
● all-gather & reduce-scatter operations: 
○ used to synchronize & distribute 

model parameters
○ primary bottleneck in large-scale 

GPU-based LLM training
● Buffer sizes for all-gather/reduce-scatter 

collectives range from tens to hundreds 
of MB, even exceeding 1 GB for larger 
models [1]. (Fig on right)

We evaluate the current state of collective communication on GPU-based 
supercomputers for large language model (LLM) training at scale. Existing libraries such 
as RCCL and Cray-MPICH exhibit critical limitations on systems such as Frontier -- 
Cray-MPICH underutilizes network and compute resources, while RCCL suffers from 
severe scalability issues. To address these challenges, we introduce PCCL, a 
communication library with highly optimized implementations of all-gather and 
reduce-scatter operations tailored for distributed deep learning workloads. PCCL is 
designed to maximally utilize all available network and compute resources and to scale 
efficiently to thousands of GPUs. It achieves substantial performance improvements, 
delivering 6-33x speedups over RCCL and 28-70x over Cray-MPICH for all-gather on 
2048 GCDs of Frontier. These gains translate directly to end-to-end performance: in 
large-scale GPT-3-style training, PCCL provides up to 60% and 40% speedups over 
RCCL for 7B and 13B parameter models, respectively.

Optimizing Collectives with Large Payloads on GPU-based Supercomputers
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Observed Cray-MPICH & RCCL Issues on Frontier
We observed the following issues:
● Cray-MPICH exhibits NIC imbalance, 

resulting in underutilization of bandwidth
● Cray-MPICH uses CPU-based 

reduction operations, introducing 
significant overhead for data-movement

● Both Cray-MPICH and RCCL use ring 
all-gather/reduce-scatter, limiting 
scaling for latency-bound workloads 
at large GPU counts. (Fig on right)
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Conclusion

● PCCL all-gather maintains near-flat scaling with GCD count across message sizes
● Similar trends observed for PCCL reduce-scatter

● Addresses NIC underutilization by:
○ force each GCD send/recv traffic to/from assigned NIC

● Addresses CPU-based reductions by:
○ perform reductions with GPU-kernels

● Addresses scaling for latency-bound scenarios by:
○ two-level hierarchical design (Fig on right)
○ Prior works show hierarchical algorithms to reduce latency 

& improve scalability [2, 3].

● This work identifies critical shortcomings in existing collective communication 
libraries including Cray-MPICH & RCCL, which make them unsuitable for scalable 
deep learning model training

● We develop PCCL to address these bottlenecks with highly optimized 
implementations for all-gather and reduce-scatter, achieving 6-33x speedups over 
RCCL for all-gather on Frontier, translating to significant end-to-end training gains 
of up to 79% for a 13B model.
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Step 1: Inter-node all-gather Step 2: Intra-node all-gather

Step 3: Device-local shuffle

Choice of Algorithms for Each Level of Hierarchy
● Intra-node: Ring is chosen because the small number of GCDs per node 

allows it to effectively saturate the available bandwidth.
● Inter-node: Recursive-doubling/halving is chosen to achieve logarithmic 

latency terms, enabling significantly better performance at large GPU counts.

Note: ideal scaling is flat line

Experimental Setup

Choice of Communication Libraries for Each Level of Hierarchy
● Intra-node: RCCL is chosen since it is highly optimized for GPU-to-GPU 

intra-node communication, leveraging shared memory, PCIe, and Infinity fabric.
● Inter-node: Cray-MPICH is chosen primarily for reliability, as RCCL has 

been reported to be unstable and prone to crashing at scale [4].

● Experiments conducted on Frontier
● Benchmarking all-gather and reduce-scatter operations for PCCL and RCCL

○ message sizes ranging from 16MB to 1GB
○ job sizes ranging from 32 to 2048 GCDs

● Benchmarking end-to-end training of GPT-3 style models with DeepSpeed ZeRO-3:
○ 7B and 13B parameter counts 
○ Strong-scaling between 128 and 2048 GCDs

● Left: PCCL achieves up to 33.3x speedup over RCCL in latency-bound 
scenarios, but up to 0.52x slowdowns in bandwidth-bound scenarios

● Right: For end-to-end DeepSpeed ZeRO-3 training, at 2048 GCDs, PCCL 
reduces batch time by 72% (7B model) and 79% (13B model) relative to RCCL.

Ring Algorithm for All-gather

Recursive Doubling Algorithm for All-gather

OLCF Frontier

GPU model 4x AMD MI250X (8 GCDs)

Device memory 64 GB per GPU

CPU model 64-core AMD EPYC 7713 Trento CPU

Interconnect 4x HPE Slingshot 200 Gbps NICs


