
Acknowledgements References

● We measure performance of two HPC apps (AMG and MILC) and two AI apps 
(DeepCAM and nanoGPT).

● We collect the following features to analyze performance variability: mpiP for profiling 
HPC apps, PyTorch profiler for AI workloads, SLURM’s sacct logs, Cassini NIC 
hardware counters, and performance data from GEMM and All-Reduce 
microbenchmarks.

● Platforms used (network – HPE Slingshot 11):

[1] J. Kim,W. J. Dally, S. Scott, and D. Abts. 2008. Technology-Driven, Highly-Scalable Dragonfly Topology. In 2008 International Symposium on Computer Architecture.
[2] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining (San Francisco, California, USA) (KDD’16). 
[3] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E. Isaacs. 2013. There goes the neighborhood: performance degradation due to nearby jobs. In 
Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’13).
[4] Daniel Nichols, Alexander Movsesyan, Jae-Seung Yeom, Daniel Milroy, Tapasya Patki, Abhik Sarkar, and Abhinav Bhatele. 2024. Predicting Cross-Architecture Performance 
of Parallel Programs. In Proceedings of the IEEE International Parallel & Distributed Processing Symposium (IPDPS ’24).

● Performance Variability: fluctuations in application runtime across repeated 
executions under seemingly identical inputs, environments, and system conditions.

● Sources of variability: HW defects, network contention, job placement, OS jitter.
● Prior studies focused on CPU-based systems, leaving the impact of new communication 

patterns on variability in GPU-based supercomputers unexplored.

● “Top User” jobs should run on isolated nodes to prevent their communication patterns 
from impacting network performance for others.

● Future designs need not over-engineer the topology for increased network hops. The 
dragonfly topology is very robust, essentially neutralizing the incurred penalties from 
node allocations being spread out.

● The application of ML models (such as XGBoost) for system-wide monitoring can 
predict runtime variability with high accuracy using features such as NIC and network 
counters. System administrators can use these predictions to detect early signs of 
congestion and allow users to delay or cancel their workloads.

● Network conditions - not GPU variability or job placement - are the primary drivers of 
runtime variability in large-scale GPU workloads.

● A small subset of users running communication-heavy jobs account for most of the 
observed performance degradation.

● Our ML model accurately predicts runtime variability, even with limited training data per 
application.

This material is based upon work supported by the National Science Foundation under Grant No. 2047120. This research used resources of the National Energy Research Scientific Computing Center 
(NERSC), a U.S. Department of Energy (DOE) Office of Science User Facility, operated under Contract No. DE-AC02-05CH11231 using NERSC award DDR-ERCAP0034262, and that of the Oak Ridge 
Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC05-00OR22725. 

● Methodology: We train an XGBoost model to predict runtime. We use 90% of our runs for training data, 
reserving 10% of testing.
○ Summary of performance dataset features [name (feature count per run)]: Application Name (1), 

Placement (1), GEMM (3), MPI Allreduce (11), NCCL Allreduce (8), NIC Counters (29*3).
● Evaluation: We use Mean Absolute Percentage Error (MAPE) 

Performance variability is often a critical issue on GPU-accelerated systems, undermining 
efficiency and reproducibility. Since large-scale investigations of performance variability on GPU 
clusters are lacking, we set up a longitudinal experiment on Perlmutter and Frontier. We 
benchmark representative HPC and AI applications and collect detailed performance data to 
assess the impact of compute variability, allocated node topology, and network conditions on 
overall runtime. We also use a ML-based approach to identify potential correlations between 
these factors and to forecast the execution time. Our analysis identifies network performance 
as the dominant source of runtime variability. These findings provide crucial insights that can 
inform the development of future mitigation strategies.

NERSC Perlmutter OLCF Frontier

GPU model NVIDIA A100 GPU AMD MI250X GPU

CPU model AMD EPYC 7763 Milan CPU AMD EPYC 7713 Trento CPU

GPUs/GCDs per node 4 8

Unmasking Performance Variability in GPU Codes on Supercomputers

Cunyang Wei, Keshav Pradeep, Abhinav Bhatele 
Department of Computer Science, University of Maryland

Abstract

What is Performance Variability?

Methodology for Measuring Variability

Analysis of the Gathered Data

Conclusion

ML-based Analysis and Performance Prediction

● Left: X-axis = Number of GPUs in job allocation which fall in slowest 1% of system's GPUs. Our analysis reveals the quantity of “slow” GPUs has 
no impact on performance. Middle: On both systems, job allocation across more Dragonfly groups does not degrade app performance. Right: 
Top Users: Users whose allocated number of nodes correlates with our application's performance variation and who concurrently request more 
than 32 nodes. On both systems, when concurrent node allocation by Top Users crosses a threshold, app runtime consistently increases.

● Left & middle: Actual vs predicted runtime using placement, GEMM, Allreduce, and NIC counters features (Perlmutter & Frontier). 
● Right: When NIC counter features are included in input, MAPE decreases significantly, especially for apps with more variation (e.g. DeepCAM on 

Frontier). This highlights the importance of NIC counters for explaining variability.

Recommendations for Future Efforts

● Feature importances based on XGBoost models. Left: On Perlmutter, most 
important feature is hni_rx_paused_0_mean (num cycles where recv path is paused, 
suggesting network pushing data quicker than NIC can read) Right: On Frontier, 
most important feature is lpe_net_match_request_0_mean (num requests matched 
on software endpoints.Read more


