
A Hybrid Tensor-Expert-Data Parallelism Approach

to Optimize Mixture-of-Experts Training
Siddharth Singh1, Olatunji Ruwase2, Ammar Ahmad Awan2, Samyam Rajbhandari2,

Yuxiong He2, Abhinav Bhatele1

University of Maryland1, Microsoft, Inc.2

Neural Networks

2

• Neural Networks (NNs): ‘Parameterized’ function approximators

• Can work with very high dimensional data.

Neural Network

(𝑥)Input

Parameters

Output

(𝜃)

𝑓(𝑥; 𝜃)

“A sitting dog”

Organized into Layers

Layer 0 Layer 1

Stochastic Gradient Descent

3

• Repeat until loss (L) has been minimized sufficiently:

• Read in a batch of training data

• Forward Pass : Calculate output 𝑓(𝑥; 𝜃) and the loss (L) on the batch.

• Backward Pass : Calculate gradients of the loss wrt the parameters (
𝜕𝐿

𝜕𝜃
).

• Optimizer Step : Use
𝜕𝐿

𝜕𝜃
 to update 𝜃.

Motivation

• More parameters = More accurate neural networks ☺

• However, more parameters = More FLOPs in training 

4

MoEs can make a given model arbitrarily large without changing

its training FLOPs!

Mixture-of-Experts (MoEs)

Attention
FeedForward

(FF)

A Transformer Layer (Base Model)

Step 1: Start with a base model – usually a transformer neural network.

f0
f1

w0
w1

a0
a1

Input Tokens

5

Mixture-of-Experts (MoEs)

Attention

FF 0

A Transformer Layer (Base Model) + 2 experts

FF1

Step 2: Introduce multiple FF blocks. Each FF block is an ‘expert’.

6

Mixture-of-Experts (MoEs)

Attention

FF 0

A Transformer Layer (Base Model) + 2 experts

FF1

Step 3: Introduce a parameterized router that maps tokens to experts.

Router

7

Mixture-of-Experts (MoEs)

Attention

FF 0

A Transformer Layer (Base Model) + 2 experts

w0
w1

a0
a1

FF1

Router a0
a1

a1

a0 f0

f1

Total FLOPs per token is independent of the number of experts!

Step 3: Introduce a parameterized router that maps tokens to experts.

8

Caveat

• Diminishing returns beyond 64-128

experts.

• Imperative to increase base model sizes

along with expert counts.

Figure courtesy Fedus et al. [2]

9

Gaps in Current Work

• Large MoEs are almost always trained in parallel on multiple GPUs.

• However, current parallel frameworks are not suited for MoEs built with

large base models.

• They either support base models of limited sizes due to limited

dimensions of parallelism.

• Example – DeepSpeed-MoE [4] which has expert+data parallelism but not model

parallelism (tensor/pipeline)

• Or, they use extremely inefficient parallel techniques like out-of-core

training or FSDP.

• Inefficiency occurs due to high communication times

10

Our work – Deepspeed-TED

• Goal 1 - Support MoEs with large base models

• Goal 2 - Minimize communication times to maintain efficiency.

11

• A three-dimensional hybrid of state-of-the-art parallel training algorithms

• T – Tensor Parallelism (Megatron-LM [3])

• E – Expert Parallelism (DeepSpeed-MoE [4])

• D – Sharded Data Parallelism (ZeRO [5])

Data Parallelism

GPU - 1

GPU - 0

Attention

FF0

FF1

Router

Attention Router

w0
w1

w2
w3

a0
a1

a2
a3

a0
a1

a0

a1

a2
a3

w0
w1
w2
w3

a0

f1

FF0

FF1

a2

a3

f2

f3

Replicate modelPartition DataAverage Gradients

12

Data + Expert Parallelism

GPU - 1

GPU - 0

Attention

FF0

Router

Attention Router

w0
w1

w2
w3

a0
a1

a2
a3

w0
w1
w2
w3

FF1

a0
a2

a1
a3

f0
f2

f1
f3

f0
f1

f2
f3

All-to-All Communication

FF1

FF0

FF0

FF1

Divide Experts among GPUs

13

Tensor Parallelism

• Parallelize the matrix multiplications inside Attention and FF.

• Let’s first look at tensor parallelism in isolation.

GPU - 0

GPU – 1

w0
w1

w0
w1

Attention

TP 0

Attention

TP 1

Attention

Half the parameters! Partition the

Attention Block

w0
w1
w2
w3

w2
w3

w2
w3

Replicate Data

14

Tensor Parallelism

• Parallelize the matrix multiplications inside Attention and FF.

• Let’s first look at tensor parallelism in isolation.

GPU - 0

GPU – 1

w0
w1

w0
w1

Attention

TP 0

a0'
a1'

a0'
a1'

All-Reduce Communication

Attention

TP 1

w0
w1
w2
w3

w2
w3

w2
w3

a2'
a3'

a2'
a3'

a0
a1

a0
a1

a2
a3

a2
a3

Partial Outputs

15

Data + Expert + Tensor Parallelism

• Now let us look at tensor+expert+data parallelism on 8 GPUs.

• Two virtual topologies for Attention and FF-Blocks.

• For brevity, we will only look at GPUs [0-3]

16

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

Attention Block (Non-Expert) FF Blocks (Expert)

Tensor

Data

Tensor

Expert

Data

TED for Attention (Non-Experts)

GPU - 0

GPU - 1

GPU - 2

GPU - 3

Attention

TP 0

Attention

TP 1

Attention

Attention

TP 0

Attention

TP 1

Attention
Distribution of

Parameters

17

32

10
Data

Tensor

TED for Attention (Non-Experts)

w2
w3

w0
w1

GPU - 0

GPU - 1

GPU - 2

GPU - 3

Attention

TP 0

Attention

TP 1

Attention

TP 0

Attention

TP 1

w2
w3

w0
w1

w2
w3

w0
w1

w2
w3

w0
w1

Distribution of Input

18

32

10
Data

Tensor

TED for Attention (Non-Experts)

w2
w3

w0
w1

GPU - 0

GPU - 1

GPU - 2

GPU - 3

Attention

TP 0

Attention

TP 1

Attention

TP 0

Attention

TP 1

w2
w3

w0
w1

a2'
a3'

a0'
a1'

a2'
a3'

a0'
a1'

a2
a3

a0
a1

a2
a3

a0
a1

Router

Router

Router

Router

a2
a3

a0
a1

a2
a3

a0
a1

All-Reduce

19

32

10
Data

Tensor

TED for FF (Experts)

FF 0

TP 0

FF 0

TP 1

FF 1

TP 0

FF 1

TP 1

GPU - 0

GPU - 1

GPU - 2

GPU - 3

20

FF 0

FF 1

32

10
Expert

Tensor

+ TED for FF (Experts)

FF 0

TP 0

FF 0

TP 1

FF 1

TP 0

FF 1

TP 1

GPU - 0

GPU - 1

GPU - 2

GPU - 3

a0
a1

a0
a1

a2
a3

a2
a3

a0
a2

a0

a1

a1
a3

a3

a2

All-To-All

…

…

…

…

…

…

…

…

…

…

…

…

All-Reduce All-To-All

21

32

10
Expert

Tensor

- Limit Number

of experts to

128

- Limit tensor

parallelism to

a node.
4.8x increase!

22

3D parallelism helps up train larger models

Opt #1 Duplicate Token Dropping (DTD)

GPU - 0

GPU - 1

GPU - 2

GPU - 3

a0
a1

a0
a1

a2
a3

a2
a3

a0
a2

a0

a1

a1
a3

a3

a2

All-To-All

• Consider the first all-to-all.

• Tensor parallel GPUs

communicate duplicate

tokens.

• Remove this duplication to

decrease All-To-All message

sizes.

23

Opt #1 Duplicate Token Dropping

GPU - 0

GPU - 1

GPU - 2

GPU - 3

a0
a1

a0
a1

a2
a3

a2
a3

All-To-All

a0

a1

a2

a3

a0

a3

a2

a0
a2

a0
a2

a1

a3
a1

a3
a1

Drop

Drop

All-Gather

All-Gather

2x reduction in All-to-All

volume
24

Cheap

because

intra-node

Opt #2 Communication-Aware

Checkpointing (CAC)

25

• Reduces number of all-to-all and all-reduce calls by 33

percent by utilizing marginally extra memory.

• More details in paper.

Results

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit

26

Nearly 50% time in

communication!!

Results

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit

64%

reduction in

All-to-All time

33% reduction

in All-Reduce

time

Overall 21%

Speedup

27

Results (Strong Scaling)

28

22-29%

speedups!

Machine - Summit

Results (Strong Scaling)

Machine - Summit

Conclusion and Future Work

• Developed DeepSpeed-TED, a highly scalable parallel framework for training
high quality MoEs with large base models.

• Presented a three-dimensional hybrid parallel method that supports MoEs
with 4-8x larger models than the SoTA.

• Introduced communication optimizations that can achieve significant
reductions in the collective communication times.

• As future work, we want to explore pipeline parallelism as a fourth
dimension to scale to even larger base models.

30

Code

• Our work is integrated in DeepSpeed, a widely used open-source

framework for parallel deep learning.

• URL - https://github.com/microsoft/DeepSpeed

Bibliography

[1] Using DeepSpeed and Megatron-LM to Train Megatron-LM Turing NLG 530B, A

Large-Scale Generative Language Model, Smith et al., https://arxiv.org/abs/2201.11990

[2] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient

Sparsity, Fedus et al., https://arxiv.org/abs/2101.03961

[3] Megatron-LM: Training Multi-Billion Parameter Language Models Using

Model Parallelism, Shoeybi et al., https://arxiv.org/abs/1909.08053

[4] DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power

Next-Generation AI Scale, Rajbhandari et al., https://arxiv.org/abs/2201.05596

[5] ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,

Rajbhandari et al., https://arxiv.org/abs/1910.02054

https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2201.05596

Siddharth Singh

ssingh37@umd.edu

	Slide 1: A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training
	Slide 2: Neural Networks
	Slide 3: Stochastic Gradient Descent
	Slide 4: Motivation
	Slide 5: Mixture-of-Experts (MoEs)
	Slide 6: Mixture-of-Experts (MoEs)
	Slide 7: Mixture-of-Experts (MoEs)
	Slide 8: Mixture-of-Experts (MoEs)
	Slide 9: Caveat
	Slide 10: Gaps in Current Work
	Slide 11: Our work – Deepspeed-TED
	Slide 12: Data Parallelism
	Slide 13: Data + Expert Parallelism
	Slide 14: Tensor Parallelism
	Slide 15: Tensor Parallelism
	Slide 16: Data + Expert + Tensor Parallelism
	Slide 17: TED for Attention (Non-Experts)
	Slide 18: TED for Attention (Non-Experts)
	Slide 19: TED for Attention (Non-Experts)
	Slide 20: TED for FF (Experts)
	Slide 21: + TED for FF (Experts)
	Slide 22: 3D parallelism helps up train larger models
	Slide 23: Opt #1 Duplicate Token Dropping (DTD)
	Slide 24: Opt #1 Duplicate Token Dropping
	Slide 25: Opt #2 Communication-Aware Checkpointing (CAC)
	Slide 26: Results
	Slide 27: Results
	Slide 28: Results (Strong Scaling)
	Slide 29: Results (Strong Scaling)
	Slide 30: Conclusion and Future Work
	Slide 31: Code
	Slide 32: Bibliography
	Slide 33

