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Neural Networks
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• Neural Networks (NNs):  ‘Parameterized’ function approximators 

• Can work with very high dimensional data.
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Stochastic Gradient Descent
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• Repeat until loss (L) has been minimized sufficiently:

• Read in a batch of training data

• Forward Pass : Calculate output 𝑓(𝑥; 𝜃) and the loss (L) on the batch.

• Backward Pass : Calculate gradients of the loss wrt the parameters (
𝜕𝐿

𝜕𝜃
). 

• Optimizer Step : Use 
𝜕𝐿

𝜕𝜃
 to update 𝜃. 



Motivation

• More parameters = More accurate neural networks ☺

• However, more parameters = More FLOPs in training 
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MoEs can make a given model arbitrarily large without changing 

its training FLOPs!



Mixture-of-Experts (MoEs)
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Mixture-of-Experts (MoEs)
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Step 2: Introduce multiple FF blocks. Each FF block is an ‘expert’.   
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Mixture-of-Experts (MoEs)
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Step 3: Introduce a parameterized router that maps tokens to experts.  

Router
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Mixture-of-Experts (MoEs)
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Total FLOPs per token is independent of the number of experts!

Step 3: Introduce a parameterized router that maps tokens to experts.  
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Caveat

• Diminishing returns beyond 64-128 

experts.

• Imperative to increase base model sizes 

along with expert counts.

Figure courtesy Fedus et al.  [2]
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Gaps in Current Work

• Large MoEs are almost always trained in parallel on multiple GPUs.

• However,  current parallel frameworks are not suited for MoEs built with 

large base models.

• They either support base models of limited sizes due to limited 

dimensions of parallelism.

• Example – DeepSpeed-MoE [4] which has expert+data parallelism but not model 

parallelism (tensor/pipeline)

• Or, they use extremely inefficient parallel techniques like out-of-core 

training or FSDP.

• Inefficiency occurs due to high communication times
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Our work – Deepspeed-TED

• Goal 1 - Support MoEs with large base models

• Goal 2 - Minimize communication times to maintain efficiency.

11

• A three-dimensional hybrid of state-of-the-art parallel training algorithms

• T – Tensor Parallelism (Megatron-LM [3])

• E – Expert Parallelism (DeepSpeed-MoE [4])

• D – Sharded Data Parallelism (ZeRO [5])



Data Parallelism
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Data + Expert Parallelism
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Tensor Parallelism

• Parallelize the matrix multiplications inside Attention and FF. 

• Let’s first look at tensor parallelism in isolation.
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Tensor Parallelism

• Parallelize the matrix multiplications inside Attention and FF. 

• Let’s first look at tensor parallelism in isolation.
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Data + Expert + Tensor Parallelism

• Now let us look at tensor+expert+data parallelism on 8 GPUs.

• Two virtual topologies for Attention and FF-Blocks.

• For brevity, we will only look at GPUs [0-3]
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TED for Attention (Non-Experts)
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TED for Attention (Non-Experts)
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TED for Attention (Non-Experts)
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TED for FF (Experts)
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+ TED for FF (Experts)
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- Limit Number 

of experts to 

128

- Limit tensor 

parallelism to 

a node. 
4.8x increase!
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3D parallelism helps up train larger models



Opt #1 Duplicate Token Dropping (DTD) 
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• Consider the first all-to-all.

• Tensor parallel GPUs 

communicate duplicate 

tokens.

• Remove this duplication to 

decrease All-To-All message 

sizes.

23



Opt #1 Duplicate Token Dropping 
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Opt #2 Communication-Aware 

Checkpointing (CAC)
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• Reduces number of all-to-all and all-reduce calls by 33 

percent by utilizing marginally extra memory.

• More details in paper.



Results

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit
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Nearly 50% time in 

communication!!



Results

Batch Time Profile of a 6.7B base model + 16 experts on 128 GPUs of Summit
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Overall 21% 
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Results (Strong Scaling)

28

22-29% 

speedups!

Machine - Summit



Results (Strong Scaling)

Machine - Summit



Conclusion and Future Work

• Developed DeepSpeed-TED, a highly scalable parallel framework for training 
high quality MoEs with large base models.

• Presented a three-dimensional hybrid parallel method that supports MoEs 
with 4-8x larger models than the SoTA.

• Introduced communication optimizations that can achieve significant 
reductions in the collective communication times.

• As future work, we want to explore pipeline parallelism as a fourth 
dimension to scale to even larger base models.
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Code

• Our work is integrated in DeepSpeed, a widely used open-source 

framework for parallel deep learning.

• URL - https://github.com/microsoft/DeepSpeed
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