
Understanding Communication Bottlenecks in Multi-Node LLM Inference

Prajwal Singhania1, Siddharth Singh1 3, Lannie Dalton Hough1, Ishan Revankar1, Harshitha Menon2, Charles Jekel2, Abhinav Bhatele1
1Department of Computer Science, University of Maryland

2Lawrence Livermore National Laboratory
3NVIDIA, Inc.

Motivation
• LLMs are rapidly growing in parameter count, requiring inference to scale

beyond a single node.
• Current frameworks rely on tensor parallelism (TP) within a node and pipeline

parallelism (PP) across nodes.
• TP has high communication overhead, while PP incurs pipeline bubbles and is

unsuitable for latency critical scenarios.
• Existing frameworks are large and complex, making it difficult to rapidly

prototype and study new distributed inference strategies.
Our Work
• We present Yalis, a lightweight and performant framework for offline LLM

inference that is easy to use and extend.
• We study strong scaling performance of LLM Inference, and identify

communication bottlenecks in tensor parallelism.

References

Abstract

Background

YALIS: Yet Another LLM Inference System Design

Strong Scaling LLM Inference

MPI vs NCCL Latencies in the Decode Regime

Pipeline Parallelism (PP): Splits contiguous layers across devices; cannot speed up
a single query due to input–output dependency; point-to-point communication.

Tensor Parallelism (TP): Splits the computation of a single layer across GPUs;
all-reduce communication, incurring high communication volume.

Inference Phases
• Prefill: Model processes prompt tokens in parallel to generate the first output;

compute-bound, with communication message sizes in the 100s of MBs.
• Decode: Model generates tokens one at a time, feeding each new token back as

input; memory-bound, with message sizes in the 10-100s of KBs range.
Online Inference: Model serves interactive requests (e.g., chat).
Offline Inference: Model processes a fixed workload (e.g., dataset generation,

evaluation or locally-run LLMs).

Conclusion and Future Work
• Offline inference performance of Yalis is on par with SOTA frameworks like vLLM.
• Parallelism strategies (tensor and pipeline) scale poorly beyond a single node for

offline inference.
• Tensor parallelism incurs high communication costs across nodes, especially on

newer hardware like GH200.
• NCCL is efficient for small messages within a node but scales poorly across nodes;

MPI can outperform it.
• Future work: Optimized GPU-initiated all-reduce algorithms and deeper analysis of

communication bottlenecks in the prefill regime.

[1] Lightning AI. 2023. LitGPT. https://github.com/Lightning-AI/litgpt.
[2] Meta. 2023. Torch Compile. https://docs.pytorch.org/tutorials/intermediate/torch_compile_tutorial.html.
[3] Singh, Siddharth, and Abhinav Bhatele. "AxoNN: An asynchronous, message-driven parallel framework for extreme-scale deep learning." 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2022.
[4] Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." Proceedings of the 29th symposium on operating systems principles.
2023.

AxoNN [3]

Scalable 2D Tensor
Parallelism

LitGPT [1]

Lightweight Model Definition
for fast prototyping

Torch Compile [2]

Optimized kernels with
reduced launch overhead

Support for pluggable attention
backends.

Supports Paged-KV caching.

Currently optimized for offline
inference with single user online
inference support.

Goal: Study strong scaling of LLM inference on Alps (GH200)
and Perlmutter (A100), and identify performance bottlenecks.
Experimental Setup:
Model: Llama-3.1-70B Instruct, Batch Size:16
Prefill Length: 2480 tokens, Decode Length: 2048 tokens
Frameworks: Yalis†, vLLM [4] v1†, vLLM v0＊
(† TP intra and inter nodes, ＊ TP intra and PP inter node)

Top: End-to-end generation latency (Yalis vs. vLLM)
• Time to solution does not decrease with more GPUs.
• With PP, end-to-end latency increases on both machines.
• With TP:

Perlmutter: Latency remains almost constant.
Alps: Latency increases sharply going from a

 single node to multi-node, then continues to
 rise steadily.

Middle & Bottom: Prefill and Decode Breakdowns for Yalis
(Decode results are summed over 10 steps)
• Matmul times decrease with more GPUs.
• Communication time grows drastically beyond one node.
• Communication blow-up is more pronounced for Alps.

All-Reduce Message Size = 256 KB

All-Reduce Message Size = 620 MB

To better understand the communication bottleneck, we compared NCCL
performance with MPI in the small message size (decode) regime.

• NCCL is highly optimized for intra-node communication over NVLink.
• Beyond a single node, MPI can outperform NCCL in the 256-1024 KB range.

Acknowledgements
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, through solicitation DE-FOA-0003264, “Advancements in Artificial Intelligence for Science,” under Award Number
DE-SC0025598. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 (LLNL-POST-2011899).
This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, operated under Contract No. DE-AC02-05CH11231 using NERSC award DDR-ERCAP0034262.
This research is supported by the National Artificial Intelligence Research Resource (NAIRR) Pilot and the Delta advanced computing and data resource which is supported by the NSF (award NSF-OAC 2005572) and the State of Illinois.
The authors acknowledge the University of Maryland supercomputing resources made available for conducting the research reported in this paper.
This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID lp98 on Alps.

