Understanding Communication Bottlenecks in Multi-Node LLM Inference

Prajwal Singhania?!, Siddharth Singh?! 3, Lannie Dalton Hough?!, Ishan Revankar?!, Harshitha Menon?, Charles Jekel?, Abhinav Bhatele!
1Department of Computer Science, University of Maryland ’Lawrence Livermore National Laboratory SNVIDIA, Inc.

Abstract YALIS: Yet Another LLM Inference System Design

MPI vs NCCL Latencies in the Decode Regime

Motivation o .
* LLMs are rapidly growing in parameter count, requiring inference to scale %’ Li GPT CUDA O o ° ve Support for pluggable attention To better understand the communication bottleneck, we compared NCCL
f o : : ] )
pialy’ & gihp » FEqUITIng It PvTorch ° bealearda performance with MPI in the small message size (decode) regime.
beyond a single node. Graphs FYylorc 0 B
[ ] . . (] [ ] . - 1
e Current frameworks rely on tensor parallelism (TP) within a node and pipeline Supports Paged-KV caching.
. . . AxoNN [3] o . p— NCCL vs MPI All-Reduce Latencies (Perlmutter) Speedup of MPI over NCCL for All-Reduce (Perimutter)
parallelism (PP) across nodes. LitGPT [I] Torch Compile [2] Currently optimized for offline
. . . . . . . . . . . . 640- s 1024 1.4
* TP has high communication overhead, while PP incurs pipeline bubbles and is Lightweight Model Definition = Optimized kernels with Scalable 2D Tensor inference with single user online @ - 350 g 512 m 1.7 .
: o . . : inference support. o® oo $% = o 256 4
unsuitable for latency critical scenarios. for fast prototyping reduced launch overhead Parallelism PP / T 10! § 5| o058 | 7 3
ieti ino it di - > . 64 | | 15
* Existing frameworks are Iarge a.nd co!*nplex, making |t. difficult to rapidly > 0 > 05 | oo [ER ]
prototype and study new distributed inference strategies. . 8 40] Ottt Sie QBTN 02 | o046 | 050 |08 .
- 8 _— 44 _ 57
Our Work Strong Scall ng LLM Inference 20 R Y 0> | o | os; [osn e
10 e =R |
. I - - i 1 0.18 0.34 0.47 0.75 0.5
We present Ya.lls, a lightweight and performant framework for offline LLM End-to-End Latency - Llama-3.1-70B-Instruct (BS=16 sl : . . *?1_63_2
inference that is easy to use and extend. __ 400- Perlmutter (A100) ] Alps (GH200) GPU Count Number of processes (GPUs)
i i i Goal: Study strong scaling of LLM inference on Alps (GH200 2z —e— Yali
* We study strong scaling performance of LLM Inference, and identify 4 & st Ps ( ) > . NCCL vs MPI All-Reduce Latencies (Alps) Speedup of MPI over NCCL for All-Reduce (Alps)
communication bottlenecks in tensor parallelism. and Perlmutter (A100), and identify performance bottlenecks. £ 200 . 71~ vLLM V(l) ETP onllaﬁ) 640,
. = —e— VLLM vO (TP + 1024 _ 14 1.7 1.3
Experimental Setup: 3 0. — | | —— / ’ 320 0 51, 16 5
. R e e s 160 = 25 ‘
Ba Ck roun d Model: Llama-3.1-70B Instruct, Batch Size:16 LLi . =" o— 0 N 128 T
g : 2 507 187 > 801 C 64 ?
Prefill Length: 2480 tokens, Decode Length: 2048 tokens o n’ 9 g 3 m 5
- : L] g 40 2 16 -m
- RiclieFanil o Frameworks: Yalist, vLLM [4] vIT,vLLM vO* 25 z = == Z : = = 5 OuputSze 2 g EENSEEEEEEEEEE 0 | L
al : , D : * : : GPU C GPU C T 64KB SN 0052 | 036 | 050 | o0.74 [N
e, s o N B (" TP intra and inter nodes, © TP intra and PP inter node) / ount ount Gl - 256 KB S 2 1 075 1 B8
3 | ' ( ‘. i ' ( e 220 B T
= | Self- o | 1| Self. || . | , == 1024 KB ® 00s | o052 | 0.5
< = 'E'-‘Attaut.on“-i"*!'-"“““‘““‘.i' ‘.r.‘i.:." :*.‘ntanuorf"-‘i—'!'-"“‘“‘a"““"-‘r“ e Prefill Phases Breakdown 5 5 ¥ 3 4 8 16 32
2 |t J JgJ 0 | R ) 000, rerimutier : DS GPU Count Number of processes (GPUs)
= Attention Block Multi-Layer Perceptron Block : Attention Block Multi-Layer Perceptron Block W Matmul B8 Communication
N J i\ y 6000 | BB FlashAwn w4 \dle
B Other g g oo 5 . . .
. . 5000 1 ° _
Top: End-to-end generation latency (Yalis vs. vLLM) 7. :;ICCLdIS hlghlly optcllml;]elslI for intra nc:cde coggglr_ncatfnzosvéerl I(;lz\gLITII;
. e . : : : : : : = * Beyond a single node can outperform in the - range.
Pipeline Parallelism (PP): Splits contiguous layers across devices; cannot speed up * Time to solution does not decrease with more GPUs. 2 ol 4 5 ’ P >
a single query due to input—output dependency; point-to-point communication. * With PF end-to-end latency increases on both machines. e =
] . . .  With TP:
Tensor Parallelism (TP): Splits the computation of a single layer across GPUs; Perlmutter: Latency remains almost constant 8
. . . . . . . * ° 0. '
| faII reducicl:]ommunlcatlon, incurring high communication volume. Alps: Latency increases sharply going from a 4 R 32 T
nierence rnases single node to multi-node, then continues to . . : :
Prefill: Model | el he f , & ceadi] ’ * Offline inference performance of Yalis is on par with SOTA frameworks like vLLM.
Lrefill: Mlodel processes prompt tokens In parallel to generate the Hrst output; Y mco—n Legaga Fhases Breakaavii A * Parallelism strategies (tensor and pipeline) scale poorly beyond a single node for
compute-bound, with communication message sizes in the 100s of MBs. 500 AL : B fline inf
. ] 450 B Matmul B Communication ofline Inference.
Decode: Model generates tokens one at a time, feeding each new token back as Middle & Bottom: Prefill and Decode Breakdowns for Yalis | FashAcn -l  Tensor parallelism incurs high communication costs across nodes, especially on
o . . o ther
input; memory-bound, with message sizes in the 10-100s of KBs range. (Decode results are summed over |0 steps) _ newer hardware like GH200.
. . . S . . o
Online Inference: Model serves interactive requests (e.g., chat). e Matmul times decrease with more GPUs. s * NCCL is efficient for small messages within a node but scales poorly across nodes;
Offline Inference: Model processes a fixed workload (e.g., dataset generation, * Communication time grows drastically beyond one node. = MPI can outperform it.
evaluation or locally-run LLMs). « Communication blow-up is more pronounced for Alps. * Future work: Optimized GPU-initiated all-reduce algorithms and deeper analysis of
communication bottlenecks in the prefill regime.
> 4 8 16 32 ‘ 4 8 16 32
GPU Count GPU Count
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, through solicitation DE-FOA-0003264,“Advancements in Artificial Intelligence for Science,” under Award Number [1] Lightning Al. 2023. LitGPT. https:/github.com/Lightning-Al/litgpt.
DE-SC0025598.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 (LLNL-POST-2011899). [2] Meta. 2023.Torch Compile. https://docs.pytorch.org/tutorials/intermediate/torch_compile_tutorial.html.
This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, operated under Contract No. DE-AC02-05CH | 1231 using NERSC award DDR-ERCAP0034262. [3] Singh, Siddharth, and Abhinav Bhatele. "AxoNN:An asynchronous, message-driven parallel framework for extreme-scale deep learning." 2022 |EEE International Parallel and
ACknOWle dgements This research is supported by the National Artificial Intelligence Research Resource (NAIRR) Pilot and the Delta advanced computing and data resource which is supported by the NSF (award NSF-OAC 2005572) and the State of lllinois. Re ference S Distributed Processing Symposium (IPDPS). IEEE, 2022.

The authors acknowledge the University of Maryland supercomputing resources made available for conducting the research reported in this paper. [4] Kwon,Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." Proceedings of the 29th symposium on operating systems principles.
This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID 1p98 on Alps. 2023.



