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June 2023
HPC-Coder
First Release

August 2023 - Now
CompCoder, HPC-GPT, OMP-GPT, 

ParEval, RLPF, Tokompiler

and hopefully 
many more…
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● PolyCoder
○ State-of-the-art, open-source, code LLM released in 2022
○ 2.7B parameters and outperformed OpenAI’s Codex

Code LLMs are Bad at Parallel Code

We prompted the 
LLM to write simple 

parallel code…

and usually got 
incorrect output. 

We observed an ability to 
generate parallel code constructs, 

but not use them correctly
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Overview of Our Approach

HPC Source 
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance 
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-Tuning

Evaluate on three 
distinct HPC tasks

RQ 2 – How can we effectively measure the capabilities 
of LLMs at modelling parallel and HPC code?
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● HPC-Coder Dataset
○ Scrape GitHub for HPC repos with ≥ 3 stars
○ Filter by C/C++ source files
○ De-duplication by SHA-256 hash
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● Focus on LLMs that fit on consumer GPUs
● Choose from a variety of pre-training data
● Choose state-of-the-art LLMs in these categories (at the time)

Selecting LLMs to Fine-Tune

Model Name No. of Parameters Pre-Training Data

GPT-2 1.5B natural language

GPT-Neo 2.7B natural language +         code

PolyCoder 2.7B code
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● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

LLM

a 0.01
b 0.00

……

for 0.99

……

int i = 0;

#pragma omp parallel

token 
probabilitiestokens

update weights with 
prediction error



● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning
● Fine-tune for 1 epoch
● Record perplexity

○ Inversely proportional to how “perplexed” the LLM is by tokens in the distribution
○ Lower is better

● Run downstream tasks every 1000 steps

Fine-Tuning Methodology
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Fine-Tuning Results

The larger models 
train to a lower 

perplexity

After ~45k steps the 
downstream performance 
drops, but perplexity keeps 

getting better

Model GPT-2 GPT-Neo PolyCoder

Final Validation Perplexity 4.47 2.23 2.24
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int product(int *x, int *y, size_t N) {



Evaluation Task 1: Code Generation

HPC tuned models 
perform much better 

than PolyCoder
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Evaluation Task 2: OpenMP Pragma Generation

#pragma omp parallel for
for (int i = 0; i < N; i++) {
   x[i] = foo(x[i]);
} 

for (int i = 0; i < N; i++) {
   x[i] = foo(x[i]);
}
<OMP>#pragma omp parallel for<END_OMP> 



Evaluation Task 2: OpenMP Pragma Generation

Up to 97% accuracy 
predicting the 

OpenMP pragmas.



● Compile and run entire commit history of Kripke and Laghos
● Fine-tune LLM as classifier to predict performance degradation given commit diff
● 1 – performance improved or stayed the same; 0 – performance got worse
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Evaluation Task 3: Relative Performance Modeling

Up to 92% accuracy 
predicting performance 

regressions.



● Fine-tuning can improve the performance of code LLMs on low data resource 
problems

● State-of-the-art LLMs are bad at parallel and HPC tasks
● We need custom evaluations on HPC and parallel tasks

Conclusion and Takeaways



● A large, HPC source code dataset
● A fine-tuned HPC code LLM: HPC-Coder
● Benchmarks for evaluating LLMs on HPC tasks
● HPC-Coder-v2 in coming weeks…

Contributions and Next Steps

“Can Large Language Models Write 
Parallel Code?”  HPDC ‘24

“Performance-Aligned LLMs for 
Generating Fast Code”  arXiv 2404.18864

dnicho@umd.edu


