

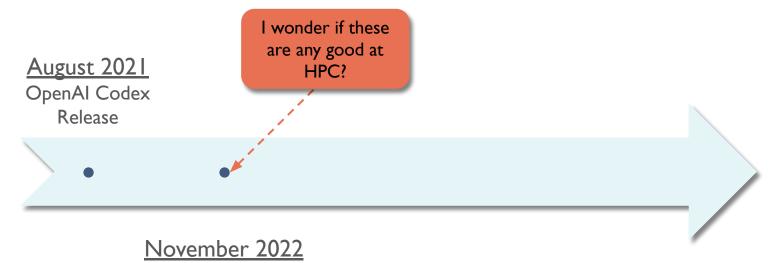
MAY 12 - 16, 2024 | HAMBURG, GERMANY

HPC-Coder: Modeling Parallel Programs using Large Language Models

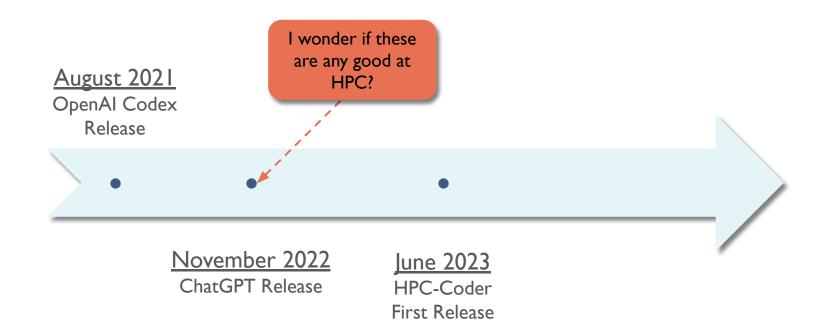
Daniel Nichols^{*}, Aniruddha Marathe[†], Harshitha Menon[†], Todd Gamblin[†], Abhinav Bhatele^{*}

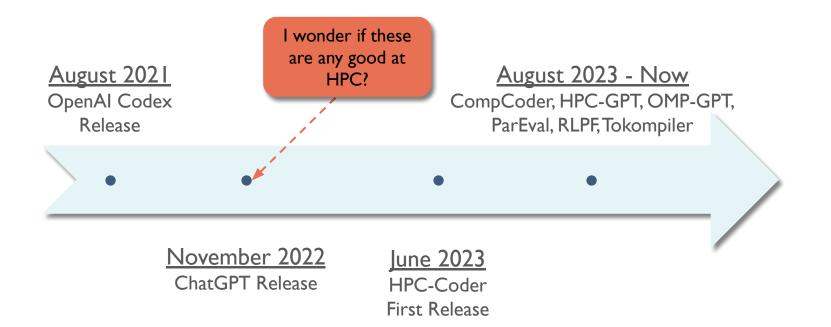
* University of Maryland † Lawrence Livermore National Laboratory

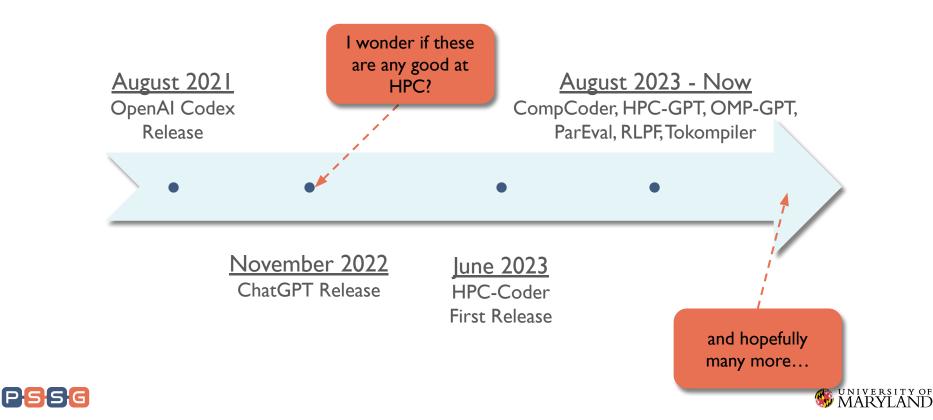
ChatGPT Release



ChatGPT Release







- PolyCoder
 - State-of-the-art, open-source, code LLM released in 2022
 - 2.7B parameters and outperformed OpenAl's Codex

- PolyCoder
 - State-of-the-art, open-sc Ο
 - 2.7B parameters and out 0

We prompted the LLM to write simple

parallel code...

2

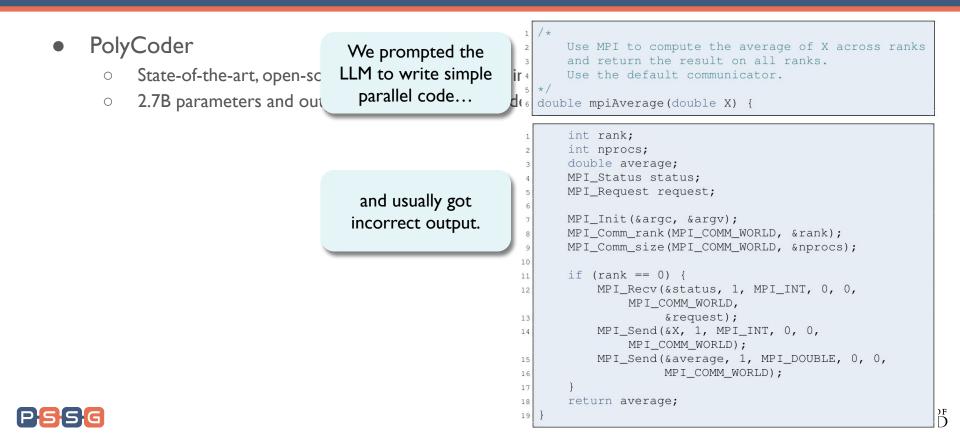
3

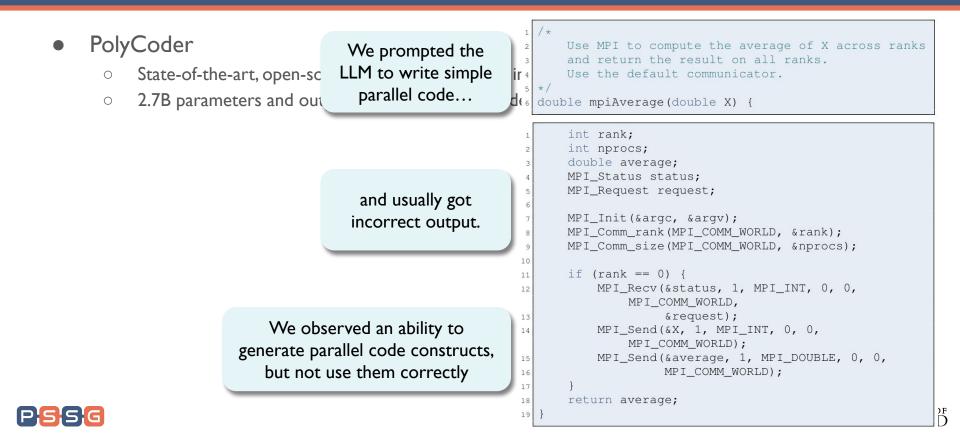
5

ir 4

1 /* Use MPI to compute the average of X across ranks and return the result on all ranks. Use the default communicator. */

d(6 double mpiAverage(double X) {

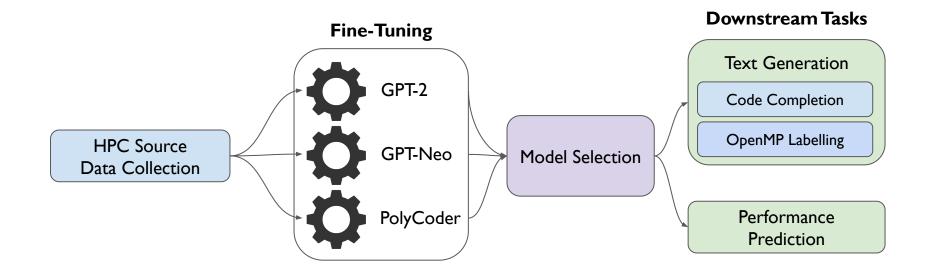


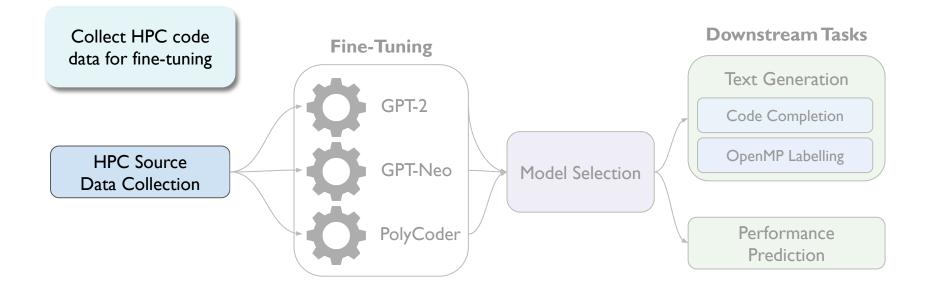


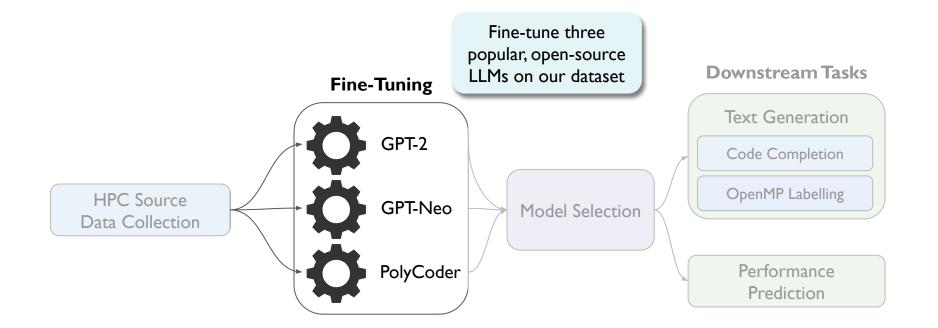
Improving LLMs for Parallel Code

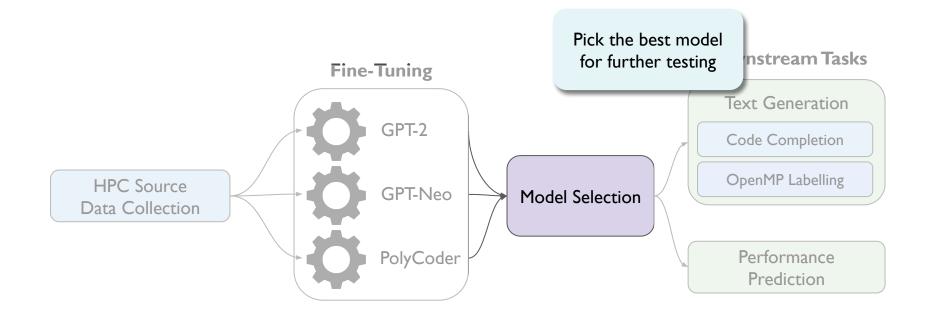
RQ I – How can we train LLMs to better understand and generate parallel and HPC code?

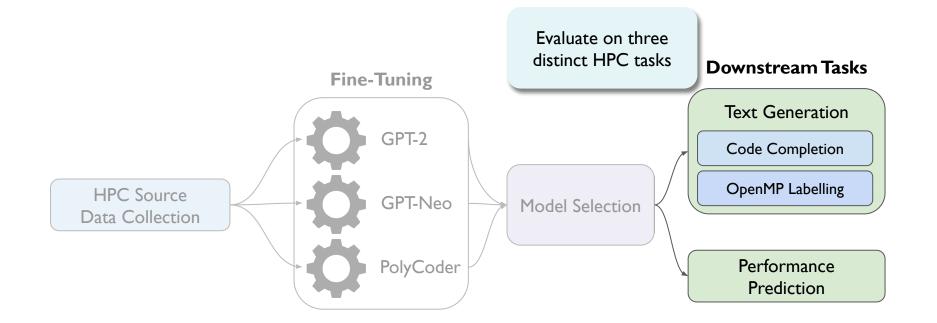
RQ 2 – How can we effectively measure the capabilities of LLMs at modelling parallel and HPC code?











RQ 2 – How can we effectively measure the capabilities of LLMs at modelling parallel and HPC code?

- Dataset Objectives
 - Large amounts of parallel and HPC code from disparate sources and projects

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data
- Clean data; no duplicate files, no auto-generated code

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data
- Clean data; no duplicate files, no auto-generated code
- HPC-Coder Dataset

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data
- Clean data; no duplicate files, no auto-generated code
- HPC-Coder Dataset
 - Scrape GitHub for HPC repos with \geq 3 stars

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data
- Clean data; no duplicate files, no auto-generated code
- HPC-Coder Dataset
 - Scrape GitHub for HPC repos with \geq 3 stars
 - Filter by C/C++ source files

• Dataset Objectives

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data
- Clean data; no duplicate files, no auto-generated code

• HPC-Coder Dataset

- Scrape GitHub for HPC repos with \geq 3 stars
- Filter by C/C++ source files
- De-duplication by SHA-256 hash

• Dataset Objectives

- Large amounts of parallel and HPC code from disparate sources and projects
- Quality code data
- Clean data; no duplicate files, no auto-generated code

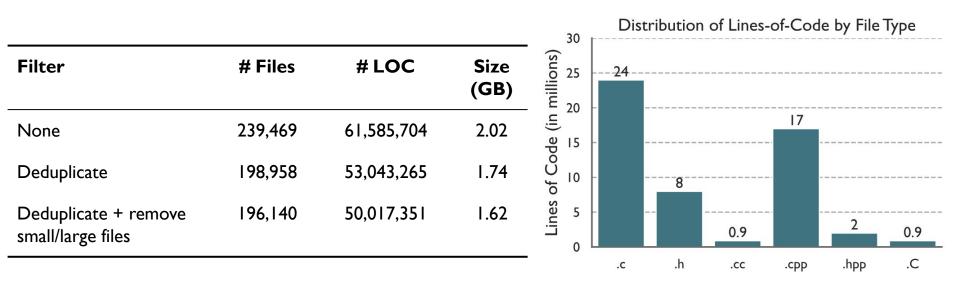
• HPC-Coder Dataset

- Scrape GitHub for HPC repos with \geq 3 stars
- Filter by C/C++ source files
- De-duplication by SHA-256 hash
- Remove large (> IMB) and small (< 15 tokens) files

Filter	# Files	# LOC	Size (GB)
None	239,469	61,585,704	2.02
Deduplicate	198,958	53,043,265	1.74
Deduplicate + remove small/large files	196,140	50,017,351	1.62

Filter	# Files	# LOC	Size (GB)
None	239,469	61,585,704	2.02
Deduplicate	198,958	53,043,265	1.74
Deduplicate + remove small/large files	196,140	50,017,351	1.62
			Approximately 18% are removed du

preprocessing.



Selecting LLMs to Fine-Tune

• Focus on LLMs that fit on consumer GPUs

Selecting LLMs to Fine-Tune

- Focus on LLMs that fit on consumer GPUs
- Choose from a variety of pre-training data

Selecting LLMs to Fine-Tune

- Focus on LLMs that fit on consumer GPUs
- Choose from a variety of pre-training data
- Choose state-of-the-art LLMs in these categories (at the time)

Selecting LLMs to Fine-Tune

- Focus on LLMs that fit on consumer GPUs
- Choose from a variety of pre-training data
- Choose state-of-the-art LLMs in these categories (at the time)

Model Name	No. of Parameters	Pre-Training Data	
GPT-2	I.5B	📃 natural language	
GPT-Neo	2.7B	📃 natural language + 🏼 🖊 🖌 code	
PolyCoder	2.7B	> code	

- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning

- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning

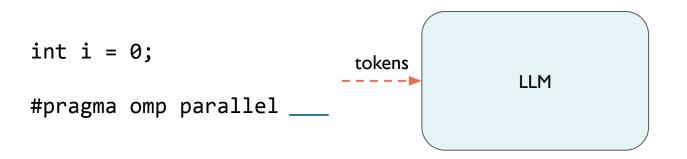
int i = 0;

#pragma omp parallel ____

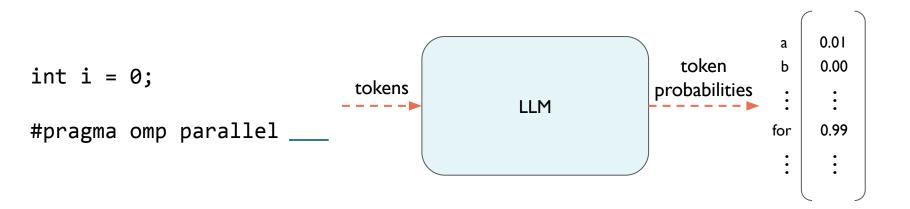
- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning

int i = 0;
#pragma omp parallel ____

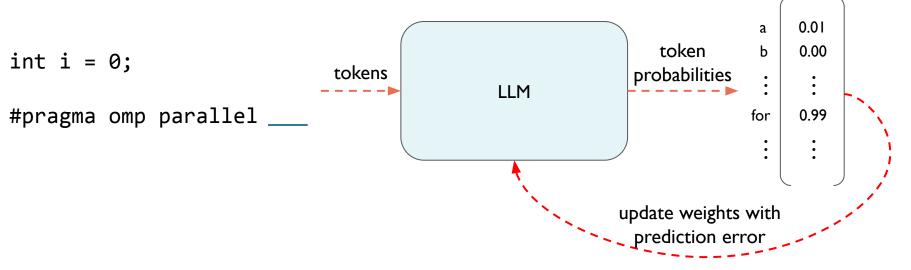
- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning



- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning



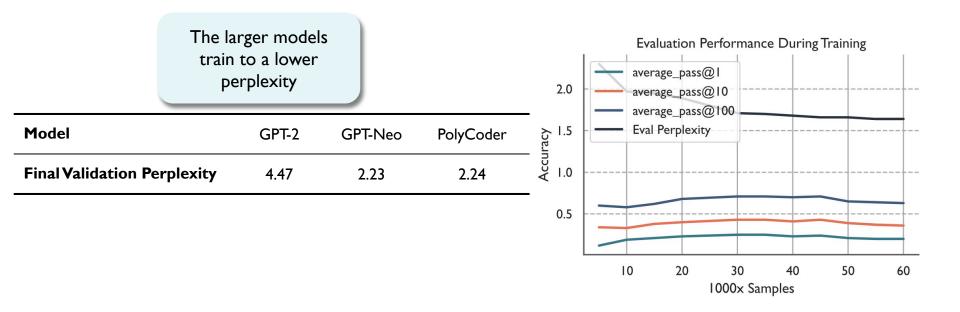
- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning

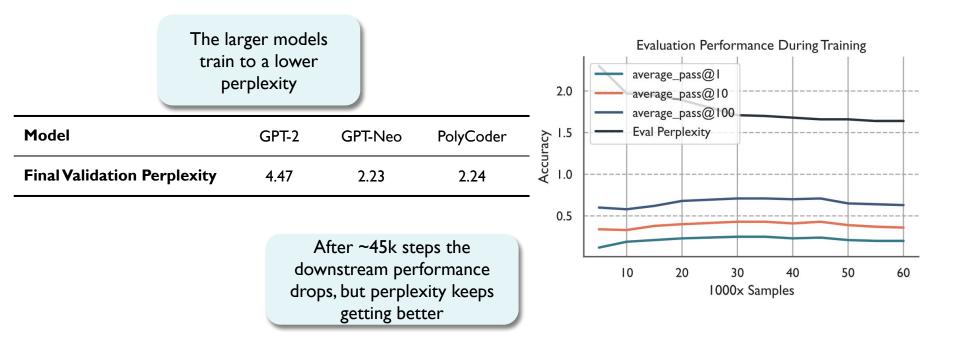


- Fine-tune the existing LLMs on our dataset
- Auto-regressive fine-tuning
- Fine-tune for I epoch
- Record perplexity
 - Inversely proportional to how "perplexed" the LLM is by tokens in the distribution
 - Lower is better
- Run downstream tasks every 1000 steps

Model	GPT-2	GPT-Neo	PolyCoder
Final Validation Perplexity	4.47	2.23	2.24

The larger models train to a lower perplexity				
Model	GPT-2	GPT-Neo	PolyCoder	
Final Validation Perplexity	4.47	2.23	2.24	





• How well can the LLMs generate code?

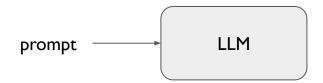
- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code

- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k

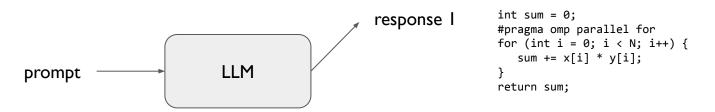
- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k

prompt

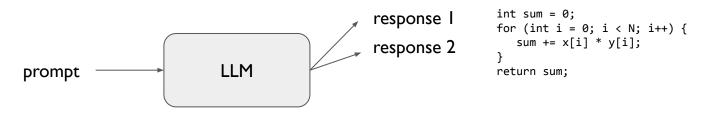
- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k



- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k

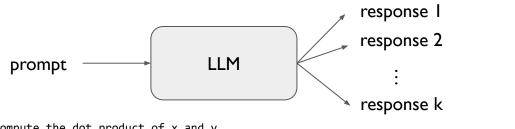


- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k



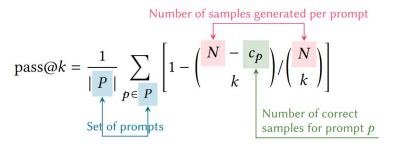
- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k

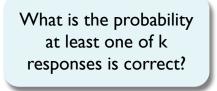
- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k

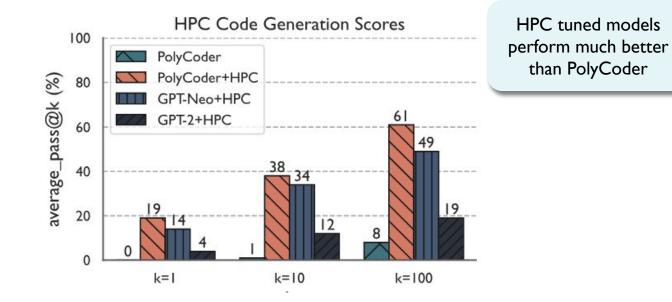


What is the probability at least one of k responses is correct?

- How well can the LLMs generate code?
- 25 unique kernels spanning serial, OpenMP, and MPI code
- Measure the pass@k







PSSG

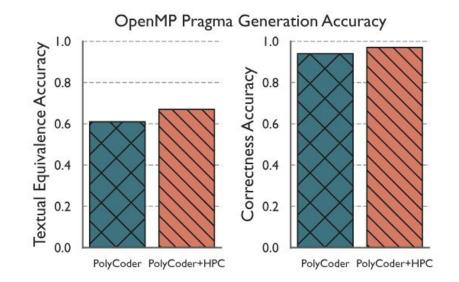
- Fine-tune LLMs to predict OpenMP pragmas
- Create dataset of 16k for loops from earlier dataset
- Fine-tune for 3 epochs

- Fine-tune LLMs to predict OpenMP pragmas
- Create dataset of 16k for loops from earlier dataset
- Fine-tune for 3 epochs

```
#pragma omp parallel for
for (int i = 0; i < N; i++) {
    x[i] = foo(x[i]);
}</pre>
```


- Fine-tune LLMs to predict OpenMP pragmas
- Create dataset of 16k for loops from earlier dataset
- Fine-tune for 3 epochs

```
#pragma omp parallel for
for (int i = 0; i < N; i++) {
    x[i] = foo(x[i]);
}
for (int i = 0; i < N; i++) {
    x[i] = foo(x[i]);
}
comp>#pragma omp parallel for<END_OMP>
```

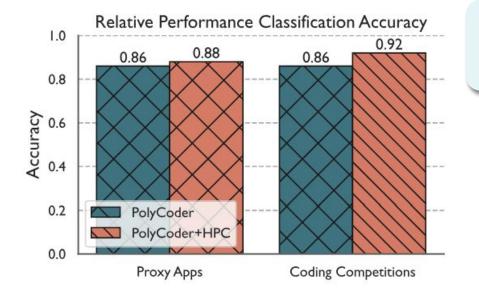



Up to 97% accuracy predicting the OpenMP pragmas.

Evaluation Task 3: Relative Performance Modeling

- Compile and run entire commit history of Kripke and Laghos
- Fine-tune LLM as classifier to predict performance degradation given commit diff
- I performance improved or stayed the same; 0 performance got worse

Evaluation Task 3: Relative Performance Modeling



Up to 92% accuracy predicting performance regressions.

Conclusion and Takeaways

- Fine-tuning can improve the performance of code LLMs on low data resource problems
- State-of-the-art LLMs are bad at parallel and HPC tasks
- We need custom evaluations on HPC and parallel tasks

Contributions and Next Steps

- A large, HPC source code dataset
- A fine-tuned HPC code LLM: HPC-Coder
- Benchmarks for evaluating LLMs on HPC tasks
- HPC-Coder-v2 in coming weeks...

"Can Large Language Models Write Parallel Code?" HPDC '24

dnicho@umd.edu

"Performance-Aligned LLMs for Generating Fast Code" arXiv 2404.18864

