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Motivation
• LLMs are rapidly growing in parameter count, requiring inference to scale 

beyond a single node.
• Current frameworks rely on tensor parallelism (TP) within a node and pipeline 

parallelism (PP) across nodes.
• TP has high communication overhead, while PP incurs pipeline bubbles and is 

unsuitable for latency critical scenarios.
• Existing frameworks are large and complex, making it difficult to rapidly 

prototype and study new distributed inference strategies.
Our Work
• We present Yalis, a lightweight and performant framework for offline LLM 

inference that is easy to use and extend.
• We study strong scaling performance of LLM Inference, and identify 

communication bottlenecks in tensor parallelism.
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Pipeline Parallelism (PP): Splits contiguous layers across devices; cannot speed up 
a single query due to input–output dependency; point-to-point communication.

Tensor Parallelism (TP): Splits the computation of a single layer across GPUs; 
all-reduce communication, incurring high communication volume.

Inference Phases
• Prefill: Model processes prompt tokens in parallel to generate the first output; 

compute-bound, with communication message sizes in the 100s of MBs.
• Decode: Model generates tokens one at a time, feeding each new token back as 

input; memory-bound, with message sizes in the 10-100s of KBs range.
Online Inference: Model serves interactive requests (e.g., chat).
Offline Inference: Model processes a fixed workload (e.g., dataset generation, 

evaluation or locally-run LLMs). 

Conclusion and Future Work
• Offline inference performance of Yalis is on par with SOTA frameworks like vLLM.
• Parallelism strategies (tensor and pipeline) scale poorly beyond a single node for 

offline inference.
• Tensor parallelism incurs high communication costs across nodes, especially on 

newer hardware like GH200.
• NCCL is efficient for small messages within a node but scales poorly across nodes; 

MPI can outperform it.
• Future work: Optimized GPU-initiated all-reduce algorithms and deeper analysis of 

communication bottlenecks in the prefill regime.
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AxoNN [3]

Scalable 2D Tensor 
Parallelism

LitGPT [1]

Lightweight Model Definition 
for fast prototyping

Torch Compile [2]

Optimized kernels with 
reduced launch overhead

Support for pluggable attention 
backends.

Supports Paged-KV caching. 

Currently optimized for offline 
inference with single user online 
inference support.

Goal: Study strong scaling of LLM inference on Alps (GH200) 
and Perlmutter (A100), and identify performance bottlenecks.
Experimental Setup:
Model: Llama-3.1-70B Instruct, Batch Size:16
Prefill Length: 2480 tokens, Decode Length: 2048 tokens
Frameworks:  Yalis†, vLLM [4] v1†, vLLM v0＊ 
(† TP intra and inter nodes, ＊ TP intra and PP inter node)

Top: End-to-end generation latency (Yalis vs. vLLM)
• Time to solution does not decrease with more GPUs. 
• With PP, end-to-end latency increases on both machines.
• With TP:

Perlmutter: Latency remains almost constant. 
Alps: Latency increases sharply going from a 

          single node to multi-node, then continues to
   rise steadily.

Middle & Bottom: Prefill and Decode Breakdowns for Yalis 
(Decode results are summed over 10 steps)
• Matmul times decrease with more GPUs.
• Communication time grows drastically beyond one node.
• Communication blow-up is more pronounced for Alps.

All-Reduce Message Size = 256 KB

All-Reduce Message Size = 620 MB 

To better understand the communication bottleneck, we compared NCCL 
performance with MPI in the small message size (decode) regime.

• NCCL is highly optimized for intra-node communication over NVLink.
• Beyond a single node, MPI can outperform NCCL in the 256-1024 KB range.
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