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Neural Networks
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• Neural Networks (NNs):  ‘Parameterized’ function approximators 

• Can work with very high dimensional data.
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Stochastic Gradient Descent
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• Repeat until loss (L) has been minimized sufficiently:

• Read in a batch of training data

• Forward Pass : Calculate output 𝑓(𝑥; 𝜃) and the loss (L) on the batch.

• Backward Pass : Calculate gradients of the loss wrt the parameters (
𝜕𝐿

𝜕𝜃
). 

• Optimizer Step : Use 
𝜕𝐿

𝜕𝜃
to update 𝜃. 



Neural Network Pruning

• Zeroing parameters with small magnitudes 

permanently mid-training.

• DL pruning algorithms can prune as many 

as 80-90% of the parameters without 

affecting model quality.

GPT-3 1.3B pruned to 90% sparsity using [1].

4



Can we exploit pruning in large models 

to improve performance of parallel 

training on multi-GPU clusters?
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Sparse matrix multiplication?

• Most compute in a pruned NNs is 

sparse matrix multiplication.

• Can we use optimized 

implementations of SpMM?

Comparison of CuBLAS with sparse libraries on a 

90% pruned FC layer.

Instead, we focus on optimizing 

communication volume in parallel 

training of NNs.
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Background on AxoNN

• In this work we used AxoNN [2] as our parallel DL framework of choice.

• AxoNN implements a hybrid parallel algorithm of data and inter-layer parallelism.
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A two layer neural network on 4 GPUs.



Distribution of Compute in AxoNN
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Distribution of Compute in AxoNN
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Distribution of Compute in AxoNN
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Communication in Inter-Layer Parallelism
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Communication in Data Parallelism
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Optimizing Communication in Pruned NNs

• Data Parallelism

• Communication – All-reduce on 

gradients.

• Volume ∝ |𝜃|

• Simple! – Only communicate 

gradients of unpruned parameterss.
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Optimizing Communication in Pruned NNs

• Inter-Layer Parallelism

• Communication – P2P comm. of 

activations and their gradients

• Messages aren’t sparse

• Volume ∝ Ginter (proof in paper)

• Decrease Ginter → More layers per GPU

Need to optimize memory consumption by exploiting pruning.
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Sparsity Aware Memory Optimization (SAMO)

• Selective compression of model states after pruning.

𝜃 𝜕𝐿

𝜕𝜃

Optimizer data

Do not compress Compress

• Store in dense with 0s explicitly 

filled out.

• Invoke efficient dense CuBLAS

kernels for matrix mult.

• Store in a 1D sparse COO 

format.

• Common index vector of non-

zero elements.
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Overheads in SAMO

• Backward pass – Compute gradients with dense computation kernels and 

then compress 
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• Assuming mixed precision and the Adam Optimizer, we prove that our method 

saves 66-78% memory for an 80-90% pruned NN.

• Exploit the saved memory to decrease Ginter and decrease point-to-point 

communication.

Sparsity Aware Memory Optimization (SAMO)
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Results

Strong Scaling of GPT3-13B on Summit.  We prune to 90% sparsity using [1].  We annotate AxoNN+SAMO’s line with 

its percentage speedup over AxoNN.
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31% of peak 

flop/s



Conclusion

• Developed a novel method that exploits neural network pruning algorithm in large 

models to improve performance of parallel training.

• Presented Sparsity-Aware Memory Optimization (SAMO) to significantly reduce 

memory consumption while not sacrificing performance.

• Demonstrated how the memory saved can be used to optimize communication in 

data and inter-layer parallelism.
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Future Work

• Training pruned large language models.

• Imagine a ChatGPT like model that fits on your laptop.

• Accelerating inference tasks via pruning.

• Experimenting with other forms of parallelism like tensor parallelism.
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