
Understanding GPU Utilization Using LDMS Data on Perlmutter

Onur Cankur¹, Brian Austin², Abhinav Bhatele¹
¹Department of Computer Science, University of Maryland ²NERSC, Lawrence Berkeley National Laboratory

GPGPU-based clusters and supercomputers have grown significantly in popularity over the
past decade. While numerous GPGPU hardware counters are available to users, their
potential for workload characterization remains underexplored. In this work, we analyze
previously overlooked GPU hardware counters collected via the Lightweight Distributed
Metric Service (LDMS) on Perlmutter. We examine spatial imbalance, defined as uneven
GPU usage within the same job, and perform a temporal analysis of how counter values
change during execution. Using temporal imbalance, we capture deviations from average
usage over time. Our findings reveal inefficiencies and imbalances that can guide workload
optimization and inform future HPC system design.

References

Abstract

Data Gathering and Preparation

Discussion and Conclusion

[1] Agelastos, Anthony, et al. "The lightweight distributed metric service: a scalable infrastructure for continuous monitoring of large scale computing systems
and applications." SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014.
[2] 2020. Slurm Workload Manager. https://slurm.schedmd.com/documentation. html
[3] NVIDIA Corporation. 2023. NVIDIA Data Center GPU Manager (DCGM). https: //developer.nvidia.com/dcgm. Accessed: 2024-10-15.

LDMS
Database

Slurm
Database

Merge

Our Dataset
(LDMS +

Slurm)

LDMS
Data

Slurm
Data● Slurm [2]: Job scheduler and

resource manager.

Compute
Node

LDMS
Aggregators

● Lightweight Distributed Metric Service
(LDMS) [1]: System monitoring tool
○ Low overhead

Monitoring Data Used

Analyzing the Spatial Behavior of Jobs

The jobs that have
higher overall usage

have less spatial
imbalance.

Measures how evenly a job spreads work across its GPUs.

Question 3: Do jobs that allocate multiple GPUs use them evenly, or are some GPUs heavily loaded while others stay idle?

● Uneven workload distribution across GPUs suggests potential for
requesting fewer GPUs or improving load balancing.

● Perlmutter shows high demand for double precision
(scientific/engineering) and lower demand for ML/AIjobs.

● Job-level computation phases mainly drive inconsistent usage
patterns over time.

● Jobs with high GPU hours but low mean GPU_UTIL are prime
optimization targets, identified by our methods.

Over 60% of jobs use FP64 exclusively. Tensor operations
co-occur with both FP32 and FP64.

● We retrieved performance counter measurements collected by using the Data Center
GPU Manager (DCGM) [3], configured with a 10-second sampling rate.

● We retrieved ∼4 months of data, spanning August 16 to December 13, 2023.
● Our dataset includes information about 345,154 jobs after cleaning and preprocessing.

Counter Name Short Name Description

DCGM_FI_DEV_GPU_
UTIL

GPU_UTIL The fraction of time during which at least
one kernel was executing on the GPU.

DCGM_FI_PROF_PIPE
_FP{16/32/64/TENSR}
_ACTIVE

FP{16/32/64/T
ENSR}_ACTV

The fraction of cycles the
FP{16/32/64/Tensor} cores were active.

Question 2: Are there differences in how GPU jobs utilize FP16,
FP32, FP64, and Tensor cores?

Overview of Data

43% of jobs run at a mean
GPU_UTIL of less than 30%.

Most jobs use only a single GPU
node.

Question 1: How does overall GPU utilization and job count vary with job
size (number of GPUs allocated)?

Analyzing the Temporal Behavior of Jobs
Question 4: Are GPUs used consistently over time within a single job, or do we see bursts

of heavy usage and idle periods?

Quantifies how evenly a hardware counter is used during a job’s runtime.

Jobs with low mean of GPU_UTIL
tend to be either consistently
idle/underutilized (very low

imbalance) or exhibit sporadic bursts
(high imbalance).

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. 2047120. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, operated under Contract No. DE-AC02-05CH11231 using NERSC award
DDR-ERCAP0034262.

