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I. INTRODUCTION

Over the course of the COVID-19 pandemic, a wide variety
of modeling approaches have been used to inform policymak-
ers at various levels of government. This process has helped il-
luminate both the benefits and the limitations of using different
modeling techniques in this role. Agent-based models (ABMs)
– where the behaviors of individual members of a population
are simulated directly – have proved particularly well-suited in
use cases like counterfactual analysis. Counterfactual analysis
seeks to understand the impact of different sets of public
health interventions in various what-if scenarios, which are
often easier to directly represent in ABMs.

However, this resolution comes at a cost; ABMs are gener-
ally orders of magnitude more complex and computationally
expensive than other modeling techniques. This generally
means that such ABMs must be highly scalable parallel
applications. Existing ABMs are generally either (1) complex,
small simulations (at most around a million agents) with a
focus on epidemiological results rather than computational
efficiency, or (2) simpler, large models where much of the
complexity lies in the underlying datasets and the behavioral
model of agents remains relatively simple (e.g. a sequence of
top-down interventions determines behavior)

With these limitations of existing simulations in mind,
we propose to enable ABMs of infectious disease spread to
efficiently scale to large populations and core counts while
efficiently modeling a combination of top-down and bottom-
up behaviors that are both complex and dynamic.

II. BACKGROUND AND RELATED WORK

As a class of simulations, epidemiological ABMs provide
a wide variety of ways to answer the same basic questions:
(1) who does each individual agent make contact with in
a given period of time? and (2) given a set of contacts,
is an agent infected by one of them? Whether the first
question is answered based on an input network of pairwise
contact probabilities, individual travel schedules, or stochastic
movement within a region, answering the second is a matter
of summing infection probabilities based on the state of those
contacts. Protective behaviors and public health interventions
can change the answer to either question. For example, school
closures can change contacts, while vaccinations can change
infection probabilities even when contacts are fixed.

While many models of this type have been developed, few
have been scaled to the hundreds of millions of agents needed
to simulate the population of a country like the US. EpiCast [1]
was one of the first models to achieve these scales. EpiCast
adapted the SPaSM molecular dynamics code by treating
agents as particles interacting within fixed communities based
on where they lived and worked. Another framework that
achieved similar scales is EpiSimdemics [2], which proposed
a novel parallel algorithm of combining time-stepping and
discrete event simulation (DES) to simulate disease spread
given a visit schedule for each agent with discrete locations.

Orthogonal to efforts to scale ABMs to large populations,
there have been efforts to better model how those populations
behave. Most current models rely on coarse-grained top-
down interventions or relatively rigid data-driven behaviors,
neither of which capture the feedback loops between disease
spread and people’s behaviors observed in the real world.
Coupled contagion models [3], where information about –
or fear of – a disease spreads alongside the disease itself
and influences behavior, provide one way of representing the
interplay between disease and fear spread. However, these have
yet to be applied to ABMs at scales beyond 10 million agents.

III. RESEARCH QUESTIONS AND APPROACH

Our work involves answering three main questions:

Q1 How can we efficiently scale ABMs to large populations
of agents?

Q2 How can we incorporate granular dynamic behavior into
ABMs without sacrificing scalability?

Q3 How do the dynamics of large-scale ABMs change as
dynamic behavior is introduced?

For Q1, we build on top of the general framework used in
EpiSimdemics [2], first creating our own implementation of
the algorithm and then introducing optimizations to address
issues such as load imbalance and communication overhead.
For Q2 and Q3, we begin by implementing a variant of Epstein
et al.’s coupled contagion model [3] in EpiCast [1] with purely
local fear spread, then seek to extend it to model the impact
of fear spread through other mechanisms, such as broadcasters
and social media.
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Fig. 1: Performance comparison of combinations of different
performance optimizations with each added optimization re-
ducing runtimes. Execution times averaged over three runs,
extrema shown in error bars.

IV. CONTRIBUTIONS AND ACHIEVEMENTS

A. Research results

For the scaling work (Q1), we have developed a new
simulator, Loimos, to test our scaling strategies. Loimos uses a
combination of time-stepping and DES, and is implemented on
top of Charm++, an asynchronous task-driven parallel runtime
system used for other highly heterogenous applications such
as the NAMD molecular dynamics simulator.

We implement three main performance optimizations in
Loimos, the impact of which is shown in Figure 1: (1) a static
load balancing algorithm that maintains geographic locality
by partitioning locations using linear cuts after sorting by ZIP
codes (static), (2) a short-circuit optimization where we only
evaluate the DES for locations visited by at least one infectious
person on a given day (sc), and (3) a modification to the core
algorithm for computing contacts which reduces communi-
cation by storing visit information on the process where the
location data is stored, not the person data (loc-visits). This
allowed us to send minimal data on each person’s current state
rather than their full visit schedule before processing contacts
for a given simulation day. Altogether, these optimizations
result in a 31.03× speedup on 128 cores, when run on a
realistic synthetic dataset of ∼ 9.3 million agents representing
the population of the US state of Michigan. This work is being
published in IPDPS this year.

For Q2-Q3, we have implemented a dynamic behavioral
model in EpiCast. This model couples the spread of fear of a
disease with that of the disease itself. Interactions with afraid
or symptomatic agents spread fear, which causes agents to
engage in protective behaviors that reduce disease spread. We
have also developed a second mechanism for fear spread based
on a network of local broadcasters, which can spread fear
or mitigate fear spread based on a combination of local fear
and disease spread. We have also reworked the transmission
computation to bin contacts in a given context rather than
compute them pairwise, turning a 7.3× slowdown over the
original code into a 11% speedup. This model has already
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Fig. 2: New cases for six different fear spread scenarios run
in EpiCast.

proved capable of producing multiple epidemic waves in a
simulation of the contiguous United States (CONUS). Figure 2
shows the how the proportion of new cases (top) and fear
prevalence vary for a range of different fear-spread scenarios.

B. Dissemination and Community Engagement
I have presented talks on the development of Loimos at the

2022 and 2024 Charm++ workshops, along with a poster at
SC22 and talks at the UMD booth for SC23 and SC24. I also
presented a lightning talk on the behavioral work in EpiCast
at Los Alamos National Laboratory in 2024.

V. SUMMARY AND OUTLOOK

We are currently investigating ways to better understand
how the properties of the underlying visit network impact
the performance of Loimos runs. This involves building and
empirically validating a performance model based on a variety
of network theoretic properties and searching for network spar-
sification techniques that preserve the statistical distribution of
simulation outcomes.

We are working on extending our fear spread model to use
an arbitrary person-person network as input, which we can
then tune to represent real world social networks, such as
those enabled by social media. We intend to use a variation on
the communication scheme developed for Loimos to minimize
communication overhead.
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