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GPGPU-based clusters and supercomputers have grown significantly in popularity over the 
past decade. While numerous GPGPU hardware counters are available to users, their 
potential for workload characterization remains underexplored. In this work, we analyze 
previously overlooked GPU hardware counters collected via the Lightweight Distributed 
Metric Service (LDMS) on Perlmutter. We examine spatial imbalance, defined as uneven 
GPU usage within the same job, and perform a temporal analysis of  how counter values 
change during execution. Using temporal imbalance, we capture deviations from average 
usage over time. Our findings reveal inefficiencies and imbalances that can guide workload 
optimization and inform future HPC system design.
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Monitoring Data Used

Analyzing the Spatial Behavior of Jobs

The jobs that have 
higher overall usage 

have less spatial 
imbalance.

Measures how evenly a job spreads work across its GPUs.

Question 3: Do jobs that allocate multiple GPUs use them evenly, or are some GPUs heavily loaded while others stay idle?

● Uneven workload distribution across GPUs suggests potential for 
requesting fewer GPUs or improving load balancing.

● Perlmutter shows high demand for double precision 
(scientific/engineering) and lower demand for ML/AIjobs.

● Job-level computation phases mainly drive inconsistent usage 
patterns over time.

● Jobs with high GPU hours but low mean GPU_UTIL are prime 
optimization targets, identified by our methods.

Over 60% of  jobs use FP64 exclusively. Tensor operations 
co-occur with both FP32 and FP64.

● We retrieved performance counter measurements collected by using the Data Center 
GPU Manager (DCGM) [3], configured with a 10-second sampling rate.

● We retrieved ∼4 months of  data, spanning August 16 to December 13, 2023.
● Our dataset includes information about 345,154 jobs after cleaning and preprocessing.

Counter Name Short Name Description

DCGM_FI_DEV_GPU_
UTIL 

GPU_UTIL The fraction of  time during which at least 
one kernel was executing on the GPU.

DCGM_FI_PROF_PIPE
_FP{16/32/64/TENSR}
_ACTIVE 

FP{16/32/64/T
ENSR}_ACTV

The fraction of  cycles the 
FP{16/32/64/Tensor} cores were active.

Question 2: Are there differences in how GPU jobs utilize FP16, 
FP32, FP64, and Tensor cores?

Overview of Data

43% of  jobs run at a mean 
GPU_UTIL of  less than 30%.

Most jobs use only a single GPU 
node.

Question 1: How does overall GPU utilization and job count vary with job 
size (number of  GPUs allocated)?

Analyzing the Temporal Behavior of Jobs
Question 4: Are GPUs used consistently over time within a single job, or do we see bursts 

of  heavy usage and idle periods?

Quantifies how evenly a hardware counter is used during a job’s runtime.

Jobs with low mean of  GPU_UTIL 
tend to be either consistently 
idle/underutilized (very low 

imbalance) or exhibit sporadic bursts 
(high imbalance).
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