Learning to Predict and Improve Build Successes in Package Ecosystems

Harshitha Menon*, Daniel Nichols*, Abhinav Bhavele, Todd Gamblin

4-16-2024
Codes have tens or hundreds of dependency libraries

- **MFEM**: Higher-order finite elements code
 - 31 packages, 69 dependency links

- **LBANN**: Neural Nets for HPC
 - 71 packages, 188 dependency links

- **ARES**: LLNL Multi-physics
 - 115 packages, 335 dependency links
Transitive dependency requirements can cause cascading errors

- `blt@1.0` requires `cmake` ≥ 3.18, but is incompatible with `cmake@3.21.0` due to an unknown bug
- `camp@1.0` depends on `cmake@3.19` or higher, but `camp@1.1` depends on `cmake@3.21` or higher
- The `umpire` developers want to use `camp@1.1` for its new features
- Upgrading `camp` to 1.1 pushes `cmake` to the latest 3.21.0 will cause the build to fail
- We need to use `blt@1.1` to make this work.

Package maintainers have to build several versions to find a working configuration
Developers integrate large software stacks manually

- Package managers rely on developers to specify constraints

- Finding compatible set of versions for packages is hard

- In HPC, there are many more parameters to adjust
 - Version, compiler, ABI, build options, microarchitecture, GPU capability, etc.

- We solve this problem repeatedly by trial and error
 - Incompatibilities are not known in advance
Goal

Use historical build data to understand build incompatibilities and predict build outcomes with high accuracy.

- **RQ1** – Can a GNN predict the build outcomes of various package configurations with high accuracy?

- **RQ2** – Can self-supervised pre-training be utilized to reduce the need for expensive build data to train the model?

- **RQ3** – How can predicted build outcomes be utilized to select better package configurations and increase the likelihood of a successful build?
Graph Neural Network (GNN)

\[X = H^{(0)} \]

\[H^{(l+1)} = \sigma(\hat{A}H^{(l)}W^{(l)}) \]

Node classification:
\[\text{softmax}(z_n) \]
e.g. Kipf & Welling (ICLR 2017)

Graph classification:
\[\text{softmax}(z_n) \]
e.g. Duvenaud et al. (NIPS 2015)

Link prediction:
\[p(A_{ij}) = \sigma(z_i^Tz_j) \]
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

* figure from Thomas Kipf, University of Amsterdam
Graph Neural Networks (GNN) for Build Prediction

Why GNN?

- GNNs are highly effective for analyzing graph structured data.
- Build outcome depends on the relationship between packages in a dependency graph

Problem Definition

- The package dependency graph is a directed acyclic graph (DAG)
- Graph is represented as $G = (V, E)$, where V is the set of nodes representing the packages and E is the set of edges capturing the dependencies.
- We cast the build success prediction problem as a supervised learning problem
- **Goal**: learn a model to predict the build outcome
Overview of build outcome prediction using GNN

- Each configuration is represented as a graph
- Node features incorporate information about packages (which package and version)
- Layers GCN
- Final layer does a global pooling to predict whether this configuration builds or not.
Main Components

- Multiple Graph Convolutional layers.
- Residual block: aids in training deeper networks.
- Embedding layer: maps package information into a continuous vector space
- Pool layer: computes the average of all node features and creates a representation of the entire graph
Self-Supervised Pre-training Task for Learning Node Embeddings for Downstream tasks

Pre-trained package dependency model can be used for build prediction with fine-tuning
Evaluation on Extreme Scale Scientific Software Stack (E4S)

- Evaluated on 367 unique packages in E4S ecosystem
 - different programming languages such as C/C++, FORTRAN, Python, Lua, and others.
 - With tens and hundreds of dependencies
- We explored 45,837 unique build configurations
- Utilize Spack for managing software packages and creating the dataset
Spack enables Software Distribution for HPC

- Spack is a flexible package manager which automates the build and installation of scientific software
- Packages are parameterized, so that users can easily tweak and tune configurations
- Spack specs can constrain versions of dependencies
- Spack concretizer solves the version constraints to ensure consistent builds

Spack is critical for DoE’s Exascale Computing Project mission to create robust exascale software ecosystem
We want to build software from source for performance
 - Use fast compilers
 - Use vendor provided libraries
 - Need to use the host GPU

Often need to build multiple variants of the same package
 - On new machines, first time builds
Evaluation

- Base model achieves an accuracy of 91%
- We can achieve better accuracy with little build data when we do self-supervised pre-training first

Our model achieves an accuracy of 91% on E4S build dataset
Evaluation

Our model achieves an accuracy of 91% on E4S build dataset

- False positives result in long, expensive builds
- False negatives result in not attempting builds that would succeed
Improving Builds in Spack with Predicted Build Outcomes

- Spack uses Answer Set Programming to solve dependency constraints
- Currently prefers most recent versions using optimization
- Change logic program to prefer more probable parent-child pairs
- Re-build E4S packages

Improves successful build ratio from 89% to 96%
Conclusion and Future Work

- **RQ1** – Demonstrated how to combine the capabilities of GNNs and advanced package management technologies to predict build outcomes with high accuracy

- **RQ2** – Demonstrated the effectiveness of self-supervised pre-training to reduce the amount of build data necessary for training

- **RQ3** – Improved the rate of successful package build using predicted build outcomes to guide version selection

- Our model can eliminate very expensive trial-and-error exercise to find working builds

- Model more build outcomes than success

- Incorporate probabilistic reasoning into Spack’s solver
Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was prepared by LLNL under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 21-SI-005.