
Large-scale GPU Computational
Fluid Dynamics with AMR

Josh Davis1, Justin Shafner2, Daniel Nichols1, Nathan Grube2, Pino Martín2, Abhinav Bhatele2

1Department of Computer Science, 2Department of Aerospace Engineering

CRoCCo Laboratory

The CRoCCo Code
● CRoCCo is an compressible hypersonic flow simulation

code validated in prior work [1]

○ CRoCCo was previously entirely Fortran and
parallelized with MPI

○ Finite-difference with explicit time integration

● Applications include climate prediction, hypersonic flight
vehicle development

2

Problem: How can we upgrade CRoCCo to take
advantage of advances in supercomputing hardware
and software?

CRoCCo Laboratory

Our Solution: CRoCCo-AMR
1. Add Adaptive Mesh Refinement (AMR) to

solve the same problem with fewer grid points

○ AMR changes the grid densities adaptively in space
and time to match problem characteristics

2. Compute on GPUs to take advantage of modern
supercomputers

→ GPU port yields 19-38x speedup on Summit

3

CRoCCo Laboratory

AMReX Framework
● AMReX framework provides both

block-structured AMR and GPU capabilities
[4]

○ Plus handling of MPI communication and load
balancing

● However, AMReX is a C++ framework and
supports Cartesian grids only

○ CRoCCo is a curvilinear solver in Fortran

4

We need to convert nearly all our Fortran to C++
and adapt AMReX for curvilinear grids

CRoCCo Laboratory

CRoCCo Before AMR

5

CRoCCo Laboratory

Adding AMR to CRoCCo

6

CRoCCo Laboratory

● Using the AMReX framework in a curvilinear grid code required two major changes:

1. Grid metrics and regridding: store entire grid in memory, to avoid I/O operations
in regrid and computing 4th-order mapping metrics on-the-fly

2. Interpolation: replace the default AMReX trilinear interpolator with our custom
interpolator accounting for non-uniform spacing of grid points

○ Computing intermediate points when a fine grid needs to get ghost points from a coarse
neighbor

Working with AMReX in a Curvilinear Code

7

CRoCCo Laboratory

Porting CRoCCo Kernels to GPU
● Two step process: Fortran to C++, adding

AMReX GPU support to C++

● Needed to divide kernels up by loop
bounds to match the AMReX paradigm

○ Stencil loops extracted into ParallelFor,
while regular loops stayed in Launch

○ Needed to increase dimensionality of
scratch arrays reused between outer loop
iterations to prevent data races

● Regular validation runs to ensure
correctness

8

WenoFx(...)

launch(gbx,
 [=] AMREX_GPU_DEVICE (Box const& tbx) {
 WenoFx(...);
 });

CRoCCo Laboratory

Weak Scaling CRoCCo with DMR (1/2)

9

Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem 6144 GPUs

CRoCCo Laboratory

Weak Scaling CRoCCo with DMR (1/2)

10

Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem

GPU acceleration
has exposed a

scaling bottleneck
starting around 64

nodes

6144 GPUs

CRoCCo Laboratory

Weak Scaling CRoCCo with DMR (2/2)

11

Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem 6144 GPUs

CRoCCo Laboratory

Weak Scaling CRoCCo with DMR (2/2)

12

Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem 6144 GPUs

Our curvilinear
interpolator is

partially at fault for
scaling issues

CRoCCo Laboratory

Profiling the Final Implementation

13

Data collected on OLCF Summit with DMR problem

Low
er is better

CRoCCo Laboratory

Profiling the Final Implementation

14

Data collected on OLCF Summit with DMR problem

Low
er is better

CRoCCo Laboratory

Insights From Our Experiences
● ParallelCopy operations are a significant bottleneck in adapting AMReX to curvilinear grids

● Carefully matching refinement of AMR and non-AMR cases to can ensure a comparison of
the “same” science

● Scaling trend is likely to degrade when accelerating compute regions on the GPU

● Likely to achieve low GPU utilization in numerics kernels with high register usage in a direct
port from CPU

See our paper for more results

15

http://www.cs.umd.edu/~bhatele/pubs/pdf/2023/ipdps2023b.pdf

CRoCCo Laboratory

Conclusion and Future Work
● We have described our efforts porting CRoCCo from MPI-only to support AMR and GPUs

using AMReX, with previously-unavailable curvilinear grid support

● 19x to 38x overall speedup from our improvements

● Future work:

○ Better understand and address observed communication bottleneck

○ Determine impact of load imbalance, if any

○ Improve GPU theoretical occupancy in kernels by lowering register usage

Contact: Josh Davis — jhdavis@umd.edu

Paper: http://www.cs.umd.edu/~bhatele/pubs/pdf/2023/ipdps2023b.pdf

16

mailto:jhdavis@umd.edu
http://www.cs.umd.edu/~bhatele/pubs/pdf/2023/ipdps2023b.pdf

CRoCCo Laboratory

Acknowledgements
This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE 1840340. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. This research used resources of
the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725. This research used resources of the Livermore Computing Division at the
Lawrence Livermore National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC52-07NA27344.

17

CRoCCo Laboratory

References
[1] I. Beekman, S. Priebe, Y.-C. Kan, and M. P. Martin, “DNS of a large-domain, Mach 3 turbulent boundary layer: turbulence structure,”

AIAA 2011-0753, 2011.

[2] M. Martín et al., “Bandwidth-optimized weno scheme for the direct numerical simulation of compressible turbulence,” J. Comp. Phys.,
vol. 220, pp. 270–289, 2006.

[3] E.M. Taylor, M. Wu, and M.P. Martín, “Optimization of Nonlinear Error Sources for Weighted Non-Oscillatory Methods in Direct
Numerical Simulations of Compressible Turbulence,” J. of Com. Phys., 223, 384-397, 2007.

[4] W. Zhang, et al., “AMReX: Block-structured adaptive mesh refinement for multiphysics applications,” The International Journal of High
Performance Computing Applications, vol. 35, no. 6, pp. 508–526, 2021.

[5] J. Shafner and M.P. Martín, “Predictive Tools for Supersonic Retropropulsion Flows”, 2nd International Conference on Flight Vehicles,
Aerothermodynamics and Re-entry Missions & Engineering, Jun 22, Heilbronn, Germany.

[6] “Summit, Oak Ridge National Laboratory” https://www.olcf.ornl.gov/summit/

[7] “Quartz, Lawrence Livermore National Laboratory” https://hpc.llnl.gov/hardware/compute-platforms/quartz

[8] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” J. of Computational Physics,
vol. 54, no. 1, pp. 115–173, 1984.

18

https://www.olcf.ornl.gov/summit/
https://hpc.llnl.gov/hardware/compute-platforms/quartz

Josh Hoke Davis
jhdavis@umd.edu

https://jhdavis8.github.io/
8125 Paint Branch Dr

College Park, MD 20742 19

CRoCCo Laboratory

The Team
● Dept. of Computer Science

○ Josh Hoke Davis

○ Daniel Nichols

○ Prof. Abhinav Bhatele

● Dept. of Aerospace Engineering

○ Justin Shafner

○ Nathan Grube

○ Prof. Pino Martín

20

CRoCCo Laboratory

CRoCCo Numerical Scheme
● CRoCCo solves the conservative form of the Navier-Stokes equations using a

finite-difference, weighted essentially non-oscillatory (WENO) method [2,3]

○ Flux at interface is reconstructed by choosing from multiple candidate stencils based on a relative
smoothness coefficient

○ The WENO method is bandwidth- and nonlinearly-optimized (WENO-SYMBO)

○ 4th-order inviscid flux splitting with 4th-order central-difference viscous fluxes

○ Explicit time integration with 3rd-order Runge-Kutta

21

CRoCCo Laboratory

Benchmarking Platforms Used
● All runs collected on Summit at Oak Ridge National Laboratory [4]

○ Two 22-core IBM POWER9 CPUs with six NVIDIA V100 GPUs per node

○ Non-blocking fat tree network topology, dual-band InfiniBand interconnect

22

CRoCCo Laboratory

Benchmarking Problem
● Double Mach Reflection (DMR) problem used for

benchmarking [6]

○ Extensively studied in the literature and easy to set
up and validate

● Includes regions of turbulent and freestream flow
with moving shockwave

● Solved in three dimensions

23

CRoCCo Laboratory

Scaling Problem Sizes
● Weak scaling: 1.2x105 grid points per GPU in non-AMR

○ Weak scaling node counts break from perfect doubling to respect AMR blocking factor and DMR
problem aspect ratio while ensuring fixed number of grid points per GPU

● Number of grid points in AMR-enabled cases is dynamic

○ We set the refinement at the finest AMR level to equal the overall refinement of the non-AMR
case

○ In practice, the AMR case uses 89-94% fewer grid points than the non-AMR case for the same
problem

● All scaling runs are run out to 40 iterations, and time per iteration is averaged for latter 20
iterations

24

Weak Scaling Problem Size Table

25

CRoCCo Laboratory

Kernel Roofline Analysis
● Double-precision roofline plot of

representative numerics kernel, WenoX,
on a V100

● ~4% of peak DP performance achieved
for all kernels

○ Low theoretical occupancy (12.5%), due
to high register usage

○ Bandwidth-bound

● We are exploring improvement with
mixed-precision, removing division
operations

26

