Resource Utilization Aware Job Scheduling to Mitigate Performance Variability

Daniel Nichols†, Aniruddha Marathe*, Kathleen Shoga*, Todd Gamblin*, Abhinav Bhave†

† University of Maryland, College Park
* Lawrence Livermore National Laboratory
Performance Variation

- Same job can vary significantly in run time
Causes of Performance Variation

- System noise
- Software bugs
- Hardware performance degradation
- Shared resource contention
Mitigating Variability from Shared Resource Contention

- Adaptive in-flight message rerouting
- More bandwidth
- Resource utilization aware job scheduling
RUSH: Resource Utilization-aware Scheduler for HPC

- Machine learning can predict future variation
- Schedule jobs with \textit{apriori} knowledge of variation
Predicting Variation

- **Model Input**
 - System state
 - Job description

- **Model Output**
 - 1 if job will experience variation; 0 otherwise
 - Variation: >1.5 st. devs. from average run time
Building a Dataset

- Proxy applications
 - Kripke, AMG, Laghos, SWFFT, sw4lite, LBANN, pennant
- Run each 3x a day from August 2020 - February 2021 on Quartz system at LLNL
 - Record performance (walltime)
 - Collect IO and Network counters with LDMS (5 mins. before job)
 - Collect network benchmarks
Model Selection

- Train AdaBoost, DecisionForest, ExtraTrees, kNN
 - Record F1-score using stratified k-fold cross validation
- Choose model with highest F1-score
Feature Selection

- Recursive feature elimination
- Select 20 best features
 - xmit_rate, recv_rate, xmit_discards, mpisend_time, mpirecv_time
- Reduces latency collecting features
Traditional Scheduling

Input Q ← queue of jobs
 M ← ML model
 S ← current machine state
 SkipTable ← Count of times skipped for each job
 R_1 ← Queue ordering policy
 R_2 ← Backfill ordering policy

1. sort Q according to R_1
2. for job $j \in Q$ do
3. if j can be started currently then
4. pop j from Q
5. $\text{Start}(j, Q, M, S, \text{SkipTable})$
6. else
7. Reserve j at earliest possible time
8. $L \leftarrow Q \setminus \{j\}$
9. sort L according to R_2
10. for job $j' \in L$ do
11. if j' can be started currently without delaying reservation of j then
12. pop j' from Q
13. $\text{Start}(j', Q, M, S, \text{SkipTable})$
14. end if
15. end for
16. end if
17. end for
Traditional Scheduling

Input $Q \leftarrow$ queue of jobs
 $M \leftarrow$ ML model
 $S \leftarrow$ current machine state
 $\text{SkipTable} \leftarrow$ Count of times skipped for each job
 $\mathcal{R}_1 \leftarrow$ Queue ordering policy
 $\mathcal{R}_2 \leftarrow$ Backfill ordering policy

1. sort Q according to \mathcal{R}_1
2. for job $j \in Q$ do
3. if j can be started currently then
4. pop j from Q
5. $\text{Start}(j, Q, M, S, \text{SkipTable})$
6. else
7. Reserve j at earliest possible time
8. $L \leftarrow Q \setminus \{j\}$
9. sort L according to \mathcal{R}_2
10. for job $j' \in L$ do
11. if j' can be started currently without delaying reservation of j then
12. pop j' from Q
13. $\text{Start}(j', Q, M, S, \text{SkipTable})$
14. end if
15. end for
16. break
17. end if
18. end for
Traditional Scheduling

Run jobs that can be immediately started

```
Input Q ← queue of jobs
M ← ML model
S ← current machine state
SkipTable ← Count of times skipped for each job
R₁ ← Queue ordering policy
R₂ ← Backfill ordering policy

1 sort Q according to R₁
for job j ∈ Q do
  if j can be started currently then
    pop j from Q
    Start(j, Q, M, S, SkipTable)
  else
    Reserve j at earliest possible time
    L ← Q \ {j}
    sort L according to R₂
    for job j' ∈ L do
      if j' can be started currently without delaying reservation of j then
        pop j' from Q
        Start(j', Q, M, S, SkipTable)
      end if
    end for
  end if
end for
```
Traditional Scheduling

\[\text{Input } Q \leftarrow \text{queue of jobs}\]
\[M \leftarrow \text{ML model}\]
\[S \leftarrow \text{current machine state}\]
\[\text{SkipTable} \leftarrow \text{Count of times skipped for each job}\]
\[R_1 \leftarrow \text{Queue ordering policy}\]
\[R_2 \leftarrow \text{Backfill ordering policy}\]

1. sort \(Q \) according to \(R_1 \)
2. for job \(j \in Q \) do
3. if \(j \) can be started currently then
4. pop \(j \) from \(Q \)
5. \(\text{Start}(j, Q, M, S, \text{SkipTable}) \)
6. else
7. Reserve \(j \) at earliest possible time
8. \(L \leftarrow Q \setminus \{j\} \)
9. sort \(L \) according to \(R_2 \)
10. for job \(j' \in L \) do
11. if \(j' \) can be started currently without delaying reservation of \(j \) then
12. pop \(j' \) from \(Q \)
13. \(\text{Start}(j', Q, M, S, \text{SkipTable}) \)
14. end if
15. end for
16. break
17. end if
18. end for

Reserve jobs that cannot be started immediately
Traditional Scheduling

Input $Q \leftarrow$ queue of jobs
$M \leftarrow$ ML model
$S \leftarrow$ current machine state
SkipTable \leftarrow Count of times skipped for each job
$R_1 \leftarrow$ Queue ordering policy
$R_2 \leftarrow$ Backfill ordering policy

1 sort Q according to R_1
2 for job $j \in Q$ do
3 if j can be started currently then
4 pop j from Q
5 $Start(j, Q, M, S, \text{SkipTable})$
6 else
7 Reserve j at earliest possible time
8 $L \leftarrow Q \setminus \{j\}$
9 sort L according to R_2
10 for job $j' \in L$ do
11 if j' can be started currently without delaying reservation of j then
12 pop j' from Q
13 $Start(j', Q, M, S, \text{SkipTable})$
14 end if
15 end for
16 break
17 end if
18 end for

Backfill remaining jobs
Traditional Scheduling

Input Q ← queue of jobs
M ← ML model
S ← current machine state
SkipTable ← Count of times skipped for each job
R_1 ← Queue ordering policy
R_2 ← Backfill ordering policy

1. sort Q according to R_1
2. for job $j \in Q$ do
3. if j can be started currently then
4. remove j from Q
5. $\text{Start}(j, Q, M, S, \text{SkipTable})$
6. else
7. Reserve j at earliest possible time
8. $L \leftarrow Q \setminus \{j\}$
9. sort L according to R_2
10. for job $j' \in L$ do
11. if j' can be started currently without delay of j then
12. remove j' from Q
13. $\text{Start}(j', Q, M, S, \text{SkipTable})$
14. end if
15. end for
16. break
17. end if
18. end for

RUSH only modifies the start function
Variation-Aware Scheduling

Start Function

Input $j \leftarrow \text{job}$

- $Q \leftarrow \text{scheduler queue}$
- $M \leftarrow \text{ML model}$
- $S \leftarrow \text{current machine state}$
- SkipTable $\leftarrow \text{Count of times skipped for each job}$

1. if SkipTable[j] < $j\text{.skip_threshold}$ and $M(j, S) \in \text{variation labels}$ then
2.SkipTable[j] \leftarrow SkipTable[j] + 1
3. push j after front of Q
4. else
5. launch job j
6. end if
Variation-Aware Scheduling

Start Function

```
Input $j \leftarrow \text{job}$

$Q \leftarrow \text{scheduler queue}$
$M \leftarrow \text{ML model}$
$S \leftarrow \text{current machine state}$
$\text{SkipTable} \leftarrow \text{count of times skipped for } j$

1. **if** $\text{SkipTable}[j] < j\.skip\_threshold \text{ and } M(j, S) \in \text{variation labels} \text{ then}$
2. $\text{SkipTable}[j] \leftarrow \text{SkipTable}[j] + 1$
3. $\text{push } j \text{ after front of } Q$
4. **else**
5. $\text{launch job } j$
6. **end if**
```

If model predicts variation, then put job back on top of queue.
Variation-Aware Scheduling

Start Function

\textbf{Input} \ j \leftarrow \text{job} \\
\quad \text{Q} \leftarrow \text{scheduler queue} \\
\quad \text{M} \leftarrow \text{ML model} \\
\quad \text{S} \leftarrow \text{current machine state} \\
\quad \text{SkipTable} \leftarrow \text{Count of times skipped for each job} \\

1. \textbf{if} \ \text{SkipTable}[j] < j.\text{skip_threshold} \ \textbf{and} \ \text{M}(j, S) \in \text{variation labels} \ \textbf{then} \\
2. \quad \text{SkipTable}[j] \leftarrow \text{SkipTable}[j] + 1 \\
3. \quad \text{push} \ j \ \text{after front of} \ \text{Q} \\
4. \quad \textbf{else} \\
5. \quad \textbf{end if} \\
6. \quad \text{launch job} \ j \\

Otherwise run job as normal
Variation-Aware Scheduling

Start Function

```
Input: j \leftarrow job
Q \leftarrow \text{scheduler queue}
M \leftarrow \text{ML model}
S \leftarrow \text{current machine state}
SkipTable \leftarrow \text{Count of times skipped for each job}

1. if SkipTable[j] < j.skip\_threshold and M(j, S) \in \text{variation labels} then
2. \quad \text{SkipTable}[j] \leftarrow \text{SkipTable}[j] + 1
3. \quad \text{push } j \text{ after front of } Q
4. else
5. \quad \text{launch job } j
6. end if
```

Limit skips to prevent job starvation
Implementation

- Machine learning trained and exported with SciKit
- Extend Flux\(^1\) to implement RUSH

\(^1\) https://flux-framework.org/
Experiments

- Run simulated workload on Quartz
 - 512 node allocation
 - ~190 jobs with 1 hour makespan
 - Run FCFS+EASY (5x) and RUSH (5x)
 - Record makespan, average wait time, and # jobs experiencing variation
Results: All Data All Applications

- Model trained on entire dataset, running all apps
- Variation drops significantly

RUSH reduces # jobs with variation
Results: All Data All Applications

- Model trained on entire dataset, running all apps

 RUSH reduces max run time

 RUSH reduces range of run times
Results: Partial Data Partial Applications

- Test generalizability
- Train model on AMG, Kripke, sw4lite, and SWFFT data
Results: Partial Data Partial Applications

- Model trained on some apps, while running other apps

RUSH reduces # jobs with variation

![Number of Occurrences of Variation (PDPA) Graph]

Number of jobs with variation:
- **Laghos**: FCFS, RUSH + PDPA
- **LBANN**: FCFS, RUSH + PDPA
Results: Partial Data Partial Applications

- Model trained on some apps, while running other apps

RUSH reduces max run time

RUSH reduces range of run times
Results: Partial Data Partial Applications

- Model trained on some apps, while running other apps

RUSH generalizes to apps it has not seen
Results: Throughput

All 5 experiments in paper had an improvement in makespan
Conclusion

- Collect historical performance data
- Train machine learning models to predict variation
- Use variation prediction to schedule jobs
- Reduce max run time by up to 5.8% and average number of runs with variation from 17 to 4