
Comparative Evaluation of Call Graph Generation by Profiling Tools
Onur Cankur, Abhinav Bhatele

Department of Computer Science

Introduction

• Analyzing the performance of parallel programs is critical

but challenging.

• Profiling tools allow for measuring performance data.

• Different profiling methods and capabilities.

• Comparatively evaluate call graph data generation

capabilities of several profiling tools.

2

Overview

3

Profiling Tools Proxy Apps Evaluation Metrics

• Caliper 2.6.0

• HPCToolkit

2021.05.15

• Score-P 7.1

• TAU 2.30.1

• AMG

• LULESH

• Quicksilver

1. Runtime Overhead

2. Memory Usage

3. Data Size

4. Data Correctness

5. Data Richness

Profiling Tools Proxy Apps

Different Methods for Profiling

4

• Instrumentation
• Instrument the source or binary code.

• Collect performance measurements at
each instrumentation point.

• Can be done by the user or the tool itself.

• Sampling
• Periodically sample the program, check

the PC and collect function call stack.

• Aggregate the performance
measurements of a code block across
multiple samples.

Comparison 1: Runtime Overhead

• The execution time of an application should not be

perturbed significantly by the profiling tool.

• Measure the time using MPI_Wtime().

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
𝑀𝑃𝐼_𝑊𝑡𝑖𝑚𝑒(𝑤𝑖𝑡ℎ_𝑝𝑟𝑜𝑓𝑖𝑙𝑖𝑛𝑔)

𝑀𝑃𝐼_𝑊𝑡𝑖𝑚𝑒(𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑝𝑟𝑜𝑓𝑖𝑙𝑖𝑛𝑔)

5

Comparison 2: Memory Consumption

• Performance tools should not consume large amounts

of memory.

• Obtain the largest memory usage at any point during

program execution using getrusage().

𝐴𝑀𝑈 = 𝑔𝑒𝑡𝑟𝑢𝑠𝑎𝑔𝑒 𝑤𝑖𝑡ℎ_𝑝𝑟𝑜𝑓𝑖𝑙𝑖𝑛𝑔 − 𝑔𝑒𝑡𝑟𝑢𝑠𝑎𝑔𝑒(𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑝𝑟𝑜𝑓𝑖𝑙𝑖𝑛𝑔)

• AMU: Additional Memory Usage

6

Information Gathered by Profiling Tools

7

• CCT: tree of call

paths

• Call path:

sequence of

function

invocations

• Refer as “Call

Graph”

Comparison 3: Size of Call Graph Data

• Profiling tools generate significant amount of call graph

data.

• Use default settings and collect per-process data.

• Compare which tool generates more data.

• Generating more data might not be a downside.

• Further analysis on the call graph data is needed.

8

Post-mortem Analysis

• Hatchet

• Programmatically

analyze call

graph data

9

• Graphframe = graph + dataframe

Comparison 4: Correctness of Call Graph Data

• Assumption: If the data generated by multiple tools is

nearly identical, it should be close to the ground truth.

• Default settings are used for each tool.

10

Comparison 4: Correctness of Call Graph Data

11

Comparison Metrics Rationale

Top five slowest

call graph nodes

Do tools identify the same slowest nodes?

Call path of the

slowest nodes

Can tools provide the correct program

structure?

File Can tools provide correct information about the

source code?
Line number

Hot nodes Do tools identify the same most time-

consuming call path?

Comparison 5: Richness of Call Graph Data

• Richness of call graph profiling data refers to having

detailed information in the call graph.

• Default settings are used for each tool.

12

Comparison 5: Richness of Call Graph Data

13

Comparison Metrics Rationale

Max. call path length Investigate:

• If the call graph data provides

sufficient information.

• If the call graph data has some

abnormalities.

Avg. call path length

Number of nodes

Number of .so files

Number of MPI

functions

Max. call path length

Avg. call path length

Number of nodes

Experimental Setup

14

Profiling Tools Proxy Apps

• Caliper 2.6.0

• HPCToolkit

2021.05.15

• Score-P 7.1

• TAU 2.30.1

• AMG

• LULESH

• Quicksilver

Environment

• GCC 8.3.1

• Open MPI

3.0.1

• x86_64

architecture

• All applications are written in C/C++ and use only MPI.

•

Sampling and instrumentation methods are evaluated separately.•

Weak scaling experiments.

Evaluation Metrics

• Runtime

Overhead

• Memory Usage

• Data Size

• Data Correctness

• Data Richness

Evaluation Metrics

•

Environment

Evaluation 1: Runtime Overhead

• Varying sampling intervals.

• Each execution used 64 MPI
processes.

15

• Default instrumentation

methods.

Evaluation 2: Memory Consumption

• Varying sampling intervals.

• Each execution used 64 MPI
processes.

16

• Default instrumentation

methods.

Evaluation 3: Generated Data Size

• Varying sampling intervals.

• Each execution used 64 MPI

processes.

17

• Default instrumentation

methods.

Evaluation 4: Call Path Correctness

18

• Call path of the

second slowest node

obtained by different

tools for LULESH.

• The leaf nodes are

the second slowest

nodes.

• But the tools agree

on the slowest node.

(a) HPCTookit

(b) Score-P

(sampling)

(c) Score-P

(instrumentation)

(d) TAU

(instrumentation)

Evaluation 5: Call Path Richness

• Fixed sampling interval (20.0 ms)

• Default instrumentation methods.

• Each execution used 64 MPI processes.

19

Summary

• The first empirical study on call graph data generation

capabilities of profiling tools.

• Evaluated Caliper, HPCToolkit, Score-P, and TAU.

• Considered runtime overhead, memory consumption,

and the size and quality of the generated call graph

data.

20

Joshua Harless

3101 Turner Hall, College Park, MD 20742

301.405.3384 / jharless@umd.edu

	Slide 1: Comparative Evaluation of Call Graph Generation by Profiling Tools
	Slide 2: Introduction
	Slide 3: Overview
	Slide 4: Different Methods for Profiling
	Slide 5: Comparison 1: Runtime Overhead
	Slide 6: Comparison 2: Memory Consumption
	Slide 7: Information Gathered by Profiling Tools
	Slide 8: Comparison 3: Size of Call Graph Data
	Slide 9: Post-mortem Analysis
	Slide 10: Comparison 4: Correctness of Call Graph Data
	Slide 11: Comparison 4: Correctness of Call Graph Data
	Slide 12: Comparison 5: Richness of Call Graph Data
	Slide 13: Comparison 5: Richness of Call Graph Data
	Slide 14: Experimental Setup
	Slide 15: Evaluation 1: Runtime Overhead
	Slide 16: Evaluation 2: Memory Consumption
	Slide 17: Evaluation 3: Generated Data Size
	Slide 18: Evaluation 4: Call Path Correctness
	Slide 19: Evaluation 5: Call Path Richness
	Slide 20: Summary
	Slide 21

