
ParEval-Repo: A Benchmark Suite for
Evaluating LLMs with Repository-level

HPC Translation Tasks
Josh H. Davis, Daniel Nichols, Ishan Khillan, Abhinav Bhatele

The Team

2

Joshua H. Davis Daniel Nichols Ishan Khillan Abhinav Bhatele

J. H. Davis @ ICPP 2025

● Three different GPU vendors in top
ten supercomputers

● Maximizing access requires using
portable programming models

● But, manually porting is
time-consuming and tedious!

Why Automate Translation for HPC?

3

Research Question: Can LLMs help to
translate HPC code repositories into portable

GPU programming models?

J. H. Davis @ ICPP 2025

● ParEval found that parallel code tasks
are uniquely difficult

● Function-level LLM translation of
parallel code is more feasible than
generation

● But we don’t know if this will scale to
full repositories

4

Background for LLM Parallel Code Translation

D. Nichols, J. H Davis, et al. “Can Large Language Models Write Parallel Code?”, HPDC 2024

Higher is better

J. H. Davis @ ICPP 2025

Across codes chosen, using three programming model pairs:

CUDA to OpenMP Offload
● Non-portable to directive-based portable

CUDA to Kokkos
● Non-portable to C++ abstraction-based portable

OpenMP Threads to OpenMP Offload
● CPU portable to GPU portable

Introducing ParEval-Repo: Translation Tasks

5

GPU

GPUCPU

J. H. Davis @ ICPP 2025

Introducing ParEval-Repo: Small Cases

XOR kernel:
__global__ void cellsXOR(const int *input,
 int *output, size_t N) {
 int i = blockIdx.y * blockDim.y + threadIdx.y;
 int j = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N && j < N) {
 int count = 0;
 if (i > 0 && input[(i-1)*N + j] == 1) count++;
 if (i < N-1 && input[(i+1)*N + j] == 1) count++;
 if (j > 0 && input[i*N + (j-1)] == 1) count++;
 if (j < N-1 && input[i*N + (j+1)] == 1) count++;
 output[i*N + j] = (count == 1) ? 1 : 0;
 }
}

6

Starting small: three minimized codes to test capability to handle simple repos

All three include a Makefile

1. nanoXOR: 1 source file

2. microXORh: 1 source file, 1 header file

3. microXOR: 2 source files, 1 header file

J. H. Davis @ ICPP 2025

Three larger cases are taken from public codes – want to avoid codes that already have
ports to minimize data contamination

4. SimpleMOC-kernel: SimpleMOC proxy, neutron flux attenuation. Has external
dependency on cuRAND.

5. XSBench: OpenMC proxy, macroscopic cross-section lookup. Has public ports to
OpenMP and Kokkos – will show impact of possible data contamination

6. llm.c: CUDA implementation of LLM pretraining. We reduced the repo complexity
slightly.

Introducing ParEval-Repo: Larger Cases

7
J. H. Davis @ ICPP 2025

App. name # of source
lines

Cyclomatic
complexity

of files OpenMP
Offload

Kokkos

nanoXOR 109 33 2 X X

microXORh 127 33 3 X X

microXOR 133 33 4 X X

SimpleMOC-kernel 780 59 6 X X

XSBench 2449 264 9 ✓ ✓

llm.c 3039 360 7 X X

8

ParEval-Repo Translation Benchmark Suite

J. H. Davis @ ICPP 2025

Sample prompt:

You are a helpful coding assistant. You are helping a
software developer translate a codebase from the CUDA
execution model to the OpenMP Offload execution model...

Below is a codebase written in the CUDA execution model...
Here is the file tree of the entire repository:

<file tree>

Here is the code for each file in the codebase:

Makefile
...

src/main.cpp
...

Translate the src/main.cpp file to the OpenMP offload
execution model...

Naive translation technique: translate file-by-file in arbitrary order

9

Translation Techniques: Naive

Problem: exceeds LLM input context
window for all but the smallest apps

J. H. Davis @ ICPP 2025

Need to break up the task into pieces that can fit into LLM context window

● Break each file into separate “chunks” that fit in context

● Order translation of files by dependency structure

○ Headers before source, source before build files)

● Use a context agent LLM to retrieve context from already-translated files for next translation

Translation Techniques: Agentic

10
J. H. Davis @ ICPP 2025

Translation Techniques: Agentic

11
J. H. Davis @ ICPP 2025

Translation Techniques: Agentic

Break file into small chunks to
translate separately

12
J. H. Davis @ ICPP 2025

Translation Techniques: Agentic

Order files to translate “top-down”: translate
dependencies before dependents

13
J. H. Davis @ ICPP 2025

Translation Techniques: Agentic

Ask LLM to retrieve useful context from
already-translated files for next translation

14
J. H. Davis @ ICPP 2025

Translation Techniques: Agentic

Generate next chunk translation based on
context from prior files

15
J. H. Davis @ ICPP 2025

Translation Techniques: Agentic

16
J. H. Davis @ ICPP 2025

● SWE-agent is a state-of-the-art software engineering
(SWE) LLM framework

● Can call tools, write tests, run code, etc.

● Needed to format our translation tasks as Github issues

● Designed for Python: editing tool cannot handle Makefiles
due to tabs

Translation Techniques: SWE-agent

17
J. H. Davis @ ICPP 2025

Experimental Setup: LLMs Used

18

LLM Name Provider # of parameters Open-source? Reasoning?

Gemini 1.5 Flash Google ? Closed Generic

GPT 4o-mini OpenAI ? Closed Generic

o4-mini OpenAI ? Closed Reasoning

Llama 3.3 70B Instruct Meta 70 billion Open Generic

QwQ-32B Alibaba Cloud 32 billion Open Reasoning

J. H. Davis @ ICPP 2025

Experimental Setup: Evaluation Metrics

Evaluation Metrics:

● pass@1 scores: chance of generating correct translation with one attempt

○ Assessed using app’s correctness test cases

● build@1 scores: chance of generating compilable translation with one attempt

19

k = 1
N = 20

J. H. Davis @ ICPP 2025

● Minimal success with larger codes

● When the LLM has to translate the
build system as well, scores are even
lower

20

Build@1 for CUDA to OpenMP Offload Translation
M

an
ua

l M
ak

ef
ile

 sc
or

e
LL

M
 M

ak
ef

ile
 sc

or
e

🗙
🗙 🗙

🗙
🗙 🗙

🗙
🗙

🗙
🗙

Naive

J. H. Davis @ ICPP 2025

● Minimal success with larger codes

● When the LLM has to translate the
build system as well, scores are even
lower

21

Build@1 for CUDA to OpenMP Offload Translation
M

an
ua

l M
ak

ef
ile

 sc
or

e
LL

M
 M

ak
ef

ile
 sc

or
e

🗙
🗙 🗙

🗙
🗙 🗙

🗙
🗙

🗙
🗙

Naive

J. H. Davis @ ICPP 2025

● Significant correctness cliff beyond 1-3
files

● o4-mini naive achieves overall best
pass@1 scores

● Naive often beats agentic

22

Pass@1 for CUDA to OpenMP Offload Translation
M

an
ua

l M
ak

ef
ile

 sc
or

e
LL

M
 M

ak
ef

ile
 sc

or
e

🗙
🗙

🗙
🗙

🗙
🗙

🗙
🗙

🗙

🗙

Naive

J. H. Davis @ ICPP 2025

Build@1 Results for CUDA to Kokkos

● Kokkos is even harder

○ Requires generating CMakeLists.txt

● Even with CMake provided,
LLMs struggle to write
compilable Kokkos

● SWE-agent underperforms

M
an

ua
l M

ak
ef

ile
 sc

or
e

LL
M

 M
ak

ef
ile

 sc
or

e

SWE-agent

🗙🗙

🗙 🗙
🗙
🗙

🗙
🗙

🗙
🗙

🗙
🗙

🗙
🗙

🗙
🗙

23

Naive

J. H. Davis @ ICPP 2025

What are LLMs
struggling with in
generating buildable
translations?

Error Clustering Across Translation Tasks

● Conducted clustering analysis of build outputs

● Embedded outputs to vectors with word2vec

● Clustered vectors using DBSCAN with manually tuned
hyperparameters

● Manually reviewed clusters to set names, merge and split
some clusters as needed

24
J. H. Davis @ ICPP 2025

What are LLMs
struggling with in
generating buildable
translations?

Error Clustering Across Translation Tasks

25
J. H. Davis @ ICPP 2025

What are LLMs
struggling with in
generating buildable
translations?

Error Clustering Across Translation Tasks

Setting up CMakeLists.txt correctly to
build with the Kokkos library

Maintaining consistent interfaces
across files and including relevant

dependencies

J. H. Davis @ ICPP 2025
26

● LLM translation is expensive
● We derive expected tokens used with

● Convert this to node hours or API
cost ($) as relevant for the model

27

Translation Cost Analysis

Method and
LLM

nanoXOR microXORh microXOR

Naive
o4-mini

$0.03 $0.03 $0.05

Naive
Llama-3.3

36 node-mins. 4 node-mins. 5 node-mins.

J. H. Davis @ ICPP 2025

● Employing LLMs to automate application translation to new programming models has
tremendous potential for developer productivity

● But, state-of-the-art LLMs struggle to correctly translate full applications

● Translating build systems and cross-file dependencies are most significant hurdles

● Opportunities for improvement: building a dataset for fine-tuning or improving
prompt context, or building a more sophisticated agent approach

Conclusion and Future Work

28

← ParEval-Repo is on GitHub! Contact: jhdavis@umd.edu

J. H. Davis @ ICPP 2025

mailto:jhdavis@umd.edu

jhdavis@umd.edu

mailto:jhdavis@umd.edu

App. name # of source
code lines

Cyclomatic
complexity

of files OpenMP
Threads

OpenMP
Offload

CUDA Kokkos

nanoXOR 109 33 2 ✓ ? ✓ ?

microXORh 127 33 3 ✓ ? ✓ ?

microXOR 133 33 4 ✓ ? ✓ ?

SimpleMOC-kernel 780 59 6 ? ✓ ?

XSBench 2449 264 9 ✓ ✓? ✓ ✓?

llm.c 3039 360 7 ? ✓ ?

30

ParEval-Repo Translation Benchmark Suite

Port already exists
Port doesn’t exist,

will translate

