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● Three different GPU vendors in top 
ten supercomputers

● Maximizing access requires using 
portable programming models

● But, manually porting is 
time-consuming and tedious!

Why Automate Translation for HPC?
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Research Question: Can LLMs help to 
translate HPC code repositories into portable 

GPU programming models?
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● ParEval found that parallel code tasks 
are uniquely difficult

● Function-level LLM translation of 
parallel code is more feasible than 
generation

● But we don’t know if this will scale to 
full repositories
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Background for LLM Parallel Code Translation

D. Nichols, J. H Davis, et al. “Can Large Language Models Write Parallel Code?”, HPDC 2024

Higher is better
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Across codes chosen, using three programming model pairs:

CUDA to OpenMP Offload
● Non-portable to directive-based portable

CUDA to Kokkos
● Non-portable to C++ abstraction-based portable

OpenMP Threads to OpenMP Offload
● CPU portable to GPU portable

Introducing ParEval-Repo: Translation Tasks
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GPU

GPUCPU
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Introducing ParEval-Repo: Small Cases

XOR kernel:
__global__ void cellsXOR(const int *input, 
                         int *output, size_t N) {
  int i = blockIdx.y * blockDim.y + threadIdx.y;
  int j = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < N && j < N) {
    int count = 0;
    if (i > 0   && input[(i-1)*N + j] == 1) count++;
    if (i < N-1 && input[(i+1)*N + j] == 1) count++;
    if (j > 0   && input[i*N + (j-1)] == 1) count++;
    if (j < N-1 && input[i*N + (j+1)] == 1) count++;
    output[i*N + j] = (count == 1) ? 1 : 0;
  }
}
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Starting small: three minimized codes to test capability to handle simple repos

All three include a Makefile

1. nanoXOR: 1 source file

2. microXORh: 1 source file, 1 header file

3. microXOR: 2 source files, 1 header file
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Three larger cases are taken from public codes – want to avoid codes that already have 
ports to minimize data contamination

4. SimpleMOC-kernel: SimpleMOC proxy, neutron flux attenuation. Has external 
dependency on cuRAND.

5. XSBench: OpenMC proxy, macroscopic cross-section lookup. Has public ports to 
OpenMP and Kokkos – will show impact of possible data contamination

6. llm.c: CUDA implementation of LLM pretraining. We reduced the repo complexity 
slightly.

Introducing ParEval-Repo: Larger Cases
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App. name # of source 
lines

Cyclomatic 
complexity

# of files OpenMP 
Offload

Kokkos

nanoXOR 109 33 2 X X

microXORh 127 33 3 X X

microXOR 133 33 4 X X

SimpleMOC-kernel 780 59 6 X X

XSBench 2449 264 9 ✓ ✓

llm.c 3039 360 7 X X
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ParEval-Repo Translation Benchmark Suite
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Sample prompt:

You are a helpful coding assistant. You are helping a 
software developer translate a codebase from the CUDA
execution model to the OpenMP Offload execution model...

Below is a codebase written in the CUDA execution model... 
Here is the file tree of the entire repository:

<file tree>

Here is the code for each file in the codebase:

Makefile
...

src/main.cpp
...

Translate the src/main.cpp file to the OpenMP offload
execution model...

Naive translation technique: translate file-by-file in arbitrary order

9

Translation Techniques: Naive

Problem: exceeds LLM input context 
window for all but the smallest apps
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Need to break up the task into pieces that can fit into LLM context window

● Break each file into separate “chunks” that fit in context

● Order translation of files by dependency structure

○ Headers before source, source before build files)

● Use a context agent LLM to retrieve context from already-translated files for next translation

Translation Techniques: Agentic
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Translation Techniques: Agentic

11
J. H. Davis @ ICPP 2025



Translation Techniques: Agentic

Break file into small chunks to 
translate separately
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Translation Techniques: Agentic

Order files to translate “top-down”: translate 
dependencies before dependents
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Translation Techniques: Agentic

Ask LLM to retrieve useful context from 
already-translated files for next translation
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Translation Techniques: Agentic

Generate next chunk translation based on 
context from prior files
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Translation Techniques: Agentic
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● SWE-agent is a state-of-the-art software engineering 
(SWE) LLM framework

● Can call tools, write tests, run code, etc.

● Needed to format our translation tasks as Github issues

● Designed for Python: editing tool cannot handle Makefiles 
due to tabs

Translation Techniques: SWE-agent
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Experimental Setup: LLMs Used
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LLM Name Provider # of parameters Open-source? Reasoning?

Gemini 1.5 Flash Google ? Closed Generic

GPT 4o-mini OpenAI ? Closed Generic

o4-mini OpenAI ? Closed Reasoning

Llama 3.3 70B Instruct Meta 70 billion Open Generic

QwQ-32B Alibaba Cloud 32 billion Open Reasoning
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Experimental Setup: Evaluation Metrics

Evaluation Metrics:

● pass@1 scores: chance of generating correct translation with one attempt

○ Assessed using app’s correctness test cases

● build@1 scores: chance of generating compilable translation with one attempt
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k = 1
N = 20
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● Minimal success with larger codes

● When the LLM has to translate the 
build system as well, scores are even 
lower
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Build@1 for CUDA to OpenMP Offload Translation
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● Significant correctness cliff beyond 1-3 
files

● o4-mini naive achieves overall best 
pass@1 scores

● Naive often beats agentic

22

Pass@1 for CUDA to OpenMP Offload Translation
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Build@1 Results for CUDA to Kokkos

● Kokkos is even harder

○ Requires generating CMakeLists.txt

● Even with CMake provided, 
LLMs struggle to write 
compilable Kokkos

● SWE-agent underperforms
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Naive
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What are LLMs 
struggling with in 
generating buildable 
translations?

Error Clustering Across Translation Tasks

● Conducted clustering analysis of build outputs

● Embedded outputs to vectors with word2vec

● Clustered vectors using DBSCAN with manually tuned 
hyperparameters

● Manually reviewed clusters to set names, merge and split 
some clusters as needed
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What are LLMs 
struggling with in 
generating buildable 
translations?

Error Clustering Across Translation Tasks

Setting up CMakeLists.txt correctly to 
build with the Kokkos library

Maintaining consistent interfaces 
across files and including relevant 

dependencies

J. H. Davis @ ICPP 2025
26



● LLM translation is expensive
● We derive expected tokens used with 

● Convert this to node hours or API 
cost ($) as relevant for the model
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Translation Cost Analysis

Method and 
LLM

nanoXOR microXORh microXOR

Naive 
o4-mini

$0.03 $0.03 $0.05

Naive 
Llama-3.3

36 node-mins. 4 node-mins. 5 node-mins.
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● Employing LLMs to automate application translation to new programming models has 
tremendous potential for developer productivity

● But, state-of-the-art LLMs struggle to correctly translate full applications

● Translating build systems and cross-file dependencies are most significant hurdles

● Opportunities for improvement: building a dataset for fine-tuning or improving 
prompt context, or building a more sophisticated agent approach

Conclusion and Future Work
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← ParEval-Repo is on GitHub! Contact: jhdavis@umd.edu
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App. name # of source 
code lines

Cyclomatic 
complexity

# of files OpenMP 
Threads

OpenMP 
Offload

CUDA Kokkos

nanoXOR 109 33 2 ✓ ? ✓ ?

microXORh 127 33 3 ✓ ? ✓ ?

microXOR 133 33 4 ✓ ? ✓ ?

SimpleMOC-kernel 780 59 6 ? ✓ ?

XSBench 2449 264 9 ✓ ✓? ✓ ✓?

llm.c 3039 360 7 ? ✓ ?
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ParEval-Repo Translation Benchmark Suite

Port already exists
Port doesn’t exist, 

will translate


