models on
serial and parallel code generation. The results between masked and
unmasked models do not show a consistent pattern. Fine-tuning the
base models results in the best parallel code performance, but the
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Figure 3: ParEval and HumanEval results
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Figure 4: Fine-tuning process

worst HumanEval performance. One explanation for this could be
that DeepSeek instruct’s fine-tuning dataset is contaminated with
HumanEval prompts. HPC Coder v2 6.7B is the best open-source
LLM under 30B parameters at parallel code generation Figure 3.

3.2 HumanEval Performance for Different
Languages
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Figure 5: HumanEval performance for different languages

The unmasked base models are chosen as the final HPC Coder
v2 models to be evaluated for different languages. Figure 5 shows
that the 1.3B model performs better than StarCoder2 3B model
on all languages except Julia. We can also see that the 6.7B model
performs better than DeepSeek Coder 7B on all languages and is
comparable to Phind v2 34B for Python and R. We also evaluate the
models on inference and throughput in Figure 6. The HPC Coder
models are faster and use less memory than other models while
having comparable or better parallel code generation.

4 Conclusion

In this poster we presented the HPC Coder v2 models which are
trained on purely HPC-related coding tasks. HPC Coder v2 6.7B is
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evaluated to be the best performing open-source model for parallel
code generation under 30B parameters. In future work we will
generate more synthetic data for HPC and fine-tune bigger models
to improve the model’s performance. We would also like to evaluate
HPC Coder v2 on other benchmarks. We believe that HPC Coder
v2 can act as a stepping stone in how HPC developers and software
engineers can efficiently write, maintain and scale HPC code and
help them improve productivity and efficiency of parallel programs.
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