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Abstract

GPGPU-based clusters and supercomputers have grown signifi-
cantly in popularity over the past decade. While numerous GPGPU
hardware counters are available to users, their potential for work-
load characterization remains underexplored. In this work, we ana-
lyze previously overlooked GPU hardware counters collected via
the Lightweight Distributed Metric Service on Perlmutter. We ex-
amine spatial imbalance, defined as uneven GPU usage within the
same job, and perform a temporal analysis of how counter values
change during execution. Using temporal imbalance, we capture
deviations from average usage over time. Our findings reveal ineffi-
ciencies and imbalances that can guide workload optimization and
inform future HPC system design.
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1 Summary

General-purpose Graphics Processing Units (GPGPUs) have become
pervasive in compute nodes on high performance computing (HPC)
systems. Gaining insights into their utilization is necessary for iden-
tifying inefficiencies and guiding optimization and future system
design. This is made possible by gathering and analyzing system-
wide monitoring data collected over extended periods across all
compute nodes. Such data provides information about GPU usage
along with job metadata (e.g., job duration, number of nodes/GPUs).

Tools such as the Lightweight Distributed Metric Service (LDMS) 2]

enable longitudinal monitoring on large systems. However, the
sheer volume of data makes extracting insights a formidable task.
Previous works [3-5] analyze GPU monitoring data but are limited
to a few counters. In this study, we conduct a comprehensive anal-
ysis of GPU-specific counters collected via LDMS on Perlmutter.

We focus on spatial and temporal imbalance in GPU workloads.
Work distribution across GPUs can lead to spatial imbalance, where
some GPUs are underutilized while others are heavily loaded. Our
spatial analysis quantifies this imbalance to assess allocation ef-
ficiency. Counter values also fluctuate over time and we capture
deviations from mean behavior using the temporal imbalance met-
ric and reveal how consistently GPUs are utilized during a job.

Our analysis reveals several trends in GPU usage on Perlmutter.
Many single-node jobs allocate all four GPUs but effectively use
only one, due to non-shareable GPU nodes. FP64 cores are most
frequently used, while FP16 remains rare. Tensor cores are often
used alongside FP32 or FP64.
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1.1 Methodology

We define three metrics: spatial imbalance, temporal imbalance,
and overall utilization. These are computed from LDMS/DCGM
samples aligned with Slurm job metadata.

1.1.1  Analyzing the Spatial Imbalance of Jobs. This metric captures
uneven GPU usage within a job. For job j in time window w, let
TC(g,w) = Z;‘;’l Cy,+ be the sum of counter values for GPU g.
Spatial imbalance is:
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Values near 0 indicate balanced usage, and values near 1 indicate
imbalance. Overall imbalance is the mean across windows. We use
1-minute windows to capture bursts.

1.1.2  Analyzing the Temporal Imbalance of Jobs. Temporal imbal-
ance quantifies the variation in hardware counter values over a
job’s runtime. We adopt the definition from [7]:
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where Cy; is the hardware counter value for GPU g at time ¢. It
compares observed values with the maximum possible. Low values
indicate stable behavior; high values reflect fluctuations. A job’s
temporal imbalance is defined as the maximum across its GPUs.

1.1.3  Analyzing Overall Utilization of Jobs. To analyze the overall
utilization of jobs, we calculate the job level mean, M(j), which is
computed by first averaging the counter values over time, ¢, for
each GPU in a job, and then taking the mean across all GPUs, g,
assigned to that job:
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where Cy, is the hardware counter value for GPU g at time .

1.2 Monitoring Data Used in this Study

1.2.1  Data Sources. Perlmutter uses LDMS [2] to collect per-GPU
counters via the DCGM plugin [6] (10-second sampling) and job
metadata from Slurm [1]. Our dataset spans August-December 2023.
FP16_ACTYV, FP32_ACTV, FP64_ACTV, and TNSR_ACTYV record
the fraction of cycles when the respective GPU cores were active,
while GPU_UTIL measures the fraction of time at least one kernel
was executing. Since LDMS lacks job IDs, we aligned samples with
Slurm by matching node IDs and job start-end times.
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Figure 1: The plot shows the number of jobs by the number
of GPUs used and by the mean of GPU_UTIL, with corre-
sponding CDFs. Most jobs run on a single node (four GPUs),
and 43% of jobs fall in the low utilization range (0-30%).
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Figure 2: The plots show the distribution of spatial imbalance
of GPU_UTIL for jobs grouped by mean of GPU_UTIL ranges
(0-30%, 31-69%, 70-100%, left to right). Low-utilization jobs ex-
hibit the highest spatial imbalance. 97.6% of high-utilization
have below 0.5 imbalance.

1.2.2  Data Cleaning and Preprocessing. We excluded jobs on login
nodes, non-GPU partitions, staff accounts, jobs shorter than three
minutes, and incomplete jobs (0.28%). Counters with physically
invalid values (e.g., GPU_UTIL >100%) and jobs with mean counter
values below 1% were also removed.

1.3 Results

The Cumulative Distribution Function (CDF), shown by the orange
line in both plots, represents the probability that a random variable
X takes a value less than or equal to x.

The left plot in Figure 1 shows job distribution by GPU count.
Red dots show mean values. Most jobs run on a single node (first
two bars), and job counts decrease as GPU use exceeds one node
(16 GPUs). The CDF shows 70.5% of jobs use a single node, most
allocating all four GPUs.

The right plot in Figure 1 shows the distribution of jobs by mean
GPU_UTIL. We observe that 53.8% of jobs fall in the 0-30% mean
GPU_UTIL range.

Figure 2 shows spatial imbalance across utilization ranges. Low-
utilization jobs show the highest imbalance (up to 0.75), with 45.7%
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below 0.5. Medium-utilization jobs are more balanced, with 83%
below 0.5. High-utilization jobs exhibit the least imbalance, with
97.6% below 0.5, indicating that higher GPU_UTIL correlates with
more uniform GPU use. We also observe that most four-GPU jobs
(one node) actively use only one.

1.4 Conclusion

Many jobs allocate full nodes but use only one GPU. Over 40% of
jobs run below 30% GPU_UTIL. Low-utilization jobs are sporadic or
idle, whereas high-utilization jobs are consistent. FP64 dominates
usage, FP16 is rare, and tensor cores are usually paired with FP32
or FP64. These trends point to opportunities for better workload
design, balanced GPU use, and improved system efficiency.
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