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Neural Networks

Neural Networks (NNs): ‘Parameterized’ function approximators

Can work with very high dimensional data.

Layer O ur.... w Layer | ‘ “A sitting dog”

I Output f(x; 0)

Parameters(6)

Organized into Layers
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Stochastic Gradient Descent

- Repeat until loss (L) has been minimized sufficiently:
Read in a batch of training data

Forward Pass : Calculate output f (x; 8) and the loss (L) on the batch.

¢ oL
Backward Pass : Calculate gradients of the loss wrt the parameters (£)°

Optimizer Step : Use % to update 6.
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Motivation

- More parameters = More accurate neural networks ©

- However, more parameters = More FLOPs in training ®

MoEs can make a given model arbitrarily large without changing

its training FLOPs!
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Mixture-of-Experts (MoOES)

Step |:Start with a base model — usually a transformer neural network.

-

w0 FeedForward
— : 20 eedForwa
Wl Attention ” (FF)
Input Tokens\

A Transformer Layer (Base Model)
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Mixture-of-Experts (MoOES)

Step 2: Introduce multiple FF blocks. Each FF block is an ‘expert’.

-

FF 0

Attention

o

A Transformer Layer (Base Model) + 2 experts
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Mixture-of-Experts (MoOES)

Step 3: Introduce a parameterized router that maps tokens to experts.

f - )

- )/

A Transformer Layer (Base Model) + 2 experts
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M |Xt u r Total FLOPs per token is independent of the number of experts!

Step 3: Introduce a parameterized router that maps tokens to experts.

\E

A Transformer Layer (Base Model) + 2 experts
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Caveat

6.0
- Diminishing returns beyond 64-128
5.84
experts.
5.64
- Imperative to increase base model sizes &
. 5.24
along with expert counts.
5.04
4.8

______
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Gaps in Current Work

- Large MoEs are almost always trained in parallel on multiple GPUs.

- However, current parallel frameworks are not suited for MoEs built with
large base models.

- They either support base models of limited sizes due to limited

dimensions of parallelism.

Example — DeepSpeed-MokE [4] which has expert+data parallelism but not model
parallelism (tensor/pipeline)

- Or, they use extremely inefficient parallel techniques like out-of-core
training or FSDP.

Inefficiency occurs due to high communication times

.......
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Our work — Deepspeed-TED

Goal | - Support MoEs with large base models

Goal 2 - Minimize communication times to maintain efficiency.

A three-dimensional hybrid of state-of-the-art parallel training algorithms
T —Tensor Parallelism (Megatron-LM [3])
E — Expert Parallelism (DeepSpeed-MoE [4])
D — Sharded Data Parallelism (ZeRO [5])

......
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Data Parallelism Average Gradients
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Data + Expert Parallelisn
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All-to-All Communication
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Tensor Parallelism

- Parallelize the matrix multiplications inside Attention and FF.

- Let’s first look at tensor parallelism in isolation.
Half the parameters!

Replicate Dat
Attention eplicate Lata
TP O

Attention
TP |
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Tensor Parallelism

- Parallelize the matrix multiplications inside Attention and FF.

- Let’s first look at tensor parallelism in isolation.
Partial Outputs
GPU -0 20" ]
B Attention [N
' —
[a3"]

A 0

A8 N Attention N ,

W2 TP | -z
| a3 |
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Data + Expert + Tensor Parallelism

Now let us look at tensor+expert+data parallelism on 8 GPUs.
Two virtual topologies for Attention and FF-Blocks.

For brevity, we will only look at GPUs [0-3]

r

Data

Attention Block (Non-Expert) FF Blocks (Expert)
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_ Tensor_

TED for Attention (Non-Experts) DataI 1

Attention
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~ Tensor_

TED for Attention (Non-Experts) DataI 1
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_ Tensor_
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_ Tensor_

+ TED for FF (Experts) =

[ J

FF |
TP 0
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X
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3D parallelism helps up train larger models

Largest Trainable MoE Models on Summit

500 -

400 -

w
=)
o

200 -

100 -

# Model Parameters (in billions)

o

—&— DeepSpeed-TED
DeepSpeed-MoE

4.8x increase!

32 64
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Opt #1 Duplicate Token Dropping (DTD)

* Consider the first all-to-all.

* Tensor parallel GPUs
communicate duplicate
tokens.

* Remove this duplication to
decrease All-To-All message
sizes.
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Opt #1 Duplicate Token Dropplng

[a2] Cheap

because
intra-node

2X reductlon In All-to-All
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Opt #2 Communication-Aware
Checkpointing (CAC)

Reduces number of all-to-all and all-reduce calls by 33
percent by utilizing marginally extra memory.

More details in paper.

......
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Results

70 -
604 (M Al-gather
B All-to-all
501 B8 All-reduce
B Other
Nearly 50% time in
communication!!
10
Baseline DTD DTD+CAC

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit

......
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Results

(M Al-gather
BN All-to-all

B8 All-reduce
e

Overall 21%

Speedup

Baseline DTD

DTD+CAC

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit
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Results (Strong Scaling)

Strong Scaling of a 6.7B Base Model with Varying # Experts

256 -
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Results (Strong Scaling)

Machine - Summit

.......

Strong Scaling for a 6.7B Base Model with 4 Experts
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Conclusion and Future Work

Developed DeepSpeed-TED, a highly scalable parallel framework for training
high quality MoEs with large base models.

Presented a three-dimensional hybrid parallel method that supports MoEs
with 4-8x larger models than the SoTA.

Introduced communication optimizations that can achieve significant
reductions in the collective communication times.

As future work, we want to explore pipeline parallelism as a fourth
dimension to scale to even larger base models.

......
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Code

Our work is integrated in DeepSpeed, a widely used open-source
framework for parallel deep learning.
URL - https://github.com/microsoft/DeepSpeed

.......
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