
Large-scale GPU Computational 
Fluid Dynamics with AMR

Josh Davis1, Justin Shafner2, Daniel Nichols1, Nathan Grube2, Pino Martín2, Abhinav Bhatele2

1Department of Computer Science, 2Department of Aerospace Engineering



CRoCCo Laboratory

The CRoCCo Code
● CRoCCo is an compressible hypersonic flow simulation 

code validated in prior work [1]

○ CRoCCo was previously entirely Fortran and 
parallelized with MPI

○ Finite-difference with explicit time integration

● Applications include climate prediction, hypersonic flight 
vehicle development
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Problem: How can we upgrade CRoCCo to take 
advantage of advances in supercomputing hardware 
and software?
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Our Solution: CRoCCo-AMR
1. Add Adaptive Mesh Refinement (AMR) to 

solve the same problem with fewer grid points

○ AMR changes the grid densities adaptively in space 
and time to match problem characteristics

2. Compute on GPUs to take advantage of modern 
supercomputers

→ GPU port yields 19-38x speedup on Summit
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AMReX Framework
● AMReX framework provides both 

block-structured AMR and GPU capabilities 
[4]

○ Plus handling of MPI communication and load 
balancing

● However, AMReX is a C++ framework and 
supports Cartesian grids only

○ CRoCCo is a curvilinear solver in Fortran
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We need to convert nearly all our Fortran to C++ 
and adapt AMReX for curvilinear grids
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CRoCCo Before AMR

5



CRoCCo Laboratory

Adding AMR to CRoCCo
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● Using the AMReX framework in a curvilinear grid code required two major changes:

1. Grid metrics and regridding: store entire grid in memory, to avoid I/O operations 
in regrid and computing 4th-order mapping metrics on-the-fly

2. Interpolation: replace the default AMReX trilinear interpolator with our custom 
interpolator accounting for non-uniform spacing of grid points

○ Computing intermediate points when a fine grid needs to get ghost points from a coarse 
neighbor

Working with AMReX in a Curvilinear Code
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Porting CRoCCo Kernels to GPU
● Two step process: Fortran to C++, adding 

AMReX GPU support to C++

● Needed to divide kernels up by loop 
bounds to match the AMReX paradigm

○ Stencil loops extracted into ParallelFor, 
while regular loops stayed in Launch

○ Needed to increase dimensionality of 
scratch arrays reused between outer loop 
iterations to prevent data races

● Regular validation runs to ensure 
correctness
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WenoFx(...)

launch(gbx,
    [=] AMREX_GPU_DEVICE ( Box const& tbx) { 
        WenoFx(...);
    });
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Weak Scaling CRoCCo with DMR (1/2)
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Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem 6144 GPUs
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Weak Scaling CRoCCo with DMR (1/2)
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Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem

GPU acceleration 
has exposed a 

scaling bottleneck 
starting around 64 

nodes

6144 GPUs
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Weak Scaling CRoCCo with DMR (2/2)
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Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem 6144 GPUs
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Weak Scaling CRoCCo with DMR (2/2)
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Low
er is better

Log scale

Data collected on OLCF Summit with DMR problem 6144 GPUs

Our curvilinear 
interpolator is 

partially at fault for 
scaling issues
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Profiling the Final Implementation
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Data collected on OLCF Summit with DMR problem

Low
er is better
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Profiling the Final Implementation

14

Data collected on OLCF Summit with DMR problem

Low
er is better
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Insights From Our Experiences
● ParallelCopy operations are a significant bottleneck in adapting AMReX to curvilinear grids

● Carefully matching refinement of AMR and non-AMR cases to can ensure a comparison of 
the “same” science

● Scaling trend is likely to degrade when accelerating compute regions on the GPU

● Likely to achieve low GPU utilization in numerics kernels with high register usage in a direct 
port from CPU

See our paper for more results
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http://www.cs.umd.edu/~bhatele/pubs/pdf/2023/ipdps2023b.pdf
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Conclusion and Future Work
● We have described our efforts porting CRoCCo from MPI-only to support AMR and GPUs 

using AMReX, with previously-unavailable curvilinear grid support

● 19x to 38x overall speedup from our improvements

● Future work:

○ Better understand and address observed communication bottleneck

○ Determine impact of load imbalance, if any

○ Improve GPU theoretical occupancy in kernels by lowering register usage

Contact:  Josh Davis — jhdavis@umd.edu

Paper: http://www.cs.umd.edu/~bhatele/pubs/pdf/2023/ipdps2023b.pdf
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CRoCCo Numerical Scheme
● CRoCCo solves the conservative form of the Navier-Stokes equations using a 

finite-difference, weighted essentially non-oscillatory (WENO) method [2,3]

○ Flux at interface is reconstructed by choosing from multiple candidate stencils based on a relative 
smoothness coefficient 

○ The WENO method is bandwidth- and nonlinearly-optimized (WENO-SYMBO)

○ 4th-order inviscid flux splitting with 4th-order central-difference viscous fluxes

○ Explicit time integration with 3rd-order Runge-Kutta
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Benchmarking Platforms Used
● All runs collected on Summit at Oak Ridge National Laboratory [4]

○ Two 22-core IBM POWER9 CPUs with six NVIDIA V100 GPUs per node

○ Non-blocking fat tree network topology, dual-band InfiniBand interconnect
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Benchmarking Problem
● Double Mach Reflection (DMR) problem used for 

benchmarking [6]

○ Extensively studied in the literature and easy to set 
up and validate

● Includes regions of turbulent and freestream flow 
with moving shockwave

● Solved in three dimensions
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Scaling Problem Sizes
● Weak scaling: 1.2x105 grid points per GPU in non-AMR

○ Weak scaling node counts break from perfect doubling to respect AMR blocking factor and DMR 
problem aspect ratio while ensuring fixed number of grid points per GPU

● Number of grid points in AMR-enabled cases is dynamic

○ We set the refinement at the finest AMR level to equal the overall refinement of the non-AMR 
case

○ In practice, the AMR case uses 89-94% fewer grid points than the non-AMR case for the same 
problem

● All scaling runs are run out to 40 iterations, and time per iteration is averaged for latter 20 
iterations
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Weak Scaling Problem Size Table
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Kernel Roofline Analysis
● Double-precision roofline plot of 

representative numerics kernel, WenoX, 
on a V100

● ~4% of peak DP performance achieved 
for all kernels

○ Low theoretical occupancy (12.5%), due 
to high register usage

○ Bandwidth-bound

● We are exploring improvement with 
mixed-precision, removing division 
operations
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