
LLNL-PRES-856510
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract 
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Learning to Predict and Improve Build 
Successes in Package Ecosystems

Harshitha Menon*, Daniel Nichols*, Abhinav Bhatele, Todd Gamblin4-16-2024



2
LLNL-PRES-856510

Codes have tens or hundreds of dependency libraries

71 packages
188 dependency links

LBANN: Neural Nets for HPC

115 packages
335 dependency links

ARES: LLNL Multi-physics

MFEM: 
Higher-order finite elements code

31 packages,
69 dependency links



3
LLNL-PRES-856510

▪ blt@1.0 requires cmake >= 3.18, but is incompatible with 
cmake@3.21.0 due to an unknown bug

▪ camp@1.0 depends on cmake@3.19 or higher, but 
camp@1.1 depends on cmake@3.21 or higher 

▪ The umpire developers want to use camp@1.1 for its new 
features 

▪ Upgrading camp to 1.1 pushes cmake to the latest 3.21.0 
will cause the build to fail

▪ We need to use blt@1.1 to make this work.

Transitive dependency requirements can cause cascading errors 

Package maintainers have to build several versions to find a working configuration



4
LLNL-PRES-856510

▪ Package managers rely on developers to specify 
constraints

▪ Finding compatible set of versions for packages is 
hard

▪ In HPC, there are many more parameters to adjust
— Version, compiler, ABI, build options, microarchitecture, 

GPU capability, etc.

▪We solve this problem repeatedly by trial and 
error
— Incompatibilities are not known in advance

Developers integrate large software stacks manually



5
LLNL-PRES-856510

Use historical build data to understand build incompatibilities and 
predict build outcomes with high accuracy.

Goal

▪ RQ1 – Can a GNN predict the build outcomes of various package configurations with high accuracy?

▪ RQ2 – Can self-supervised pre-training be utilized to reduce the need for expensive build data to train 
the model?

▪ RQ3 – How can predicted build outcomes be utilized to select better package configurations and increase 
the likelihood of a successful build?



6
LLNL-PRES-856510

Graph Neural Network (GNN)

* figure from Thomas Kipf, University of Amsterdam



7
LLNL-PRES-856510

Graph Neural Networks (GNN) for Build Prediction



8
LLNL-PRES-856510

▪ Each configuration is represented as 
a graph

▪ Node features incorporate 
information about packages (which 
package and version)

▪ Layers GCN
▪ Final layer does a global pooling to 

predict whether this configuration 
builds or not.

Overview of build outcome prediction using GNN

Package spec

GNN
Graph 

classification
layer

Build?
Y/N

Output 
representation 
for each node



9
LLNL-PRES-856510

Main Components

▪ Multiple Graph Convolutional layers.

▪ Residual block: aids in training deeper 
networks.

▪ Embedding layer: maps package information 
into a continuous vector space

▪ Pool layer: computes the average of all node 
features and creates a representation of the 
entire graph

BuildCheck GNN Architecture



10
LLNL-PRES-856510

Self-Supervised Pre-training Task for Learning Node Embeddings 
for Downstream tasks

Pre-trained package dependency model can be used for build prediction with fine-tuning 

GNN
Node 

classification

[MASK]



11
LLNL-PRES-856510

▪ Evaluated on 367 unique packages in E4S ecosystem

▪ different programming languages such as C/C++, FORTRAN, 

Python, Lua, and others.

▪ With tens and hundreds of dependencies

▪ We explored 45,837 unique build configurations

▪ Utilize Spack for managing software packages and 

creating the dataset

Evaluation on Extreme Scale Scientific Software Stack (E4S)



12
LLNL-PRES-856510

Spack enables Software Distribution for HPC

▪ Spack is a flexible package manager which automates 
the build and installation of scientific software

▪ Packages are parameterized, so that users can easily 
tweak and tune configurations

▪ Spack specs can constrain versions of dependencies

▪ Spack concretizer solves the version constraints to 
ensure consistent builds

github.com/spack/spack

Spack is critical for DoE’s Exascale Computing Project mission to create robust exascale software ecosystem



13
LLNL-PRES-856510

Building Software on High Performance Computing (HPC) 
Systems

▪ We want to build software from source 
for performance
— Use fast compilers

— Use vendor provided libraries

— Need to use the host GPU

▪ Often need to build multiple variants of 
the same package
— On new machines, first time builds

Frontier 
at Oak Ridge National Laboratory

Fugaku at RIKEN

El Capitan at Lawrence Livermore 
National Laboratory

2 ExaFlops Peak
AMD Zen / Radeon

1.1 ExaFlops Peak
AMD Zen / Radeon

500 PetaFlops Peak
Fujitsu/ARM a64fx



14
LLNL-PRES-856510

Evaluation

Our model achieves an accuracy of 91% on E4S build dataset

▪ Base model achieves an accuracy of 91%

▪ We can achieve better accuracy with 
little build data when we do 
self-supervised pre-training first



15
LLNL-PRES-856510

Evaluation

Our model achieves an accuracy of 91% on E4S build dataset

▪ False positives result in long, expensive 
builds

▪ False negatives result in not attempting 
builds that would succeed



16
LLNL-PRES-856510

▪ Spack uses Answer Set 

Programming to solve dependency 

constraints

▪ Currently prefers most recent 

versions using optimization

▪ Change logic program to prefer 

more probable parent-child pairs

▪ Re-build E4S packages

Improving Builds in Spack with Predicted Build Outcomes

Improves successful build ratio from 89% to 96%



17
LLNL-PRES-856510

▪ RQ1 – Demonstrated how to combine the capabilities of GNNs and advanced package 
management technologies to predict build outcomes with high accuracy

▪ RQ2 – Demonstrated the effectiveness of self-supervised pre-training to reduce the amount 
of build data necessary for training

▪ RQ3 – Improved the rate of successful package build using predicted build outcomes to 
guide version selection

▪ Our model can eliminate very expensive trial-and-error exercise to find working builds 

▪ Model more build outcomes than success

▪ Incorporate probabilistic reasoning into Spack’s solver

Conclusion and Future Work



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United 
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, 
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government 
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was prepared by LLNL under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project 
No. 21-SI-005.


