
Can Large Language Models
Write Parallel Code?

Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, Abhinav Bhatele
University of Maryland

Timeline and Motivation

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

I wonder if these
are any good at

HPC?

January 2023
We train HPC-Coder

[ISC24]

HPC-Coder: Improving Code LLMs for HPC

Much better code
generation after fine-tuning

on HPC data…

but these were simple tasks.

Nichols et al., “Modeling Parallel Programs using Large Language Models”, ISC ‘24

LLMs are bad at Parallel Code

Takeaways from HPC-Coder

We prompted the
LLM to write simple

parallel code…

and usually got
incorrect output.

We observed an ability to
generate parallel code constructs,

but not use them correctly

Timeline and Motivation
SotA Code LLM,
we re-evaluate

August 2021
OpenAI Codex

Release

November 2022
ChatGPT Release

I wonder if these
are any good at

HPC?

January 2023
We train HPC-Coder

[ISC24]

March 2023
GPT-4 Release

They’re not, but we
can improve them

August 2023 - Now
StarCoder, DeepSeek, CodeLlama, …

● LLMs are bad with parallel code
○ But how bad?

● State-of-the-art changes too quickly
○ We need a way to understand the current state of the practice

● HPC has unique software engineering objectives
○ Current benchmarks are mostly simple Python, Java functions
○ Performance, parallelism, efficiency are not the focus of current code LLM research

The Need for New Benchmarks and Metrics

RQ1 – How well do state-of-the-art LLMs generate parallel code, and which models are
the best?

RQ2 – Which parallel execution models and problem types are most challenging for
LLMs?

RQ3 – How performant and scalable is the parallel code generated by LLMs?

RQ4 – How well can LLMs translate between execution models? How performant and
scalable is the translated code?

Research Questions

What are code LLM benchmarks?

/* Return the value of the smallest odd
 number in the vector x.
 Use Kokkos to compute in parallel.
 Assume Kokkos is already initialized.
 Examples:

 input: [7, 9, 5, 2, 8, 16, 4, 1]
 output: 1
 input: [8, 36, 7, 2, 11]
 output: 7
*/
int smallestOdd(Kokkos::View<const int*> const& x) {

The LLM is given a natural
language description of the

problem…

What are code LLM benchmarks?

/* Return the value of the smallest odd
 number in the vector x.
 Use Kokkos to compute in parallel.
 Assume Kokkos is already initialized.
 Examples:

 input: [7, 9, 5, 2, 8, 16, 4, 1]
 output: 1
 input: [8, 36, 7, 2, 11]
 output: 7
*/
int smallestOdd(Kokkos::View<const int*> const& x) {
 int min_odd = std::numeric_limits<int>::max();
 Kokkos::parallel_reduce("smallestOdd", x.size(),
 KOKKOS_LAMBDA(const int i, int& update_min_odd) {
 if (x(i) % 2 != 0 && x(i) < update_min_odd) {
 update_min_odd = x(i);
 }
 },
 Kokkos::Min<int>(min_odd));
 return min_odd == std::numeric_limits<int>::max()? -1 : min_odd;
}

The LLM is given a natural
language description of the

problem…

and generates the code to
solve that problem.

Unit tests evaluate the
correctness of the
generated code.

● 420 parallel code problems
○ 7 execution models

■ Serial, OpenMP, MPI, MPI+OpenMP, CUDA, HIP, Kokkos
○ 12 computational problem types

■ Sort, scan, dense linear algebra, sparse linear algebra, search, reduce, histogram, stencil, graph,
geometry, fourier transform, transform

○ 5 problems per problem-type–execution model pair
● Drivers to evaluate correctness, performance, and scaling

ParEval: A Parallel Code Generation Evaluation Framework

/* Return true if `val` is only in one of vectors x or y.
 Return false if it is in both or neither. Use MPI to search in parallel.
 Assume MPI has already been initialized.
 Every rank has a complete copy of x and y.
 Return the result on rank 0.
 Examples:

 input: x=[1,8,4,3,2], y=[3,4,4,1,1,7], val=7
 output: true

 input: x=[1,8,4,3,2], y=[3,4,4,1,1,7], val=1
 output: false
*/
bool xorContains(std::vector<int> const& x, std::vector<int> const& y, int val) {

Another Example
problem description

examples

parallel instructions

function header

● pass@k – How often are outputs correct?

How do we evaluate LLM generated code?

prompt
/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

LLM

int sum = 0;
#pragma omp parallel for
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

response 1

int sum = 0;
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

response 2

…

response kWhat is the probability at
least one of k responses is

correct?

● speedup@k – What’s the expected max speedup?

How do we evaluate LLM generated code?

prompt
/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

LLM

int sum = 0;
#pragma omp parallel for
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

response 1

int sum = 0;
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

response 2

…

response kWhat is the expected max
speedup over k responses?

● speedup@k – What’s the expected max speedup?

How do we evaluate LLM generated code?

prompt
/* Compute the dot product of x and y
using OpenMP */
int product(int *x, int *y, size_t N) {

LLM

int sum = 0;
#pragma omp parallel for
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

response 1

int sum = 0;
for (int i = 0; i < N; i++) {
 sum += x[i] * y[i];
}
return sum;

response 2

…

response kWhat is the expected max
speedup over k responses?

● Correctness
○ pass@k

● Performance
○ speedupn@k
○ speedupmax@k
○ efficiencyn@k
○ efficiencymax@k

How do we evaluate LLM generated code?
What is the probability at
least one of k responses is

correct?

What is the expected max
speedup over k responses

on n resources?

What is the expected max
speedup over k responses

on all resource counts?

What is the expected max
efficiency over k responses

on n resources?

What is the expected max
efficiency over k responses

on all resource counts?

● SotA code LLMs
● Open and closed source, big and small

Choosing LLMs to Compare

Two popular, standard
benchmarks for Python

code synthesis

Best open-source
model on HumanEvalBest model at time

of writing

Using ParEval to Evaluate an LLM

LLM
420

prompts
N samples
per prompt

Use N samples to
estimate metrics

Run samples to
record correctness
and performance

ParEval Code Generation Results: Correctness

RQ1
How well do

state-of-the-art LLMs
generate parallel code,
and which models are

the best?

All of the models are bad
at writing parallel code.

Unfortunately commercial
models are the best.

ParEval Code Generation Results: Correctness

RQ2
Which parallel

execution models and
problem types are most
challenging for LLMs?

LLMs are better for
execution models “closer”

to serial code.

They’re bad with
distributed memory.

Small LLMs struggle
with “low-data”

execution models.

ParEval Code Generation Results: Correctness

RQ2
Which parallel execution models and problem

types are most challenging for LLMs?LLMs struggle with sparse,
unstructured problems.

Surprisingly bad with
sort and scan.

ParEval Code Generation Results: Performance

Some LLMs produce much
faster code than others even

when less accurate.

RQ3
How performant and
scalable is the parallel

code generated by
LLMs?

● How well can LLMs translate between execution models?
● Translation tasks

○ Serial to OpenMP
○ Serial to MPI
○ Cuda to Kokkos

Testing LLM Translation

Testing LLM Translation

// A serial implementation of sumOfMinimumElements
/* Return the sum of the minimum value at each index
 of vectors x and y for all indices.
 i.e. sum = min(x_0, y_0) + min(x_1, y_1)+ ...
 Example:

 input: x=[3, 4, 0, 2, 3], y=[2, 5, 3, 1, 7]
 output: 10
*/
double sumOfMinimumElements(std::vector<double> const& x,
std::vector<double> const& y) {
 double sum = 0.0;
 for (size_t i = 0; i < x.size(); ++i) {
 sum += std::min(x[i], y[i]);
 }
 return sum;
}

// An OpenMP implementation of sumOfMinimumElements
/* Return the sum of the minimum value at each index
 of vectors x and y for all indices.
 i.e. sum = min(x_0, y_0) + min(x_1, y_1) + ...
 Use OpenMP to sum in parallel.
 Example:

 input: x=[3, 4, 0, 2, 3], y=[2, 5, 3, 1, 7]
 output: 10
*/
double sumOfMinimumElements(std::vector<double> const& x,
std::vector<double> const& y) {

Translation Results

RQ4
How well can LLMs
translate between
execution models?

How performant and
scalable is the

translated code?

Small LLMs benefit significantly
from serial examples.

Almost always better at
translating than generating

from scratch.

● ParEval: a benchmark for comprehensively evaluating the ability of LLMs to generate
parallel code

● Novel metrics for evaluating the performance of LLM generated code
● An in-depth study of SotA LLMs across ParEval and an identification of areas where

improvement and future work is needed

Contributions

Can Large Language Models Write Parallel Code?

sometimes…

● Adding new tests
○ Fill-in-the-middle
○ Raja, Python (mpi4py, multiprocessing)
○ We are welcome to suggestions and contributions
○ https://github.com/parallelcodefoundry/ParEval/

● Up-to-date dashboard
○ https://pssg.cs.umd.edu/blog/2024/pareval/

The Future of ParEval

“Performance-Aligned
LLMs for Generating
Fast Code” arXiv

2404.18864

dnicho@umd.edu

ParEval Dashboard RLPF

https://github.com/parallelcodefoundry/ParEval/issues
https://pssg.cs.umd.edu/blog/2024/pareval/

