
Taking GPU Programming Models to 
Task for Performance Portability

Joshua H. Davis, Pranav Sivaraman, Joy Kitson, Konstantinos Parasyris, Harshitha 
Menon, Isaac Minn, Giorgis Georgakoudis, Abhinav Bhatele

1



The Team

UMD

LLNL

Abhinav Bhatele Joshua H. Davis Joy KitsonPranav Sivaraman Isaac Minn

Harshitha Menon Giorgis Georgakoudis Konstantinos Parasyris

2



The Performance Portability Problem

● One code, multiple systems
● Perlmutter, Frontier, and 

Aurora supercomputers use 
three different GPU vendors

● How to maintain a single 
codebase that achieves 
good performance on all 
platforms?

3



Portable Programming Models
● GPU programming models can provide a solution through portable 

abstractions of hardware capabilities

● …but developers now have many options to choose from:

Directive-based Library-based Language Extension
Research Question: How well do each of the available GPU 

programming models enable performance portability in practice?

4



Methodology: Proxy Apps
● We surveyed a large number of proxy applications

○ Selected five from a range of domains, which all had some existing implementations

● Implemented missing versions where needed, verified with test cases

● Ensured each implementation of an app does the same thing

● Ensured that the timers were consistent
○ We measured data movement time but don’t show that here

● Selected largest input problems that would fit in DRAM of all devices

● Picked five different GPU-based platforms

5



1. BabelStream: memory bandwidth benchmark with five kernels

2. XSBench: cross-section lookup kernel with irregular memory access
○ Proxy for OpenMC, (Monte Carlo neutron transport)

3. CloverLeaf: 2D structured compressible Euler equations solver
○ From Mantevo Suite

4. su3_bench: implements SU(3) a complex number matmul
○ Proxy for MILC (Lattice QCD)

5. miniBUDE: molecular docking kernel with compute-bound characteristics
○ Proxy for BUDE (Bristol University Docking Engine)

Proxy Apps Used

6



New Ports and Development Efforts

● Several new ports created (C), some apps modified to align timed regions (M)

● Spack packages enable reproducible environment – build apps with one command

● Working on upstreaming all changes for usage by the wider community

7



Hardware Platforms
System GPU Model DRAM Size

Summit (ORNL) NVIDIA V100 GPU 32 GB
Perlmutter (NERSC) NVIDIA A100 GPU 40 GB
Zaratan (UMD) NVIDIA H100 GPU 80 GB
Corona (LLNL) AMD MI50 GPU 32 GB
Frontier (ORNL) AMD MI250X GPU 64 GB

8



Other Experimental Considerations

● Keep compilers the same as 
much as possible unless >5% 
improvement from using 
another compiler

● Data points represent mean of 
three trials, variation was very 
small

● Use developer’s choices for 
kernel parameters – no tuning!

Prog. Model NVIDIA AMD

CUDA GCC 12.2.0 N/A

HIP N/A ROCmCC 5.7.0

SYCL* DPC++ 2024.01.20 DPC++ 2024.01.20

Kokkos GCC 12.2.0 ROCmCC 5.7.0

RAJA GCC 12.2.0 ROCmCC 5.7.0

OpenMP* NVHPC 24.1 LLVM 17.0.6

OpenACC NVHPC 24.1 Clacc 2023-08-15

9



A100 and MI250X Roofline Plots

Most kernels are memory-bound in this work, except miniBUDE

10



BabelStream dot Reduction Kernel

11

Number in cell is runtime (seconds)
Blue means faster than native, red means slower

Directive-based models struggle more than other 
models with dot, a simple reduction kernel



XSBench Results

12

Number in cell is runtime (seconds)
Blue means faster than native, red means slower

All programming models can achieve reasonable 
portability for XSBench



miniBUDE Results

13

Number in cell is runtime (seconds)
Blue means faster than native, red means slower

All programming models struggle with 
miniBUDE, a compute-bound kernel relying on 

shared memory



Portability Optimizations
● Kokkos CloverLeaf: switching reduction operation from 2D to 1D 

parallelism
○ Improves performance on all systems due to fewer barrier stalls

● OpenMP/OpenACC su3_bench: align complex number struct to 32-byte 
boundary
○ Improves performance on NVIDIA by reducing load instructions

● RAJA miniBUDE: leverage new dynamic shared memory features
○ Makes the RAJA port more consistent with other models, improves NVIDIA 

performance

14



Performance Portability Metric
● Pennycook (2019) metric for 

performance portability

● Applied to performance after our 
optimizations

● SYCL, Kokkos, and RAJA 
generally outscore OpenMP and 
OpenACC

15

Higher is 
better



Conclusion
● We examined performance portability for seven programming models 

across NVIDIA and AMD GPUs
○ SYCL, Kokkos, and RAJA slightly outperform OpenMP and OpenACC

○ HIP performance is sometimes surprisingly poor without additional tuning

● Building these apps is now significantly more automated thanks to our 
efforts in creating Spack environments

● Clearer compilation processes, improved profiling tools, and exposure of 
additional tuning capabilities in the programming models are all on the 
critical path

16

jhdavis@umd.edu



jhdavis@umd.edu

17

This material is based upon work supported in part by the National Science Foundation (NSF) under Grant 
No. 2047120, the NSF Graduate Research Fellowship Program under Grant No. DGE 2236417, and the 
U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, 
DOE Computational Science Graduate Fellowship under Award No. DE-SC0021. 

This work was performed in part under the auspices of the U.S. DOE by Lawrence Livermore National 
Laboratory under Contract DE-AC5207NA27344 (LLNL-CONF-855581).

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National 
Laboratory, which is supported by the Office of Science of the U.S. DOE under Contract No. 
DE-AC05-00OR22725, and of the National Energy Research Scientific Computing Center (NERSC), a U.S. 
DOE Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under 
Contract No. DE-AC02-05CH11231 using NERSC awards DDR-ERCAP0025593 and 
DDR-ERCAP0029890.



Spack Environment Efforts
● All miniapps now have working Spack packages to build on NVIDIA and 

AMD systems, for all programming models

● Created a Spack Environment for the suite to allow users to install all 
applications and dependencies with one command

● Collecting experimental results also automated using Spack Python 
scripting tools

18



Insights from Porting Experiences
● OpenACC to OpenMP

○ Straightforward, just rote directive substitution

● Porting to Kokkos:
○ Boilerplate code needed if you want to avoid changing original data structures

○ Convert C++ dynamic arrays to unmanaged Views to deep_copy into device View

● Porting to RAJA:
○ Relying on separate libraries (RAJA and Umpire) for compute and data portability 

makes compilation harder to get right

○ But, permits incremental development, and Spack can help (develop environments)

19



Remaining Portability Outliers
● Lagging OpenACC performance on AMD GPUs
● Poor performance with CloverLeaf and miniBUDE for Kokkos, 

OpenMP, and OpenACC
● Poor reduction performance for OpenACC and OpenMP
● Poor reduction performance on AMD GPUs for RAJA

20



Compilers Used

21



Portable Programming Models
● GPU programming models can provide a solution through portable 

abstractions of hardware capabilities

● …but developers now have many options to choose from:

Directive-based Library-based Language Extension

22



Simple Kernels in BabelStream

23

For BabelStream 
kernels besides dot, all 

models can provide 
excellent performance 

portability besides 
directive-based models 

on AMD GPUs



All Results

24



Observation 1: CUDA on NVIDIA

CUDA is consistently the best performing port on NVIDIA GPUs

25



Observation 2: HIP on AMD

HIP does not always guarantee the best performance on AMD GPUs

26



Observation 3: SYCL

SYCL performance is relatively stable, and competitive with HIP on AMD GPUs

27



Observation 4: Kokkos and RAJA

Kokkos and RAJA can achieve near-baseline performance

Kokkos slightly better for AMD, RAJA slightly better for NVIDIA

28



Observation 5: OpenMP and OpenACC

OpenMP is slower than the baseline in roughly half of our cases

OpenACC performance suffers on AMD GPUs

29


