Exploiting Sparsity in Pruned Neural Networks to Optimize Large Model Training

Siddharth Singh and Abhinav Bhatele Department of Computer Science

Neural Networks

- Neural Networks (NNs): 'Parameterized' function approximators
- Can work with very high dimensional data.

Stochastic Gradient Descent

- Repeat until loss (L) has been minimized sufficiently:
 - Read in a batch of training data
 - Forward Pass : Calculate output $f(x; \theta)$ and the loss (L) on the batch.
 - Backward Pass : Calculate gradients of the loss wrt the parameters $\left(\frac{\partial L}{\partial \rho}\right)$.

• Optimizer Step : Use
$$\frac{\partial L}{\partial \theta}$$
 to update θ .

Neural Network Pruning

- Zeroing parameters with small magnitudes permanently mid-training.
- DL pruning algorithms can prune as many as 80-90% of the parameters without affecting model quality.

Validation perplexity for GPT-3 1.3B on Wikitext-103

Can we exploit pruning in large models to improve performance of parallel training on multi-GPU clusters?

Sparse matrix multiplication?

- Most compute in a pruned NNs is sparse matrix multiplication.
- Can we use optimized implementations of SpMM?

Instead, we focus on optimizing communication volume in parallel training of NNs.

Comparison of CuBLAS with sparse libraries on a 90% pruned FC layer.

Background on AxoNN

- In this work we used AxoNN [2] as our parallel DL framework of choice.
- AxoNN implements a hybrid parallel algorithm of data and inter-layer parallelism.

Distribution of Compute in AxoNN

Organize GPUs in a 2D grid

Distribution of Compute in AxoNN

Partition layers equally across columns

Distribution of Compute in AxoNN

Partition batch equally across rows

Communication in Inter-Layer Parallelism

Communication in Data Parallelism

Optimizing Communication in Pruned NNs

- Data Parallelism
 - Communication All-reduce on gradients.
 - Volume $\propto |\theta|$
 - Simple! Only communicate gradients of unpruned parameter

Optimizing Communication in Pruned NNs

Layer 0

g00

g10

Ginter = 2

Batch Shard 0

Batch Shard I

Layer I

G_{data}=2

- Inter-Layer Parallelism
 - Communication P2P comm. of activations and their gradients
 - Messages aren't sparse
 - Volume $\propto G_{inter}$ (proof in paper)
 - Decrease $G_{inter} \rightarrow More layers per GPU$

Need to optimize memory consumption by exploiting pruning.

Batch

Sparsity Aware Memory Optimization (SAMO)

• Selective compression of model states after pruning.

- Store in dense with 0s explicitly filled out.
- Invoke efficient dense CuBLAS kernels for matrix mult.

PARALLEL SOFTWARE

AND SYSTEMS GROUP

- format.
- Common index vector of nonzero elements.

Overheads in SAMO

 Backward pass – Compute gradients with dense computation kernels and then compress

Sparsity Aware Memory Optimization (SAMO)

 Assuming mixed precision and the Adam Optimizer, we prove that our method saves 66-78% memory for an 80-90% pruned NN.

Exploit the saved memory to decrease G_{inter} and decrease point-to-point communication.

Results

Strong Scaling of GPT3-13B on Summit. We prune to 90% sparsity using [1]. We annotate AxoNN+SAMO's line with its percentage speedup over AxoNN.

Conclusion

- Developed a novel method that exploits neural network pruning algorithm in large models to improve performance of parallel training.
- Presented Sparsity-Aware Memory Optimization (SAMO) to significantly reduce memory consumption while not sacrificing performance.
- Demonstrated how the memory saved can be used to optimize communication in data and inter-layer parallelism.

Future Work

- Training pruned large language models.
 - Imagine a ChatGPT like model that fits on your laptop.
- Accelerating inference tasks via pruning.
- Experimenting with other forms of parallelism like tensor parallelism.

Bibloliography

[1] Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks,

You et al., ICLR 2020, <u>https://openreview.net/forum?id=BJxsrgStvr</u>

[2] AxoNN: An asynchronous, message-driven parallel framework for extreme-scale deep learning, Siddharth Singh and Abhinav Bhatele, IPDPS 2022, https://arxiv.org/abs/2110.13005

UNIVERSITY OF MARYLAND

Siddharth Singh ssingh37@umd.edu