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Abstract

Large language models (LLMs) are being used increasingly by

HPC-Coder v2: Fine-tuning DeepSeek Coder

HumanEval Scores Across Languages

. . Masked HPC Coder v2 100 -
software developers, researchers, and students to assist them in , . , BE R R Jula KXY C++ HEE Python
coding tasks.While newer LLMs have been improving their coding - | Base-l.3b ]| Instruct-1.30 801~ 00 s 72.0
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be partially attributed to the lack of significant HPC data in their

training datasets, which is what we address in this poster.VWe
e Base models used: DeepSeek Coder 1.3 billion and DeepSeek Coder 6.7 billion

present HPC-Coder v2,a new LLM created by fine-tuning a
® Fine-tuned using the AXxoNN framework [4] on 4 Perlmutter nodes with 4 80GB A100 GPU:s

® Base, unmasked variants selected as the
final HPC-Coder v2 model
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previous code LLM using synthetic HPC code data.We

o ® Four variants of each model are created: the base and the instruct model versions, with and without 50
demonstrate that it is one of the most capable open-source LLMs instruction masking e The |.3B model performs better than _
for generating parallel code to date. e In instruction masking, gradients corresponding to instruction tokens are masked during fine-tuning StarCodel.*Z 3B model on all languages %40-
e Models fine-tuned in bfloat| 6 with a batch size of 128 and sequence length of 8192 for 2 epochs except Julia o ®
e Total fine-tuning time was 208 node-hours for all 8 models ® The 6.7B model performs better than Yy, @ e
DeepSeek Coder 7B on all languages =
: : and is comparable to Phind v2 34B for T 204 o
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Evaluation Results: Generating Serial and Parallel Code e HPC-Coder v2 models are faster and G 107§ e
use less memory than other models o $ ety ‘ L
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e Used HumanEval [2] and ParEval [3] to evaluate the new models on serial and parallel code
generation

® No consistent trend between masked and unmasked models

e Fine-tuning the base models gives the best ParEval scores, but the worst HumanEval scores

e HPC-Coder v2 6.7B is the best open-source LLM under 30B parameters at parallel code generation
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® Previous work [|] has shown that smaller LLMs can be improved Serial and Parallel Code Generation Scores

by fine-tuning on LLM-generated synthetic coding samples 'O e Parkval Parallel BB Parkval Serial (ST HumanEval N - - 88.4 e HPC-Coder v2 6.7B is the best performing open source model
® We generate four types of samples with an LLM: programming, o] B  aa _ PP PTY \\ BT ™ L for parallel code generation under 30B parameters.
translation, optimization and parallelization problems e e Future work
® The LLM is asked to generate a problem statement and a solution o 4300 © Generate more data and fine-tune bigger models
® TJo generate more diverse data samples, we use seed snippets N B o Investigate inconsistent HumanEval results
from open source codebases to inspire the LLM - o Evaluate HPC-Coder v2 with more benchmarks

e Our final dataset, HPC-Instruct, has 120k data samples generated
with Gemini-Pro, DBRX, LIlama-3-70B, and Mixtral-7B
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