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Neural Networks

Neural Networks (NNs): ‘Parameterized’ function approximators

Can work with very high dimensional data.

Neural Network ‘ “A sitting dog”
Output f(x; 8)

1

Parameters(6) Mostly composed of
matrix multiplications.

‘Learn’ @ from data
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Stochastic Gradient Descent

- Repeat until loss (L) has been minimized sufficiently:
Read in a batch of training data

Forward Pass : Calculate output f (x; 8) and the loss (L) on the batch.

¢ oL
Backward Pass : Calculate gradients of the loss wrt the parameters (£)°

Optimizer Step : Use % to update 6.
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Neural Network Pruning

Validation perplexity for GPT-3 |.3B on Wikitext-103

- Zeroing parameters with small magnitudes

permanently mid-training.
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B Unpruned

o
<)

[0.0]
o

- DL pruning algorithms can prune as many
as 80-90% of the parameters without

affecting model quality.
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GPT-3 1.3B pruned to 90% sparsity using [1].
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Can we exploit pruning in large models
to Improve performance of parallel
training on multi-GPU clusters?
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Sparse matrix multiplication?

- Most compute in a pruned NN is
sparse matrix multiplication.

- Can we use optimized
implementations of SpMM?

Instead, we focus on optimizing

communication volume in parallel
training of NNs.
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Performance of sparse libraries versus cuBLAS
on an NVIDIAVI00 GPU
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Comparison of CuBLAS with sparse libraries on a
90% pruned FC layer.



Background on AXoNN

In this work we used AxoNN [2] as our parallel DL framework of choice.

AxoNN implements a hybrid parallel algorithm of data and inter-layer parallelism.

GPUs

A two layer neural network on 4 GPU:s.
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Distribution of Compute in AXoNN

800 8oi

810 81

Organize GPUs in a 2D grid
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Distribution of Compute in AXoNN

Inter-Layer
Parallelism

800 8oi

810 81

A
v

G er = 2

inter

Partition layers equally across columns
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Distribution of Compute in AXoNN

Layer O Layer |
Data Parallelism
A

Batch Shard O goo gOl
W
Batch Shard | gIO gl |
v
G =2

inter

Partition batch equally across rows
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Communication in Inter-Layer Parallelism

Point-to-point
—+ 2| L |20 communication of
_ . activations (FWV pass)
G2 nd their gradients

=R - 2| I (e (BW pass)
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Communication in Data Parallelism
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Batch Shard | gIO gl | pass.
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Optimizing Communication in Pruned NNs

e Data Parallelism

e Communication —All-reduce on
. Layer O Layer |
gradients.

gradients of unpruned parameter
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Optimizing Communication in Pruned NNs

* Inter-Layer Parallelism

e Communication — P2P comm. of
activations and their gradients

a ye
* Messages aren’t sparse Batch Shard 0 [l -0 INDURERGNN "

Val
* Volume x G, ... (proof in paper) .

Batch Shard | —> gio

«— | 811

* Decrease G, .,

— More layers per GPU

F 3
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Ginter = 2

Need to optimize memory consumption by exploiting pruning.
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Sparsity Aware Memory Optimization (SAMO)

Selective compression of model states after pruning.
0 oL s

a9
\Parameters } Gradients Optimizer data

Y \ J

opt

* Store in dense with Os explicitly * Storeina ID sparse COO
filled out. format.

* |nvoke efficient dense CuBLAS * Common index vector of non-
kernels for matrix mult. zero elements.
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Overheads in SAMO

Backward pass — Compute gradients with dense computation kernels and
then compress

dL  Gradient
Neural Network - R
I ‘ zero values
o -

Parameters (8) Gradients JL

w.r.t weight (59) ‘ Comepressed
Gradients

1 Indices of non-
X X

0
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Sparsity Aware Memory Optimization (SAMO)

Assuming mixed precision and the Adam Optimizer, we prove that our method
saves 66-78% memory for an 80-90% pruned NN.

Exploit the saved memory to decrease G
communication.

.or aNd decrease point-to-point
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Results

Time per iteration for GPT3-13B
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Strong Scaling of GPT3-13B on Summit. We prune to 90% sparsity using [1]. We annotate AxoNN+SAMO’s line with
its percentage speedup over AxoNN.
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Conclusion

- Developed a novel method that exploits neural network pruning algorithm in large
models to improve performance of parallel training.

Presented Sparsity-Aware Memory Optimization (SAMO) to significantly reduce
memory consumption while not sacrificing performance.

Demonstrated how the memory saved can be used to optimize communication in
data and inter-layer parallelism.
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Future Work

Training pruned large language models.
Imagine a ChatGPT like model that fits on your laptop.

Accelerating inference tasks via pruning.
Experimenting with other forms of parallelism like tensor parallelism.
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