
HPC-Coder: Modeling Parallel Programs
using Large Language Models

Daniel Nichols*, Aniruddha Marathe†, Harshitha Menon†, Todd Gamblin†, Abhinav Bhatele*
* University of Maryland

† Lawrence Livermore National Laboratory

Timeline and Motivation

Timeline and Motivation

August 2021
OpenAI Codex

Release

Timeline and Motivation

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

Timeline and Motivation

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

I wonder if these
are any good at

HPC?

Timeline and Motivation

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

I wonder if these
are any good at

HPC?

June 2023
HPC-Coder
First Release

Timeline and Motivation

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

I wonder if these
are any good at

HPC?

June 2023
HPC-Coder
First Release

August 2023 - Now
CompCoder, HPC-GPT, OMP-GPT,

ParEval, RLPF, Tokompiler

Timeline and Motivation

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

I wonder if these
are any good at

HPC?

June 2023
HPC-Coder
First Release

August 2023 - Now
CompCoder, HPC-GPT, OMP-GPT,

ParEval, RLPF, Tokompiler

and hopefully
many more…

● PolyCoder
○ State-of-the-art, open-source, code LLM released in 2022
○ 2.7B parameters and outperformed OpenAI’s Codex

Code LLMs are Bad at Parallel Code

● PolyCoder
○ State-of-the-art, open-source, code LLM released in 2022
○ 2.7B parameters and outperformed OpenAI’s Codex

Code LLMs are Bad at Parallel Code

We prompted the
LLM to write simple

parallel code…

● PolyCoder
○ State-of-the-art, open-source, code LLM released in 2022
○ 2.7B parameters and outperformed OpenAI’s Codex

Code LLMs are Bad at Parallel Code

We prompted the
LLM to write simple

parallel code…

and usually got
incorrect output.

● PolyCoder
○ State-of-the-art, open-source, code LLM released in 2022
○ 2.7B parameters and outperformed OpenAI’s Codex

Code LLMs are Bad at Parallel Code

We prompted the
LLM to write simple

parallel code…

and usually got
incorrect output.

We observed an ability to
generate parallel code constructs,

but not use them correctly

Improving LLMs for Parallel Code

RQ 1 – How can we train LLMs to better understand and generate parallel and
HPC code?

Improving LLMs for Parallel Code

RQ 1 – How can we train LLMs to better understand and generate parallel and
HPC code?

RQ 2 – How can we effectively measure the capabilities of LLMs at modelling
parallel and HPC code?

Improving LLMs for Parallel Code

Overview of Our Approach

HPC Source
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-Tuning

Overview of Our Approach

HPC Source
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-TuningCollect HPC code
data for fine-tuning

RQ 1 – How can we train LLMs to better
understand and generate parallel and HPC code?

Overview of Our Approach

HPC Source
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-Tuning

Fine-tune three
popular, open-source
LLMs on our dataset

RQ 1 – How can we train LLMs to better
understand and generate parallel and HPC code?

Overview of Our Approach

HPC Source
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-Tuning
Pick the best model
for further testing

RQ 1 – How can we train LLMs to better
understand and generate parallel and HPC code?

Overview of Our Approach

HPC Source
Data Collection Model Selection

Code Completion

OpenMP Labelling

Text Generation

Performance
Prediction

Downstream Tasks

GPT-2

GPT-Neo

PolyCoder

Fine-Tuning

Evaluate on three
distinct HPC tasks

RQ 2 – How can we effectively measure the capabilities
of LLMs at modelling parallel and HPC code?

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data
○ Clean data; no duplicate files, no auto-generated code

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data
○ Clean data; no duplicate files, no auto-generated code

● HPC-Coder Dataset

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data
○ Clean data; no duplicate files, no auto-generated code

● HPC-Coder Dataset
○ Scrape GitHub for HPC repos with ≥ 3 stars

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data
○ Clean data; no duplicate files, no auto-generated code

● HPC-Coder Dataset
○ Scrape GitHub for HPC repos with ≥ 3 stars
○ Filter by C/C++ source files

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data
○ Clean data; no duplicate files, no auto-generated code

● HPC-Coder Dataset
○ Scrape GitHub for HPC repos with ≥ 3 stars
○ Filter by C/C++ source files
○ De-duplication by SHA-256 hash

Collecting a Parallel and HPC Code Dataset

● Dataset Objectives
○ Large amounts of parallel and HPC code from disparate sources and projects
○ Quality code data
○ Clean data; no duplicate files, no auto-generated code

● HPC-Coder Dataset
○ Scrape GitHub for HPC repos with ≥ 3 stars
○ Filter by C/C++ source files
○ De-duplication by SHA-256 hash
○ Remove large (> 1MB) and small (< 15 tokens) files

Collecting a Parallel and HPC Code Dataset

Collecting a Parallel and HPC Code Dataset

Filter # Files # LOC Size (GB)

None 239,469 61,585,704 2.02

Deduplicate 198,958 53,043,265 1.74

Deduplicate + remove
small/large files

196,140 50,017,351 1.62

Collecting a Parallel and HPC Code Dataset

Filter # Files # LOC Size (GB)

None 239,469 61,585,704 2.02

Deduplicate 198,958 53,043,265 1.74

Deduplicate + remove
small/large files

196,140 50,017,351 1.62

Approximately 18% of files
are removed during

preprocessing.

Collecting a Parallel and HPC Code Dataset

Filter # Files # LOC Size
(GB)

None 239,469 61,585,704 2.02

Deduplicate 198,958 53,043,265 1.74

Deduplicate + remove
small/large files

196,140 50,017,351 1.62

● Focus on LLMs that fit on consumer GPUs

Selecting LLMs to Fine-Tune

● Focus on LLMs that fit on consumer GPUs
● Choose from a variety of pre-training data

Selecting LLMs to Fine-Tune

● Focus on LLMs that fit on consumer GPUs
● Choose from a variety of pre-training data
● Choose state-of-the-art LLMs in these categories (at the time)

Selecting LLMs to Fine-Tune

● Focus on LLMs that fit on consumer GPUs
● Choose from a variety of pre-training data
● Choose state-of-the-art LLMs in these categories (at the time)

Selecting LLMs to Fine-Tune

Model Name No. of Parameters Pre-Training Data

GPT-2 1.5B natural language

GPT-Neo 2.7B natural language + code

PolyCoder 2.7B code

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

int i = 0;

#pragma omp parallel

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

int i = 0;

#pragma omp parallel

tokens

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

LLM
int i = 0;

#pragma omp parallel

tokens

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

LLM

a 0.01
b 0.00

……

for 0.99

……

int i = 0;

#pragma omp parallel

token
probabilitiestokens

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning

Fine-Tuning Methodology

LLM

a 0.01
b 0.00

……

for 0.99

……

int i = 0;

#pragma omp parallel

token
probabilitiestokens

update weights with
prediction error

● Fine-tune the existing LLMs on our dataset
● Auto-regressive fine-tuning
● Fine-tune for 1 epoch
● Record perplexity

○ Inversely proportional to how “perplexed” the LLM is by tokens in the distribution
○ Lower is better

● Run downstream tasks every 1000 steps

Fine-Tuning Methodology

Fine-Tuning Results

Model GPT-2 GPT-Neo PolyCoder

Final Validation Perplexity 4.47 2.23 2.24

Fine-Tuning Results

The larger models
train to a lower

perplexity

Model GPT-2 GPT-Neo PolyCoder

Final Validation Perplexity 4.47 2.23 2.24

Fine-Tuning Results

The larger models
train to a lower

perplexity

Model GPT-2 GPT-Neo PolyCoder

Final Validation Perplexity 4.47 2.23 2.24

Fine-Tuning Results

The larger models
train to a lower

perplexity

After ~45k steps the
downstream performance
drops, but perplexity keeps

getting better

Model GPT-2 GPT-Neo PolyCoder

Final Validation Perplexity 4.47 2.23 2.24

● How well can the LLMs generate code?

Evaluation Task 1: Code Generation

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code

Evaluation Task 1: Code Generation

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

prompt

/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

LLMprompt

/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

LLMprompt

response 1

/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

int sum = 0;
#pragma omp parallel for
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

LLMprompt

response 1
response 2

/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

int sum = 0;
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

LLMprompt

response 1
response 2

response k

…
/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

LLMprompt

response 1
response 2

response k

…

What is the probability
at least one of k

responses is correct?

/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

● How well can the LLMs generate code?
● 25 unique kernels spanning serial, OpenMP,

and MPI code
● Measure the pass@k

Evaluation Task 1: Code Generation

LLMprompt

response 1
response 2

response k

…

What is the probability
at least one of k

responses is correct?

/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

Evaluation Task 1: Code Generation

HPC tuned models
perform much better

than PolyCoder

● Fine-tune LLMs to predict OpenMP pragmas
● Create dataset of 16k for loops from earlier dataset
● Fine-tune for 3 epochs

Evaluation Task 2: OpenMP Pragma Generation

● Fine-tune LLMs to predict OpenMP pragmas
● Create dataset of 16k for loops from earlier dataset
● Fine-tune for 3 epochs

Evaluation Task 2: OpenMP Pragma Generation

#pragma omp parallel for
for (int i = 0; i < N; i++) {
 x[i] = foo(x[i]);
}

● Fine-tune LLMs to predict OpenMP pragmas
● Create dataset of 16k for loops from earlier dataset
● Fine-tune for 3 epochs

Evaluation Task 2: OpenMP Pragma Generation

#pragma omp parallel for
for (int i = 0; i < N; i++) {
 x[i] = foo(x[i]);
}

for (int i = 0; i < N; i++) {
 x[i] = foo(x[i]);
}
<OMP>#pragma omp parallel for<END_OMP>

Evaluation Task 2: OpenMP Pragma Generation

Up to 97% accuracy
predicting the

OpenMP pragmas.

● Compile and run entire commit history of Kripke and Laghos
● Fine-tune LLM as classifier to predict performance degradation given commit diff
● 1 – performance improved or stayed the same; 0 – performance got worse

Evaluation Task 3: Relative Performance Modeling

Evaluation Task 3: Relative Performance Modeling

Up to 92% accuracy
predicting performance

regressions.

● Fine-tuning can improve the performance of code LLMs on low data resource
problems

● State-of-the-art LLMs are bad at parallel and HPC tasks
● We need custom evaluations on HPC and parallel tasks

Conclusion and Takeaways

● A large, HPC source code dataset
● A fine-tuned HPC code LLM: HPC-Coder
● Benchmarks for evaluating LLMs on HPC tasks
● HPC-Coder-v2 in coming weeks…

Contributions and Next Steps

“Can Large Language Models Write
Parallel Code?” HPDC ‘24

“Performance-Aligned LLMs for
Generating Fast Code” arXiv 2404.18864

dnicho@umd.edu

