Abstract

Performance variability is often a critical issue on GPU-accelerated systems, undermining
efficiency and reproducibility. Since large-scale investigations of performance variability on GPU
clusters are lacking, we set up a longitudinal experiment on Perlmutter and Frontier.VWe
benchmark representative HPC and Al applications and collect detailed performance data to
assess the impact of compute variability, allocated node topology, and network conditions on
overall runtime.We also use a ML-based approach to identify potential correlations between
these factors and to forecast the execution time. Our analysis identifies network performance
as the dominant source of runtime variability. These findings provide crucial insights that can
inform the development of future mitigation strategies.

What is Performance Variability?

e Performance Variability: fluctuations in application runtime across repeated
executions under seemingly identical inputs, environments, and system conditions.

® Sources of variability: HW defects, network contention, job placement, OS jitter.

® Prior studies focused on CPU-based systems, leaving the impact of new communication
patterns on variability in GPU-based supercomputers unexplored.

Relative performance of different applications (Perlmutter)

S A

£ 1.3 " 2 -

g ap 8 o O

y

B |:|:|D Q A A Ba A BBA B, Opm

SRR cbgc' 0g O A L o 900 9

Z . . -

= m #Adh g o A Apma

& By : dj E - a rA A OO& % : ' RN O '
Dec 23 Jan 02 Jan 12 Feb |1 Feb 21 Mar 03 Mar |3 Mar 23 Apr 02 Apr 12

Methodology for Measuring Variability

® We measure performance of two HPC apps (AMG and MILC) and two Al apps
(DeepCAM and nanoGPT).

® We collect the following features to analyze performance variability: mpiP for profiling
HPC apps, PyTorch profiler for Al workloads, SLURM’s sacct logs, Cassini NIC
hardware counters, and performance data from GEMM and All-Reduce
microbenchmarks.

e Platforms used (network — HPE Slingshot | |):

NERSC Perlmutter OLCF Frontier
GPU model NVIDIA A100 GPU AMD MI250X GPU
CPU model AMD EPYC 7763 Milan CPU AMD EPYC 7713 Trento CPU
GPUs/GCDs per node 4 8
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Analysis of the Gathered Data
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o Left: X-axis = Number of GPUs in job allocation which fall in slowest 1% of system's GPUs. Our analysis reveals the quantity of “slow” GPUs has
no impact on performance. Middle: On both systems, job allocation across more Dragonfly groups does not degrade app performance. Right:
Top Users: Users whose allocated number of nodes correlates with our application's performance variation and who concurrently request more
than 32 nodes. On both systems, when concurrent node allocation by Top Users crosses a threshold, app runtime consistently increases.

Read more

ML-based Analysis and Performance Prediction
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®

e Methodology:We train an XGBoost model to predict runtime.We use 90% of our runs for training data,
reserving 10% of testing.
o0 Summary of performance dataset features [name (feature count per run)]: Application Name (1),
Placement (1), GEMM (3), MPI Allreduce (1 1), NCCL Allreduce (8), NIC Counters (29*3).

e Evaluation:We use Mean Absolute Percentage Error (MAPE)

400 1800 30
AMG PR placement

nanoGPT 1600 O 251 B placementtgemm
DeepCAM & B2 placementtgemm-+allreduce
MILC 20{ HEM placementtgemm+allreduce+NIC

w

(94

o
o< b O

1400

w

o

o
>

1200
1000
800 ~
600 aé"%

400

Predicted Runtime (s)
Predicted Runtime (s)

w
o
O

8o G <
o W \ Ml WO
P “%“OG ech,P YW )

oM \ae

“@“ Oe@?

(=]
-0
o
o

150 200 250 300 350 400 20000 400 600 800 1000 1200 1400 1600 1800
Actual Runtime (s) Actual Runtime (s) Perlmutter Frontier

o Left & middle: Actual vs predicted runtime using placement, GEMM, Allreduce, and NIC counters features (Perlmutter & Frontier).
e Right: When NIC counter features are included in input, MAPE decreases significantly, especially for apps with more variation (e.g. DeepCAM on
Frontier). This highlights the importance of NIC counters for explaining variability.
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Top 5 feature importances: Perlmutter (left) vs. Frontier (right)

Importance

e Feature importances based on XGBoost models. Left: On Perlmutter, most
important feature is hni_rx_paused 0 _mean (num cycles where recv path is paused,
suggesting network pushing data quicker than NIC can read) Right: On Frontier,
most important feature is [pe_net_match_request 0 _mean (hum requests matched

on software endpoints.
—

Conclusion

e Network conditions - not GPU variability or job placement - are the primary drivers of
runtime variability in large-scale GPU workloads.

e A small subset of users running communication-heavy jobs account for most of the
observed performance degradation.

® Our ML model accurately predicts runtime variability, even with limited training data per
application.

Recommendations for Future Efforts

e “Top User” jobs should run on isolated nodes to prevent their communication patterns
from impacting network performance for others.

e Future designs need not over-engineer the topology for increased network hops.The
dragonfly topology is very robust, essentially neutralizing the incurred penalties from
node allocations being spread out.

e The application of ML models (such as XGBoost) for system-wide monitoring can
predict runtime variability with high accuracy using features such as NIC and network
counters. System administrators can use these predictions to detect early signs of
congestion and allow users to delay or cancel their workloads.
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