#### A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

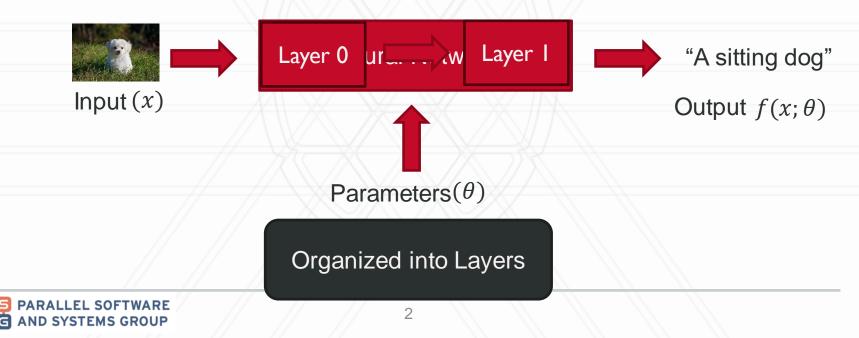
Siddharth Singh<sup>1</sup>, Olatunji Ruwase<sup>2</sup>, Ammar Ahmad Awan<sup>2</sup>, Samyam Rajbhandari<sup>2</sup>,

Yuxiong He<sup>2</sup>, Abhinav Bhatele<sup>1</sup> University of Maryland<sup>1</sup>, Microsoft, Inc.<sup>2</sup>



## **Neural Networks**

- Neural Networks (NNs): 'Parameterized' function approximators
- Can work with very high dimensional data.



## **Stochastic Gradient Descent**

- Repeat until loss (L) has been minimized sufficiently:
  - Read in a batch of training data
  - Forward Pass : Calculate output  $f(x; \theta)$  and the loss (L) on the batch.
  - Backward Pass : Calculate gradients of the loss wrt the parameters  $\left(\frac{\partial L}{\partial \rho}\right)$ .

• Optimizer Step : Use 
$$\frac{\partial L}{\partial \theta}$$
 to update  $\theta$ .

## **Motivation**

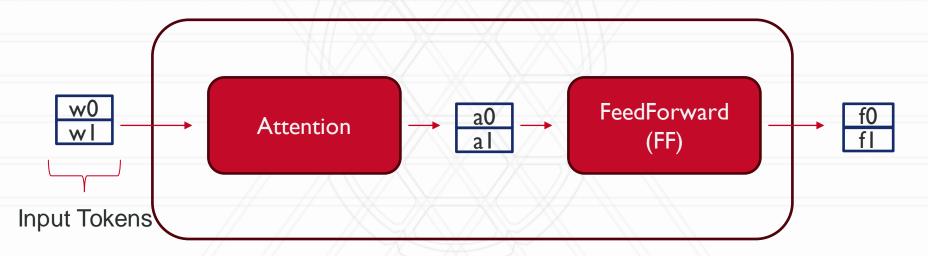
- More parameters = More accurate neural networks ③
- However, more parameters = More FLOPs in training ☺

MoEs can make a given model arbitrarily large <u>without changing</u> <u>its training FLOPs!</u>



## Mixture-of-Experts (MoEs)

Step 1: Start with a base model – usually a transformer neural network.

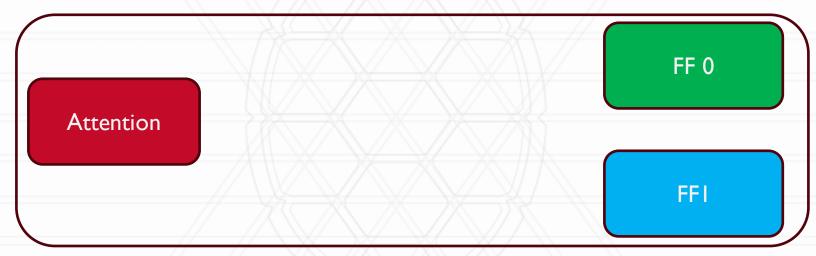


A Transformer Layer (Base Model)



## Mixture-of-Experts (MoEs)

Step 2: Introduce multiple FF blocks. Each FF block is an 'expert'.

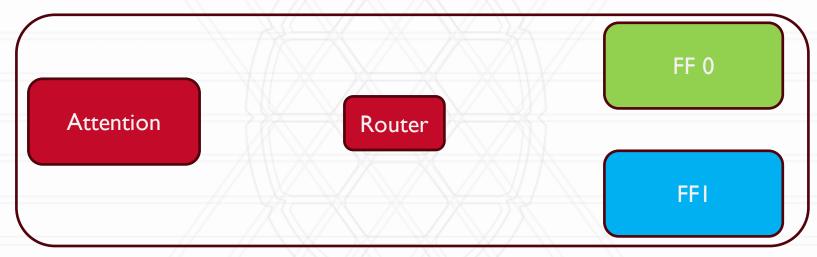


A Transformer Layer (Base Model) + 2 experts



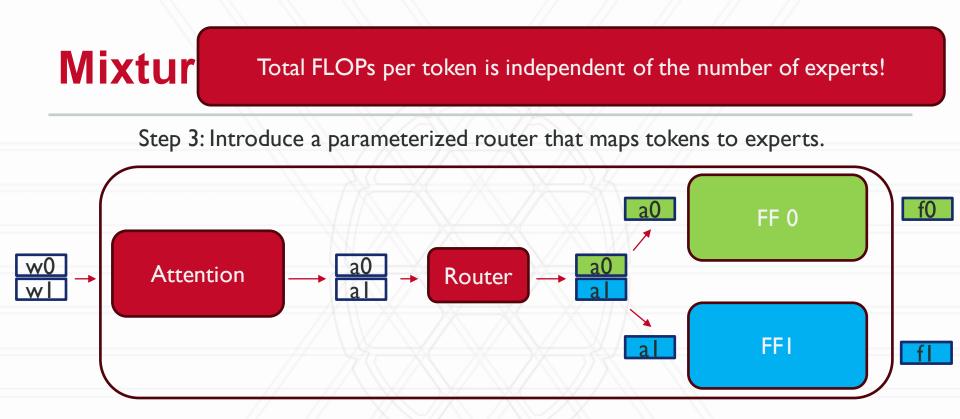
## Mixture-of-Experts (MoEs)

Step 3: Introduce a parameterized router that maps tokens to experts.



A Transformer Layer (Base Model) + 2 experts





A Transformer Layer (Base Model) + 2 experts



#### Caveat

- Diminishing returns beyond 64-128 experts.
- Imperative to increase base model sizes along with expert counts.

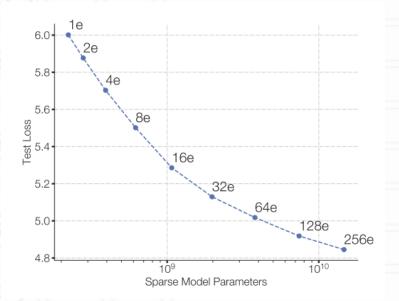


Figure courtesy Fedus et al. [2]



## **Gaps in Current Work**

- Large MoEs are almost always trained in parallel on multiple GPUs.
- However, current parallel frameworks are not suited for MoEs built with large base models.
- They either support base models of limited sizes due to limited dimensions of parallelism.
  - Example DeepSpeed-MoE [4] which has expert+data parallelism but not model parallelism (tensor/pipeline)
- Or, they use extremely inefficient parallel techniques like out-of-core training or FSDP.
  - Inefficiency occurs due to high communication times



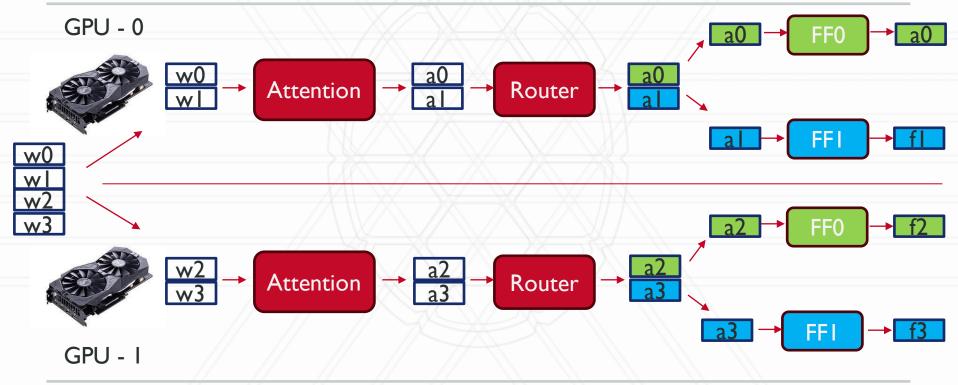
## **Our work – Deepspeed-TED**

- Goal I Support MoEs with large base models
- Goal 2 Minimize communication times to maintain efficiency.
- A three-dimensional hybrid of state-of-the-art parallel training algorithms
  - T Tensor Parallelism (Megatron-LM [3])
  - E Expert Parallelism (DeepSpeed-MoE [4])
  - D Sharded Data Parallelism (ZeRO [5])



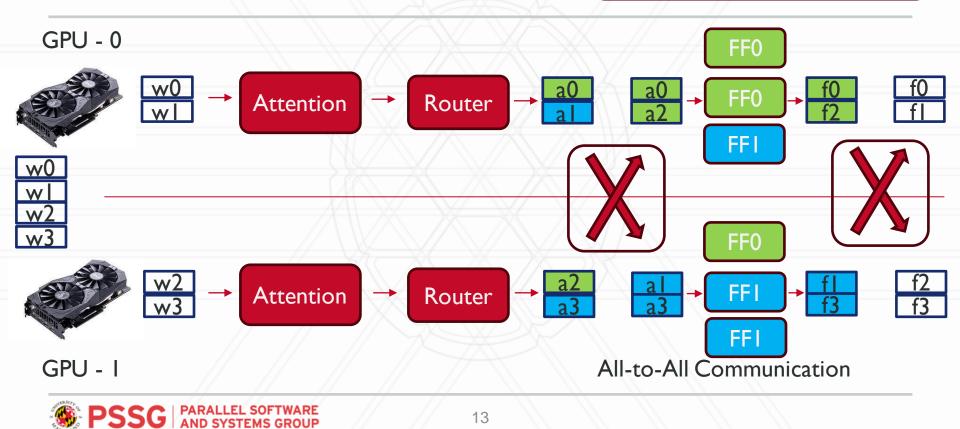
#### **Data Parallelism**

#### Average Gradients



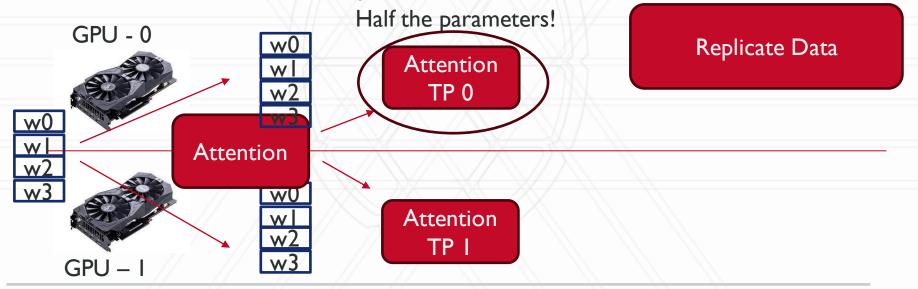


## Data + Expert Parallelism Divide Experts among GPUs



#### **Tensor Parallelism**

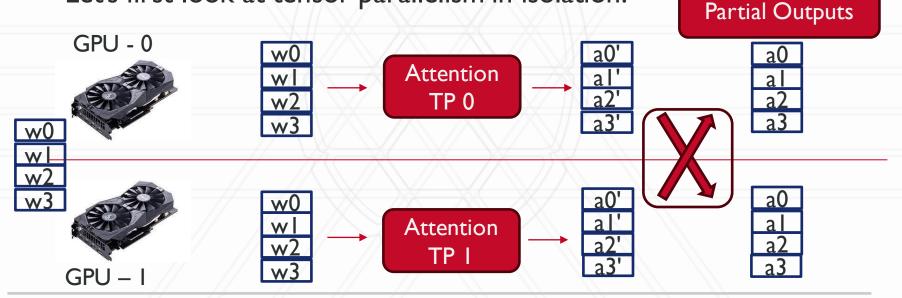
- Parallelize the matrix multiplications inside Attention and FF.
- Let's first look at tensor parallelism in isolation.





#### **Tensor Parallelism**

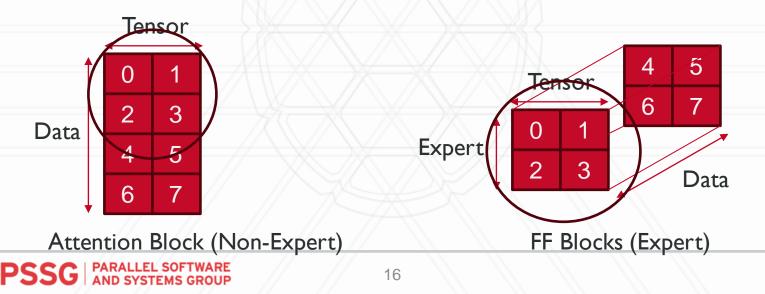
- Parallelize the matrix multiplications inside Attention and FF.
- Let's first look at tensor parallelism in isolation.

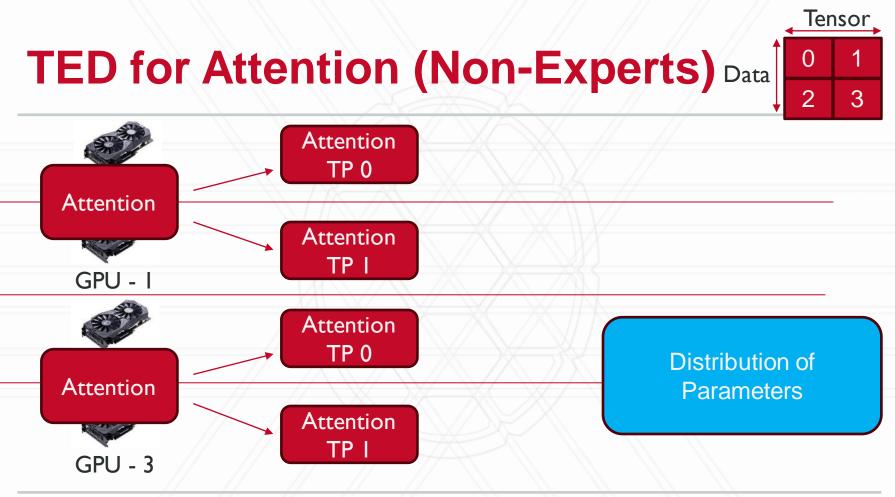




## Data + Expert + Tensor Parallelism

- Now let us look at tensor+expert+data parallelism on 8 GPUs.
- Two virtual topologies for Attention and FF-Blocks.
- For brevity, we will only look at GPUs [0-3]

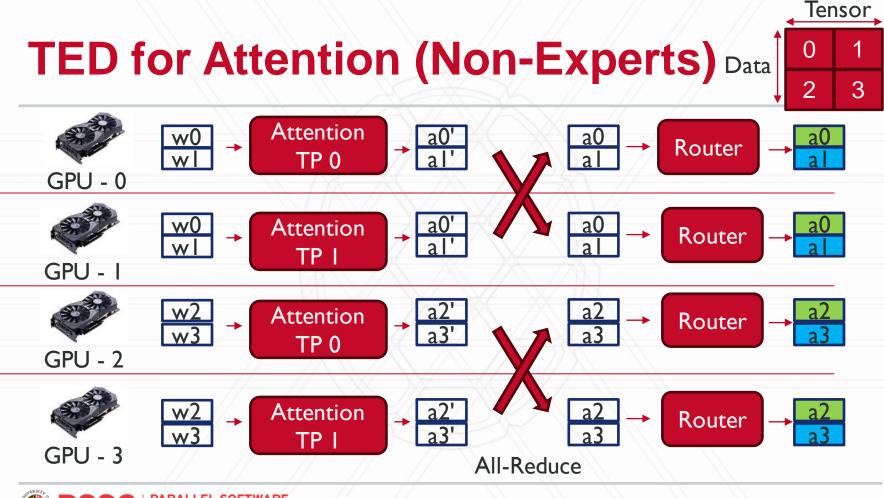




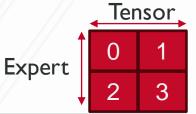


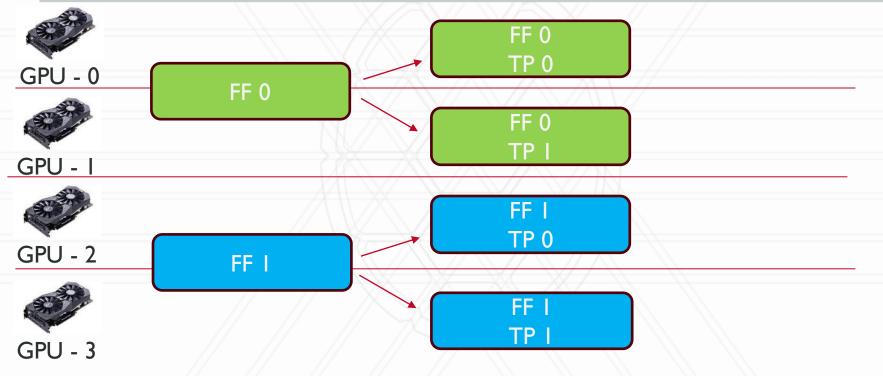






## **TED for FF (Experts)**

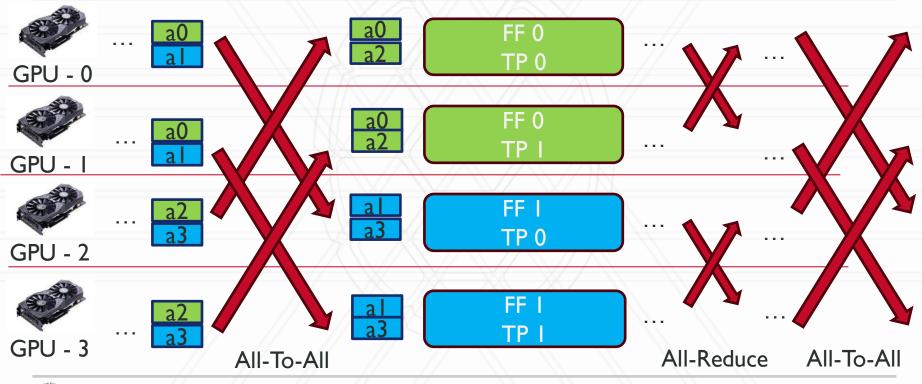






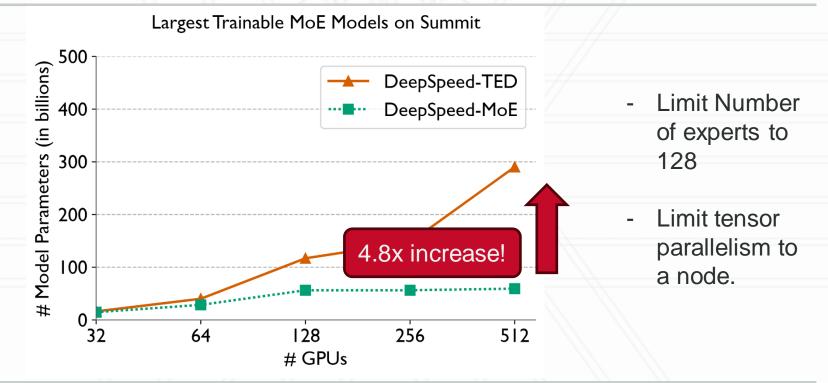
# + TED for FF (Experts)





21

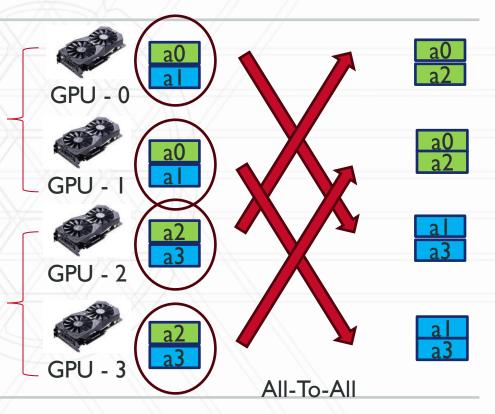
#### **3D parallelism helps up train larger models**





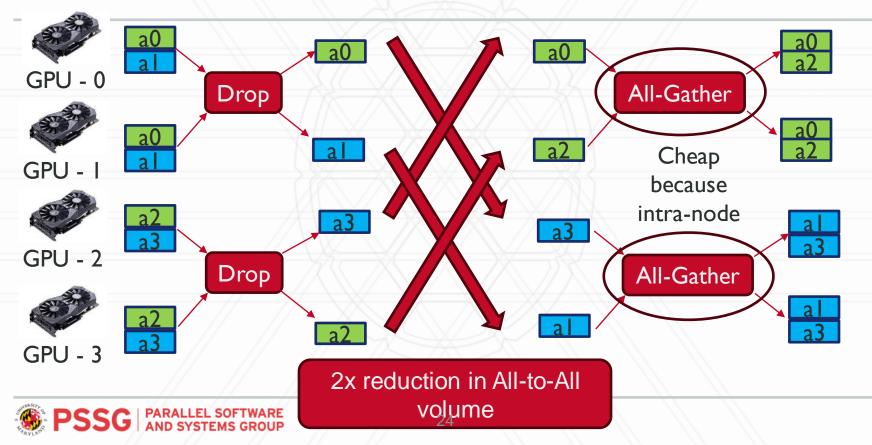
## **Opt #1 Duplicate Token Dropping (DTD)**

- Consider the first all-to-all.
- Tensor parallel GPUs communicate duplicate tokens.
- Remove this duplication to decrease All-To-All message sizes.





## **Opt #1 Duplicate Token Dropping**

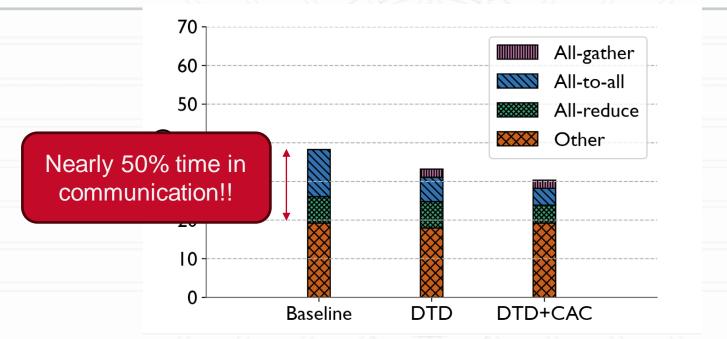


## Opt #2 Communication-Aware Checkpointing (CAC)

- Reduces number of all-to-all and all-reduce calls by 33 percent by utilizing marginally extra memory.
- More details in paper.



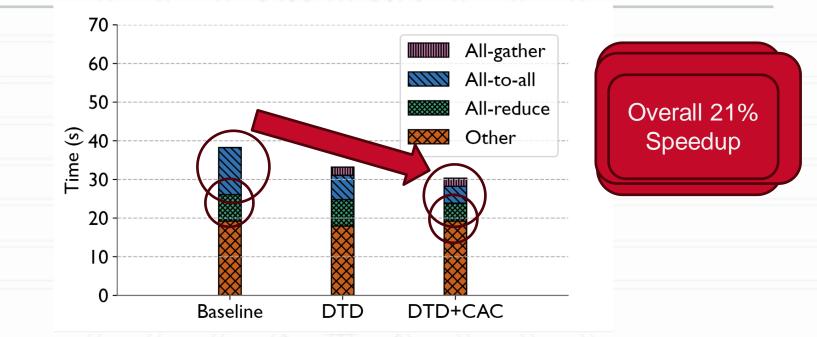
#### **Results**



Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit



#### Results

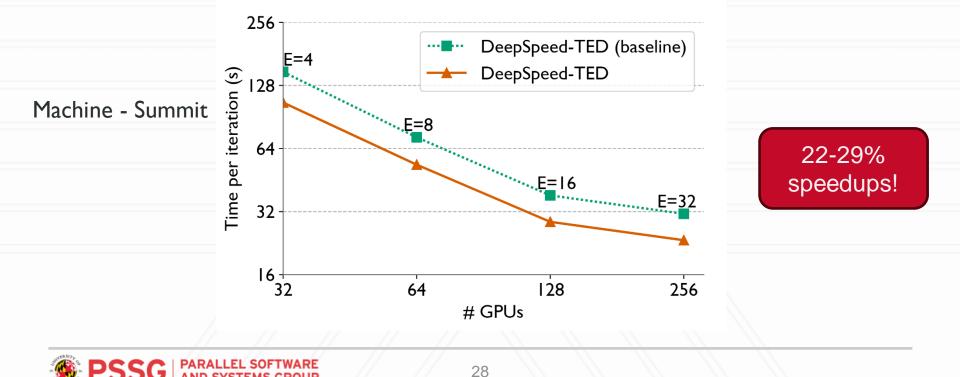


Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit



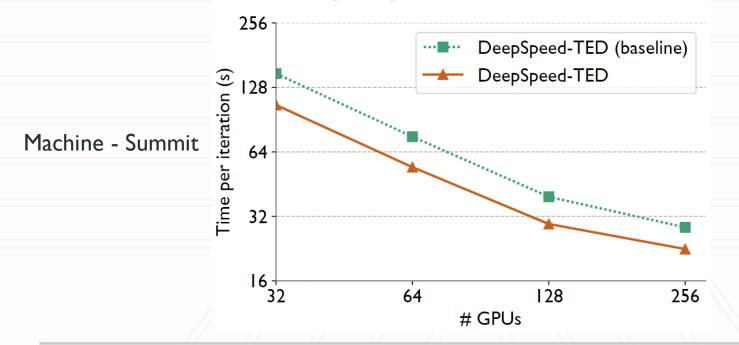
## **Results (Strong Scaling)**

Strong Scaling of a 6.7B Base Model with Varying # Experts



## **Results (Strong Scaling)**

Strong Scaling for a 6.7B Base Model with 4 Experts





## **Conclusion and Future Work**

- Developed DeepSpeed-TED, a highly scalable parallel framework for training high quality MoEs with large base models.
- Presented a three-dimensional hybrid parallel method that supports MoEs with 4-8x larger models than the SoTA.
- Introduced communication optimizations that can achieve significant reductions in the collective communication times.
- As future work, we want to explore pipeline parallelism as a fourth dimension to scale to even larger base models.



#### Code

- Our work is integrated in DeepSpeed, a widely used open-source framework for parallel deep learning.
  - URL https://github.com/microsoft/DeepSpeed



# **Bibliography**

[1] Using DeepSpeed and Megatron-LM to Train Megatron-LM Turing NLG 530B, A Large-Scale Generative Language Model, Smith et al., https://arxiv.org/abs/2201.11990 [2] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, Fedus et al., https://arxiv.org/abs/2101.03961 [3] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, Shoeybi et al., https://arxiv.org/abs/1909.08053 [4] DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale, Rajbhandari et al., https://arxiv.org/abs/2201.05596 [5] ZeRO: Memory Optimizations Toward Training Trillion Parameter Models, Rajbhandari et al., https://arxiv.org/abs/1910.02054





#### UNIVERSITY OF MARYLAND

Siddharth Singh ssingh37@umd.edu