
Exploiting Sparsity in Pruned Neural Networks to

Optimize Large Model Training
Siddharth Singh and Abhinav Bhatele

Department of Computer Science

Neural Networks

2

• Neural Networks (NNs): ‘Parameterized’ function approximators

• Can work with very high dimensional data.

Neural Network

(𝑥)Input

Parameters

Output

(𝜃)

𝑓(𝑥; 𝜃)

“A sitting dog”

‘Learn’ 𝜃 from data

Mostly composed of

matrix multiplications.

Stochastic Gradient Descent

3

• Repeat until loss (L) has been minimized sufficiently:

• Read in a batch of training data

• Forward Pass : Calculate output 𝑓(𝑥; 𝜃) and the loss (L) on the batch.

• Backward Pass : Calculate gradients of the loss wrt the parameters (
𝜕𝐿

𝜕𝜃
).

• Optimizer Step : Use
𝜕𝐿

𝜕𝜃
to update 𝜃.

Neural Network Pruning

• Zeroing parameters with small magnitudes

permanently mid-training.

• DL pruning algorithms can prune as many

as 80-90% of the parameters without

affecting model quality.

GPT-3 1.3B pruned to 90% sparsity using [1].

4

Can we exploit pruning in large models

to improve performance of parallel

training on multi-GPU clusters?

5

Sparse matrix multiplication?

• Most compute in a pruned NNs is

sparse matrix multiplication.

• Can we use optimized

implementations of SpMM?

Comparison of CuBLAS with sparse libraries on a

90% pruned FC layer.

Instead, we focus on optimizing

communication volume in parallel

training of NNs.

6

Background on AxoNN

• In this work we used AxoNN [2] as our parallel DL framework of choice.

• AxoNN implements a hybrid parallel algorithm of data and inter-layer parallelism.

Layer 0 Layer 1

NN

Batch

GPUs

7

A two layer neural network on 4 GPUs.

Distribution of Compute in AxoNN

g00

g10 g11

g01

Organize GPUs in a 2D grid

8

Distribution of Compute in AxoNN

Partition layers equally across columns

Inter-Layer

Parallelism

g00

g10 g11

g01

Ginter = 2

Layer 0 Layer 1

9

Distribution of Compute in AxoNN

Partition batch equally across rows

Batch

Batch Shard 0

Batch Shard 1

Data Parallelism

g00

g10 g11

g01

Gdata=2

Layer 0 Layer 1

Ginter = 2

10

Communication in Inter-Layer Parallelism

Batch

Batch Shard 0

Batch Shard 1

g00

g10 g11

g01

Layer 0 Layer 1

Ginter = 2

Point-to-point

communication of

activations (FW pass)

and their gradients

(BW pass)

Gdata=2

11

Communication in Data Parallelism

Batch

Batch Shard 0

Batch Shard 1

g00

g10 g11

g01

Layer 0 Layer 1

Ginter = 2

All-reduce to

synchronize

gradients after BW

pass.

Gdata=2

12

Optimizing Communication in Pruned NNs

• Data Parallelism

• Communication – All-reduce on

gradients.

• Volume ∝ |𝜃|

• Simple! – Only communicate

gradients of unpruned parameterss.

13

Optimizing Communication in Pruned NNs

• Inter-Layer Parallelism

• Communication – P2P comm. of

activations and their gradients

• Messages aren’t sparse

• Volume ∝ Ginter (proof in paper)

• Decrease Ginter → More layers per GPU

Need to optimize memory consumption by exploiting pruning.

14

Sparsity Aware Memory Optimization (SAMO)

• Selective compression of model states after pruning.

𝜃 𝜕𝐿

𝜕𝜃

Optimizer data

Do not compress Compress

• Store in dense with 0s explicitly

filled out.

• Invoke efficient dense CuBLAS

kernels for matrix mult.

• Store in a 1D sparse COO

format.

• Common index vector of non-

zero elements.

15

Parameters
Gradients

sopt

Overheads in SAMO

• Backward pass – Compute gradients with dense computation kernels and

then compress

Neural Network

(𝑥)Input

Parameters

Gradient

w.r.t output

(𝜃)

𝜕𝐿

𝜕𝑓

Gradients

w.r.t weight
(
𝜕𝐿

𝜕𝜃
)

Compress

Indices of non-

zero values

0 2

Compressed

Gradients

0 0 x x

16

• Assuming mixed precision and the Adam Optimizer, we prove that our method

saves 66-78% memory for an 80-90% pruned NN.

• Exploit the saved memory to decrease Ginter and decrease point-to-point

communication.

Sparsity Aware Memory Optimization (SAMO)

17

Results

Strong Scaling of GPT3-13B on Summit. We prune to 90% sparsity using [1]. We annotate AxoNN+SAMO’s line with

its percentage speedup over AxoNN.

18

31% of peak

flop/s

Conclusion

• Developed a novel method that exploits neural network pruning algorithm in large

models to improve performance of parallel training.

• Presented Sparsity-Aware Memory Optimization (SAMO) to significantly reduce

memory consumption while not sacrificing performance.

• Demonstrated how the memory saved can be used to optimize communication in

data and inter-layer parallelism.

20

Future Work

• Training pruned large language models.

• Imagine a ChatGPT like model that fits on your laptop.

• Accelerating inference tasks via pruning.

• Experimenting with other forms of parallelism like tensor parallelism.

21

[1] Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks,

You et al., ICLR 2020, https://openreview.net/forum?id=BJxsrgStvr

[2] AxoNN: An asynchronous, message-driven parallel framework for extreme-scale

deep learning, Siddharth Singh and Abhinav Bhatele, IPDPS 2022,

https://arxiv.org/abs/2110.13005

Bibloliography

https://openreview.net/forum?id=BJxsrgStvr
https://arxiv.org/abs/2110.13005

Siddharth Singh

ssingh37@umd.edu

	Slide 1: Exploiting Sparsity in Pruned Neural Networks to Optimize Large Model Training
	Slide 2: Neural Networks
	Slide 3: Stochastic Gradient Descent
	Slide 4: Neural Network Pruning
	Slide 5: Can we exploit pruning in large models to improve performance of parallel training on multi-GPU clusters?
	Slide 6: Sparse matrix multiplication?
	Slide 7: Background on AxoNN
	Slide 8: Distribution of Compute in AxoNN
	Slide 9: Distribution of Compute in AxoNN
	Slide 10: Distribution of Compute in AxoNN
	Slide 11: Communication in Inter-Layer Parallelism
	Slide 12: Communication in Data Parallelism
	Slide 13: Optimizing Communication in Pruned NNs
	Slide 14: Optimizing Communication in Pruned NNs
	Slide 15: Sparsity Aware Memory Optimization (SAMO)
	Slide 16: Overheads in SAMO
	Slide 17: Sparsity Aware Memory Optimization (SAMO)
	Slide 18: Results
	Slide 20: Conclusion
	Slide 21: Future Work
	Slide 22

