Scaling an Agent-based Epidemic Simulation on Realistic Social Contact Networks
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Modeling Behavior
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We model disease spread through a bipartite person-location N )

network, which specifies where each person is at any given time.

Scaling Agent-Based Models

Fear can also spread via regional broadcaster media...
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Key Optimizations Comparing Scenarios

We investigated one baseline scenario...
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Scaling Performance

Conclusion

|. Presented an individualized model of infectious disease spread

Execution time for strong scaling runs (Perimutter)
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£ - Future Work
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|. Extend the fear spread model to arbitrary social networks,
which can include long distance connections (e.g. through
social media)

Overall, we see a 2.2x speedup over the state of the art

(EpiSimdemics) on |.53x fewer cores
2. Optimize the implementation of the fear spread model
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