
ABSTRACT

Title of Dissertation: ON LEARNING BEHAVIORS OF PARALLEL
CODE AND SYSTEMS ACROSS MODALITIES

Daniel Nichols

Dissertation Directed by: Professor Abhinav Bhatele
Department of Computer Science

Performance modeling is an integral part of the research process for computational sci-

entists. It enables them to understand how different factors contribute to the final runtime of

an application. This understanding is crucial to developing efficient scientific applications and

simulations. While important, performance modeling is difficult as there are a large number of

factors that may contribute to final performance. Factors such as the algorithm, problem size,

implementation, architecture, and systems software stack all impact performance in an often

complex relationship. Analytical models can be employed to study these causal variables and

performance, however, they are difficult to scale up to a large number of input variables. Ad-

ditionally, the relationship between the causal variables and performance may be unknown or

complex, making it challenging to derive an analytical model. Fortunately, machine learning

(ML) can help address these challenges as ML algorithms excel at modeling unknown and com-

plex relationships. Furthermore, ML-based performance models can handle a large number of

input variables, making them ideal for modeling complex scientific codes. By training ML mod-

els on historical performance data, computational scientists can develop accurate models that can

predict the performance of new applications and simulations under different scenarios. However,

current ML-based modeling approaches are limited to modeling one or two sources of perfor-

mance data, such as hardware counters or application features. This limitation prevents models

from making use of all available causal variables that may impact performance. This thesis intro-

duces novel approaches to modeling performance that can make use of all available data sources.

Additionally, it introduces performance latent spaces that can be used to model various output

metrics, such as runtime or energy consumption, in a unified manner. Finally, a method to inte-

grate these performance models into large language models is introduced to enable modeling and

improving the performance of code.

ON LEARNING BEHAVIORS OF PARALLEL
CODE AND SYSTEMS ACROSS MODALITIES

by

Daniel Nichols

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2025

Dissertation Committee:
Professor Abhinav Bhatele, Chair/Advisor
Professor Alan Sussman
Professor Hal Daumé
Professor Johan Larsson
Professor Martin Schulz
Dr. Todd Gamblin

© Copyright by
Daniel Nichols

2025

Acknowledgements

I was guided and supported by many people during my PhD journey and risk greatly ex-

tending the length of this already extensive document if I were to recognize them all. I am

incredibly grateful to all who knowingly or unknowingly helped shape my dissertation.

Undoubtedly, the most influential person during my PhD was my advisor, Dr. Abhinav

Bhatele, to whom I owe a great deal of gratitude. Alongside his professional and technical men-

torship, Abhinav has been supportive of my personal well-being, making starting a PhD during a

global pandemic a much less daunting task. Thank you, Abhinav, for your support, advice, and

putting up with my sometimes hard-headedness. I am immensely grateful to have been a part of

your first cohort of PhD students. I owe my success as a researcher to your advising and will

carry your legacy of Gill Sans in my figures for the rest of my career.

I am further indebted to the support and comaraderie of my fellow PhD students — Sid-

dharth Singh, Joy Kitson, Onur Cankur, Josh Davis, Prajwal Singhania, Dalton Hough, and Cun-

yang Wei — who have been both friends and colleagues. From initial virtual meetings in Gather

Town to weekly happy hours and yearly trips to Supercomputing, your friendship and encour-

agement have been invaluable during my PhD journey and in completing this dissertation. I wish

you all joy and success in your future endeavors.

My many research collaborators, particularly those at Lawrence Livermore National Lab-

oratory, have supported me through working on a wide range of projects and assisted me in

focusing them to relevant research problems. The collaborations and funding opportunities pro-

vided by LLNL allowed me to pursue the problems I was interested in and this dissertation would

not have been possible without them.

ii

The many long evenings and weekends would not have been possible without the support

and understanding of my family and friends. My family has consistently encouraged me in my

educational pursuits, which have led to me completing this dissertation. I promise I will get a job

now. I am particularly grateful to Isaac for the many late night discussions over the last several

years often scheduled around paper deadlines.

Finally, I have been overwhelmed by the support and encouragement of my soon-to-be

wife, Molly. Whether it was listening to my lengthy explanations of research ideas over the

phone, finding a good book to read while I finished drafts, or one of the many other ways you

kindly supported me, this dissertation would not have concluded without you and I am excited

you are waiting on the other side.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables ix

List of Figures x

List of Abbreviations xvi

Chapter 1: Introduction 1
1.1 Outline of Dissertation . 4

Chapter 2: Background 5
2.1 Performance Modeling . 5
2.2 Large Language Models . 7
2.3 Applying LLMs to Code . 10

Chapter 3: Related Work 13
3.1 Machine Learning for Performance Modeling 13
3.2 Large Language Models for Code . 14

Chapter 4: Resource Utilization Aware Scheduling (RUSH) 16
4.1 Introduction . 16
4.2 Data Collection and Modeling . 19

4.2.1 System Monitoring Data from the HPC Cluster 20
4.2.2 Proxy Applications Used in Control Jobs 21
4.2.3 Benchmarks Used to Monitor System Health 22
4.2.4 Input to the Machine Learning Models 23

4.3 RUSH: Resource Utilization aware Scheduler for HPC 24
4.3.1 Variability Predictor Module . 24
4.3.2 Model-based Adaptive Job Scheduler 26
4.3.3 Implementation . 28
4.3.4 Variability Predictor Implementation . 28
4.3.5 Job Scheduler Implementation . 30

4.4 Experimental Setup . 30
4.4.1 Scheduling Experiments . 31

iv

4.4.2 Metrics for Evaluating the ML Models 32
4.4.3 Metrics for Evaluating the Job Scheduler 33

4.5 Results . 34
4.5.1 Prediction Accuracy of ML Models . 34
4.5.2 Reduction in Application Performance Variability 35
4.5.3 Scheduler Evaluation . 40

Chapter 5: Predicting Cross-Architecture Performance of Parallel Programs 42
5.1 Motivation . 42
5.2 Overview of Methodology . 44
5.3 Data Collection and Pre-processing . 46

5.3.1 Scientific Applications . 46
5.3.2 Architecture Descriptions . 47
5.3.3 Details of Recorded Hardware Counters 49
5.3.4 Preparing the Final Dataset . 50

5.4 Modeling with Machine Learning . 51
5.4.1 Training . 51
5.4.2 Model and Feature Selection . 53
5.4.3 Evaluation Metrics . 55

5.5 Scheduling Experiment . 56
5.5.1 Evaluation Metrics . 58

5.6 Results . 60
5.6.1 Evaluation of ML Models . 60
5.6.2 Ablation Study . 62
5.6.3 Feature Importances . 65
5.6.4 Evaluation of Scheduling Simulations 66

Chapter 6: PAREVAL: Creating a Benchmark for Understanding Parallel Code Model-
ing Capabilities 69

6.1 Motivation . 69
6.2 PAREVAL: Prompts for Parallel Code Generation 72
6.3 Description of Evaluation Experiments . 77

6.3.1 Experiment 1: Parallel Code Generation 77
6.3.2 Experiment 2: Parallel Code Translation 78

6.4 Models used for Comparison . 79
6.5 Evaluation Metrics . 81

6.5.1 Metric for Correctness . 82
6.5.2 Performance Metrics . 83

6.6 Experimental Setup . 86
6.6.1 LLM Inference: Generating Code Output 86
6.6.2 Evaluating the Generated Code . 87

6.7 Evaluation Results . 89
6.7.1 Experiment 1: Parallel Code Generation 89
6.7.2 Experiment 2: Parallel Code Translation 98

v

Chapter 7: Modeling Parallel Programs with Large Language Models 103
7.1 Motivation . 103
7.2 Overview . 105
7.3 Data Gathering and Pre-processing . 106

7.3.1 HPC Source Code Data . 107
7.3.2 Data Pre-processing . 108
7.3.3 Performance Datasets . 109

7.4 Fine-Tuning Methodology . 109
7.4.1 Models Selected For Fine-tuning . 110
7.4.2 Fine-tuning Setup and Hyperparameters 111

7.5 Downstream Inference Tasks and Evaluation Metrics 112
7.5.1 Code Completion . 112
7.5.2 Predicting OpenMP Pragmas . 115
7.5.3 Relative Performance Prediction . 116

7.6 Results . 117
7.6.1 Fine-tuning on HPC Source Code Data 117
7.6.2 Code Completion . 119
7.6.3 Predicting OpenMP Pragmas . 123
7.6.4 Relative Performance Prediction . 124

Chapter 8: Understanding LLM Capabilities to Model Parallel Code: A Detailed Abla-
tion Study 129

8.1 Motivation . 129
8.2 Approach to Studying Data and Model Design Impacts on Parallel Code Modeling 132
8.3 Generating Synthetic Data for Studying Axes of Parallel Code Modeling 133
8.4 Ablation Studies Exploring the Impact of Data, Model, and Fine-tuning Parameters136

8.4.1 Choice of Base Model and Instruction Masking 136
8.4.2 Studying the Impact of the Amount and Quality of Parallel Code Data . . 137
8.4.3 Studying the Impact of Model Size . 139

8.5 LLM Fine-tuning Setup . 139
8.5.1 Selecting a Pre-trained Model . 139
8.5.2 Fine-Tuning on Synthetic HPC Code Data 140

8.6 Experimental Setup and Evaluation . 140
8.6.1 Fine-tuning Setup . 141
8.6.2 Other Models Used for Evaluation . 141
8.6.3 Benchmark Used . 142
8.6.4 Metrics for Comparison . 143

8.7 Ablation Study Results . 144
8.7.1 Choice of Base Model and Instruction Masking 144
8.7.2 Studying the Impact of the Amount and Quality of Parallel Code Data . . 146
8.7.3 Studying the Impact of Model Size . 148

8.8 An Improved Parallel Code LLM Based on Ablation Study Results 149
8.8.1 Parallel-Coder Across Problem Types and Execution Models 149
8.8.2 Comparison with Other Models . 151

vi

Chapter 9: Improving the Performance of LLM Generated Code using Reinforcement
Learning 154

9.1 Motivation . 154
9.2 Overview of Methodology . 157
9.3 Data Collection and Labeling . 158

9.3.1 Performance Dataset Collection . 158
9.3.2 Synthetic Data Generation . 160

9.4 Aligning LLMs to Generate Faster Code: Proposed Fine-Tuning Approaches . . . 161
9.4.1 Supervised Learning . 161
9.4.2 Reinforcement Learning with Performance Feedback 163
9.4.3 Direct Performance Alignment . 169

9.5 Evaluation Tasks . 171
9.5.1 Code Generation . 171
9.5.2 Code Optimization . 173
9.5.3 Synthetic Data Ablation Study . 173

9.6 Experimental Setup . 174
9.6.1 Base Model for Fine-Tuning . 174
9.6.2 Data Setup . 175
9.6.3 Fine-Tuning Setup . 176
9.6.4 Evaluation Setup . 177

9.7 Results . 178
9.7.1 Fine-Tuning Results . 178
9.7.2 Code Generation Results . 179
9.7.3 Code Optimization Results . 180
9.7.4 Synthetic Data Ablation Study Results 181

Chapter 10: Modeling Code: Is Text All You Need? 184
10.1 Motivation . 184
10.2 Code Graph Representations and Soft Prompting 186

10.2.1 Structured Code Representations . 186
10.2.2 Soft Prompting . 187

10.3 Collecting IR Data at Scale . 187
10.3.1 Collecting Pairs of Source Code and LLVM IR 187
10.3.2 Collecting Synthetic Data . 188

10.4 An Improved Structured Graph Format . 189
10.4.1 Design of the IRGraph Format . 189
10.4.2 Graph Construction Process . 191

10.5 Experiments . 192
10.5.1 Benchmarks . 193
10.5.2 Models and Training . 194

10.6 Results . 195
10.6.1 Device Mapping . 195
10.6.2 Algorithm Classification . 196
10.6.3 Vulnerability Detection . 197
10.6.4 Code Translation . 198

vii

10.6.5 IRGraph Ablation . 199

Chapter 11: One Profile is All You Need: Performance Aligned Embedding Spaces 202
11.1 Motivation . 202
11.2 Data Collection . 204

11.2.1 Applications Profiled . 204
11.2.2 Performance Metrics Collected . 205

11.3 Methodology . 205
11.3.1 General Alignment Approach . 206
11.3.2 Individual Embedding Models . 208

11.4 Evaluation Tasks . 210
11.4.1 Energy Usage Classification . 210
11.4.2 L2 Cache Miss Peak Prediction . 211

11.5 Results . 211
11.5.1 Energy Usage Classification . 212
11.5.2 L2 Cache Miss Peak Prediction . 212

Chapter 12: Conclusion 214

viii

List of Tables

4.1 Description of data sources and the number of counters/features derived from
them for training the ML models. 23

4.2 Description of experiments run in a system reservation of 512 nodes of Quartz to
compare RUSH to the baseline. 31

5.1 Overview of the four architectures we collect performance data on. There are two
CPU only systems and two CPU+GPU systems. The CPUs span three vendors:
Intel, IBM, and AMD, while the GPUs originate from two: NVIDIA and AMD. . 47

5.2 The applications used in our study listed alongside a brief description of what
each application does and whether it supports running on a GPU. 48

5.3 Final features in the collected data set and the counters/values they are derived
from. We combine derived values from the recorded counters and meta-data
about the run configuration. 50

6.1 Descriptions of the twelve problem types in PAREVAL. Each problem type has
five concrete problems, and each problem has a prompt for all seven execution
models. 75

6.2 The models compared in our evaluation. CodeLlama and its variants currently
represent state-of-the-art open-source LLMs and GPT represents closed-source
LLMs. OpenAI does not publish the numbers of parameters in their models. . . . 77

7.1 Properties of the HPC source code dataset. 108
7.2 Description of the models used for fine-tuning. 110
7.3 Code generation tests. OpenMP and MPI columns denote if the test includes a

version with that parallel backend. 113
7.4 Final validation perplexities for each model after fine-tuning on the HPC source

code dataset. 118

9.1 The number of samples in both datasets distributed by source language. 158
9.2 Models used for comparison in this paper. Deepseek-Coder-6.7B [57] is the base

model we use in our fine-tuning methodologies. 175

11.1 Energy Usage Classification Accuracy . 212
11.2 L2 Cache Miss Peak Prediction Performance . 213

ix

List of Figures

4.1 Observed variability in the performance of proxy applications run in the pro-
duction batch queue of Quartz at LLNL over a period of two months in 2020.
Performance is relative to the lowest execution time per application. Several ap-
plications see over 2× performance variation and some even up to 14×. (Several
data points over 8× not shown in the plot.) . 22

4.2 Pipeline Overview. The ML model is trained offline on historical jobs and system
data. Optimal features are selected and a trained model is exported. This trained
ML model, current system data, and submitted jobs are provided as input to the
job scheduler that, in turn, decides a new order for scheduling jobs and mapping
them to system resources over time. 24

4.3 F1 scores for different ML models. We see that the AdaBoost model has the high-
est F1 scores. Additionally, we see that the models have comparable performance
even without access to full system data. 35

4.4 There is only a slight increase in the number of applications experiencing varia-
tion when using the ML model trained on data from all of the applications (left
plot, ADPA) and separate applications (right plot, PDPA.) 36

4.5 The number of runs that experience variation significantly reduces under the pro-
posed scheduler (RUSH) for the ADAA experiment when compared to FCFS+EASY. 36

4.6 Distribution of execution times for each application in the ADAA experiment.
RUSH reduces the maximum run time and the range of run times. 37

4.7 Distribution of execution times for each application in the PDPA experiment. The
scheduler still performs well for applications where its ML model has never seen
their data. 38

4.8 Distribution of execution times for each application in the Weak Scaling (WS)
experiment. 38

4.9 Percentage improvement in the maximum run time for each application in the
Strong Scaling (SS) experiment when comparing RUSH with the baseline. 39

4.10 Scheduler makespans. For each experiment this figure displays FCFS+EASY and
RUSH’s makespans averaged over their five trials. RUSH outperforms FCFS+EASY
in each experiment. 40

4.11 Average wait time per application in experiment ADAA. RUSH has a larger range
of wait times and is often higher. 41

5.1 Overview of data and machine learning pipeline. Applications are profiled on sev-
eral architectures and performance counters are collected for training the model.
Model and feature selection are done iteratively until the best set is selected. . . . 45

x

5.2 The MAE of each machine learning model over the testing data set after training.
XGBoost outperforms the other models with an MAE of 0.11. Lower MAE is
better. 60

5.3 The SOS of each machine learning model over the testing data set after training.
Higher SOS is better. 61

5.4 The MAE of each model when predicting using profiles from one particular ma-
chine. For instance, the bottom right of the plot represents the MAE when pre-
dicting relative performance vectors with XGBoost and profiles from Ruby. . . . 62

5.5 The SOS of each model when predicting using profiles from one particular machine. 63
5.6 Evaluation MAE of XGBoost when each resource count is removed from the

training set and used for evaluation. The model performs best at predicting 1
node performance when trained on 1 core and 2 node date. Note that all scores
are lower and still very strong. 64

5.7 Evaluation MAE of XGBoost when each application is removed from the training
set and used for evaluation. Results are generally strong across all applications. . 65

5.8 Importances of each feature in the XGBoost model. A higher feature importance
value means it is more influential in the decision making of the model. The
branch instructions intensity is the most important feature followed by the integer
and floating point arithmetic intensity. 66

5.9 The makespan of each machine selection algorithm in the scheduling simulation.
Lower is better. 67

5.10 The average bounded-slowdown of each machine selection algorithm in the schedul-
ing simulation. Lower is better. 68

6.1 Each LLM’s pass@1 score over PAREVAL. All of the LLMs score significantly
worse in generating parallel code than serial code. 90

6.2 The pass@k for various values of k. The relative order of the LLMs is the same
for all values of k with Phind-V2 leading the group. 91

6.3 pass@1 for each execution model. The LLMs generally follow the same distri-
bution of scores across the execution models: serial (best), OpenMP, CUDA/HIP,
and MPI/MPI+OpenMP (worst) with Kokkos varying between LLMs. 92

6.4 pass@1 for each problem type. The LLMs are best at transform problems, while
they are worst at sparse linear algebra problems. 93

6.5 pass@1 for GPT-4 across all execution models and problem types. GPT-4 excels
with the Kokkos and OpenMP execution models, while getting more problems
correct for transform, search, and reduce problems. 96

6.6 speedupn@1 and efficiencyn@1 for parallel prompts. Results are shown for n =
32 threads for OpenMP and Kokkos, n = 512 ranks for MPI, and n = (4 ranks)×
(64 threads) for MPI+OpenMP. For CUDA/HIP n is set to the number of kernel
threads, which varies across prompts. 1 . 97

6.7 efficiency@1 for MPI (left), OpenMP (middle), and Kokkos (right) prompts across
rank and thread counts. Phind-V2 is most efficient for MPI prompts, but is one
of the least efficient for OpenMP and Kokkos. GPT-4 is the most efficient for
OpenMP and Kokkos prompts. 1 . 98

6.8 The expected max speedup and efficiency across all resource counts n. 99

xi

6.9 pass@1 for each LLM when translating serial to OpenMP, serial to MPI, and
CUDA to Kokkos compared to the pass@1 score for generating code in the desti-
nation execution model. The smaller LLMs see a significant improvement when
shown an example correct implementation. 100

6.10 efficiency@1 translation scores compared to generation scores. The LLMs gen-
erally score similarly for translation and generation.1 101

6.11 speedup@1 translation scores compared to generation scores. The LLMs gener-
ally perform similarly for translation and generation with the exception of MPI.1 . 102

7.1 Overview of the steps described in this paper to train an HPC specific model
and run it on several downstream tasks. After collecting a large dataset of HPC
code we fine-tune several pre-trained language models and select the best one.
The selected model is then used to generate code, label OpenMP pragmas, and
predict relative performance as part of several downstream tasks. 106

7.2 Distribution of no. of lines of code in each file type. .cxx, .hh, .H, and .hxx files
are included in the dataset, but omitted here due to small counts. 107

7.3 An example prompt asking the model to generate a parallel version of saxpy. The
comment and function header make up the prompt. The function body on the
bottom shows a potential model output. 113

7.4 Downstream evaluation performance across training iterations for PolyCoder+HPC.
The model starts to perform worse around 45,000 samples even though the per-
plexity keeps improving. 119

7.5 Comparison of models on code generation. The clusters represent the average
pass@k scores for k = 1, 10 and 100. Higher percentage is better. 120

7.6 Comparison of models on code generation for HPC-specific functions. The clus-
ters represent the average pass@k scores for k = 1, 10 and 100. Higher percent-
age is better. 121

7.7 Comparison of the models’ build rate. Both PolyCoder and PolyCoder+HPC have
the best percentage of total samples that successfully compile. Higher percentage
is better. 122

7.8 Example OpenMP output from (b) PolyCoder and (c) PolyCoder+HPC. The com-
ment and function description (top) make up the prompt that is given to the model,
while the bottom two blocks are the generated text. We see that PolyCoder is un-
able to generate OpenMP pragmas for the reduction in this example. 123

7.9 Example MPI output from (b) PolyCoder and (c) PolyCoder+HPC. The high-
lighted region is code generated by the model (reformatted to fit the column).
PolyCoder results varied significantly, however, the above example demonstrates
the general lack of understanding it had for MPI. 126

7.10 Comparison of the speedups for the code generation tests over sequential base-
lines. They are all above 1 demonstrating that the model is not generating very
poor performing parallel code. 127

7.11 Comparison of models on predicting OpenMP pragmas. The left plot presents
accuracy in predicting OpenMP pragmas exactly as they appear in the dataset.
The right plot shows the accuracy in predicting functionally correct OpenMP
pragmas. Higher accuracy is better. 127

xii

7.12 Comparison of models on predicting relative performance of code changes. Both
models achieve similarly high accuracy. The PolyCoder+HPC model performs
slightly better on both datasets. Higher accuracy is better. 128

8.1 Overview of the methodology proposed in this paper. First, we use open-source
parallel code snippets to generate a large synthetic instruction dataset of parallel
code samples. We then conduct ablation studies to understand how data, model,
and fine-tuning parameters impact the capability of a code LLM to write parallel
code. Finally, we utilize the dataset and insights from the ablation studies to fine-
tune a code LLM for parallel code generation and evaluate it against other code
LLMs on the parallel code generation benchmark ParEval. 132

8.2 Synthetic data generation process. We collect seed snippets from open source
codebases and combine them with multiple prompt templates to create data gen-
eration prompts for an LLM. These prompts are then used to generate problem-
solution pairs with an LLM. 134

8.3 Example synthetic data generation output. Here, a random seed snippet is used
alongside the translation prompt template and fed into the LLM. The resulting
synthetic sample from the LLM is a problem of translating some code to OpenMP
and the corresponding solution. 135

8.4 ParEval parallel code generation scores for various prompt formats. Results
are shown for 8 total model configurations: {masked, unmasked} gradients ×
{instruct, non-instruct} base models × {1.3B, 6.7B} model sizes. There is no
correlation in parallel code generation performance between masked and un-
masked gradients, however, fine-tuning the base model rather than the instruct
gives much better results for both 1.3B and 6.7B models. 145

8.5 ParEval MPI code generation performance for increasing amounts of MPI fine-
tuning date. As the amount of MPI fine-tuning date increases the smaller 1.3B
model sees an increase in ability to generate MPI code with diminishing returns
after 6k samples. The larger 6.7B model sees no improvement in MPI code gen-
eration performance with additional data. 146

8.6 ParEval parallel code generation performance across different synthetic data sources.
There is a clear difference in performance across data sources with Llama gen-
erated synthetic data leading to the best performing LLMs and DBRX leading to
the worst. 147

8.7 ParEval code generation performance by problem type. These results follow sim-
ilar trends to those shown in [102] except with higher performance across all
problem types. 148

8.8 ParEval serial and parallel code generation performance along various base model
sizes. There is a significant increase in performance from 1.3B to 6.7B, but a
much smaller increase from 6.7B to 16B. 149

8.9 Comparison of ParEval parallel and serial code generation performance across all
models. The Parallel-Coder models perform as well or better than other models
of similar size. 150

xiii

8.10 ParEval code generation performance by execution model. The LLMs perform
best on serial code followed by OpenMP. The models struggle most with MPI
code generation. 150

8.11 Comparison of parallel code generation pass rate (pass@1), model memory re-
quirements (GB), and generation throughput (tokens per second). The top right of
the graph is the ideal location where models generation correct code quickly. The
smaller the dot the lower the model memory requirements. We see that the 6.7B
model gets similar performance to the much larger 34B model while generating
tokens significantly faster. 152

9.1 An overview of the proposed methodology. We first collect a large dataset of fast
and slow code pairs using coding contest submissions and synthetically generated
data. Then we fine-tune three different LLMs on this data to generate faster code.
Finally, we evaluate the fine-tuned models on code generation and optimization
tasks. 157

9.2 An overview of the reward model fine-tuning process. The reward model outputs
a reward for a fast and slow code sample. The loss function uses these rewards
alongside runtime data to update the weights of the model so that its predicted
rewards move farther apart for faster and slower code scaled by the runtime speedup.166

9.3 The RLPF fine-tuning process. A prompt is given to the model and a reward
is calculated based on the code it generates. Additionally, the KL-divergence
between a reference model and the fine-tuned model is included in the reward to
prevent deviating too far from the original distribution. Finally, PPO is used to
update the model’s parameters based on the reward. 168

9.4 The DPA fine-tuning process. The model being fine-tuned and a reference model
are used to generate probabilities for a fast and slow code sample. These proba-
bilities, combined with runtime data, are used to compute a loss and update the
model’s parameters. 170

9.5 Correctness results for each model on the code generation tasks. Each of the fine-
tuned models shows an improvement in correctness over the baseline model with
the DS+RLPF model showing the most improvement. 180

9.6 Speedup results for each fine-tuned model on the code generation tasks. OpenMP
runtimes are on 8 cores and MPI runtimes are on 512 ranks. The DS+RLPF model
is the best performing model across all benchmarks. 181

9.7 pass@1 (left) and speedup1@1 (right) results for optimizing the PolyBench ker-
nels. The distribution of speedup1@1 values over the 30 benchmarks is shown on
the right. The DS+RLPF model has further outliers at 11.6 and 22.4. 182

9.8 pass@1 results for DS+RLPF on each task with and without synthetic data in the
fine-tuning dataset. For all tasks, the model fine-tuned on synthetic data produces
correct code at a higher rate. 183

9.9 speedupn@1 results for DS+RLPF on each task with and without synthetic data
in the fine-tuning dataset. For OpenMP, MPI, and PolyBench tasks, the model
fine-tuned on synthetic data produces faster code, while the coding contest and
ParEval serial problems show a slight decrease or no change in speedup. 183

xiv

10.1 Accuracy scores from the DevMap benchmark. Both of the proposed represen-
tations outperform the respective baselines. The IRGraph graph representation
improves on the ProGraML graph model, while the IRCoder language model
builds on the graph to improve the language model. 196

10.2 Error rate scores from the POJ-104 benchmark. All representations are strong at
this task. The IRGraph representation scores the same as ProGraML while the
IRCoder representation outperforms the Deepseek-Coder baseline. 197

10.3 Pair-wise accuracy scores from the Juliet benchmark. Pairwise accuracy, where a
correct prediction requires both the vulnerable and non-vulnerable versions of a
sample to be correctly classified, is used as the evaluation metric. The IRGraph
and IRCoder representations outperform the baselines. 198

10.4 pass@1 scores from the ParEval benchmark comparing Deepseek-Coder and IR-
Coder. The IRCoder model is better able to translate code when provided with
the IR graph during translation. The most pronounced improvement is for the
OpenMP to CUDA translation. 199

10.5 Ablation study by removing node types from the IRGraph representation. We
see that value and instruction node types are the most important data points for
modeling the IR. The IR attributes are the least important and only reduce the
accuracy by less than 1% when removed. 200

10.6 Ablation study by removing edge types from the IRGraph representation. We see
that type and dataflow edges are the most important for the model’s performance,
while the other edge types have a minimal impact on accuracy. 201

xv

List of Abbreviations

LLM Large Language Model
HPC High Performance Computing
GNN Graph Neural Network
ML Machine Learning

xvi

Chapter 1: Introduction

Performance modeling has become an integral part of the scientific process. In order to

develop faster, more efficient code developers need to understand the behavior of their code and

how its performance might extrapolate to new run configurations. In order to gain this insight,

developers often develop performance models. These are usually analytical, empirical, or simu-

lation based and are used to predict performance metrics such as run time, energy consumption,

or memory usage.

In analytical performance models an equation is derived that uses several input variables

from the application to predict performance. For instance, one could derive an equation for

communication time given the number of messages sent, the size of the messages sent, and the

message latency. Such analytical models are great for developing a deeper understanding of

the root causes of some performance phenomena. The equations are simple and it is easy to

understand their behavior. However, because of this they are quite limited. Only a limited number

of variables can reasonably be implemented in the model leading to them leaving out causal

variables and being overly simplistic. They also require an expert to design them and this may

take a considerable amount of time.

Unlike analytical models, empirical models do not try to come up with direct equations

relating run configurations with performance, but rather use historical data to develop statistical

1

models for performance attributes. In the past decade most advancements here have come through

the use of machine learning. Machine learning can model more complex relationships between

variables, relationships that may not even be known to the developer. This is also a drawback as

we can no longer glean any insight into the underlying behavior from the model. However, the

quality and scale of predictions that ML models can make often leads to them being favored over

more traditional analytical models.

While ML-based performance modeling is an incredibly effective approach, it comes with

all the drawbacks that traditional machine learning has. One of these being the curse of di-

mensionality: the complexity and difficulty in modeling some input domain grows exponentially

with the dimensionality of what is being modeled. Additionally, ML approaches that rely on deep

learning often require immense amounts of data to train and their predictive performance can be

bottlenecked by the amount of quality data available for training. Furthermore, up until recently,

many ML methods were designed to model a single modality. For example, if performance en-

gineers wanted to consider source code (text data), hardware counters (tabular data), and calling

context trees (graph data) in their models than they needed to use separate models or design an

intricate data embedding scheme.

Recent advancements in the field of ML have addressed many of the existing modality

constraints and make it now possible to incorporate multiple modalities into performance models.

This has the potential to greatly improve the quality and generalizability of performance models

as they can consider all available data when making predictions. For example, the model can

include source code, input decks, hardware counters, calling context trees, etc. in its input, which

gives it full information about what it is modeling.

Building on top of the recent advancements in multi-modal modeling, this dissertation

2

contributes methods that can model performance metrics using all available input data. The first

step to solving this problem requires developing a latent space that represents the distinct run

configuration modalities of a code. These include all causal variables that may impact the final

performance of a code run: source code, algorithm, inputs and problem size, hardware, resource

amounts, and the underlying software stack. This latent space is created using variational auto-

encoders to combine latent outputs from models for each modality in an optimal, unified latent

space.

Building on top of the unified latent space, this dissertation contributes a means to model

multiple output modalities at once, such as run time, calling context trees, memory traces, and

energy traces. Each of these are important output modalities to study and are often modeled by

themselves. Being able to model them all at once will enable faster, more informative perfor-

mance studies. To accomplish this, embedding models for each output modality are aligned in a

joint latent space such that latent vectors from similar runs have near distance. This latent space

can be used to identify similar runs within each modality and make predictions. Such a technique

enables faster and better performance modeling with less overall runs.

Finally, this dissertation contributes to training code large language models (LLMs) to align

to certain performance characteristics of code. Recent advancements have introduced code LLMs

that are exceptional at modeling and generating code. While there are still improvements to be

made in terms of the correctness of the generated code, the best LLMs, such as GPT-4, can now

solve common code generation benchmarks like HumanEval with up to an 84% pass rate. This

work takes this a step further and trains LLMs that can generate correct and performant code.

This is accomplished by aligning the code LLM to the performance latent space.

3

1.1 Outline of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides background in-

formation on performance modeling, machine learning, and large language models. Chapter 3

discusses related work and relevant literature that this dissertation is founded upon. Chapters 4

and 5 present preliminary studies in utilizing multiple variables to model performance and inte-

grating the learned model into a HPC batch scheduler. This is followed by Chapters 6 to 8 that

present foundational work in developing LLMs that can model parallel code and its performance.

Building on these chapters, Chapter 9 introduces a novel technique for aligning code LLMs with

a performance latent space so that they generate faster code. Finally, Chapters 10 and 11 intro-

duce approaches for modeling multiple code and metric modalities at once. A summary of the

dissertation and future work is presented in Chapter 12.

4

Chapter 2: Background

This chapter provides background on performance modeling, large language models, and

large language models for code.

2.1 Performance Modeling

Performance modeling is the process of predicting the performance of a system based on

a set of inputs. These are useful for a variety of reasons, such as predicting the performance of

a system before it is built, or for optimizing code to run faster. It can also be used to develop a

better understanding of the system’s behavior and to identify bottlenecks. One example use case

is using sample data, such as hardware counters, from a small scale run on few nodes to predict

the performance of a larger scale run on many nodes. This enables developers to optimize their

code before running it on a large scale, saving time and resources.

Performance modeling is generally accomplished via analytical, empirical, or simulation-

based methods. Analytical models are derivided mathetmatical models that describe the system’s

behavior. An example of an analytical model is the α-β model for communication, which models

the time to send a message between two nodes as a linear combination of the message size, N ,

and the latency, α, and inverse bandwidth, β, of the network. Given these parameters, sending

an N byte message takes α + βN time. From this analytical model we can further analyze

5

complex collective communication algorithms, such as all-to-all or broadcast, to predict their

performance. Once an analytical model is derived it can be used to find values that minimize the

total time. Such analytical models are extremely useful in that they often provide insight into the

system’s behavior that is directly interpretable by humans. However, they must be expert derived

and are limited in their ability to scale with the complexity of the underlying phenomena being

modeled.

Empirical models, on the other hand, are derived from data collected from previous runs.

These models generally employ machine learning to use historical data to predict performance.

For example, a user could run their program across many different input sizes and record the

total energy usage. This data could be used to train an ML model to predict the energy usage of

the program for new, unseen input sizes. ML-based performance models are capable of modeling

extremely complex behaviors, but they are often considered black-box models as they are difficult

to interpret. Furthermore, they require significant amounts of data to train and can be difficult to

validate.

Finally, simulation-based models are used to simulate the behavior of a system under dif-

ferent conditions. For example, one can simulate a program running on a CPU to determine its

performance. While these simulations can be extremely accurate, they are often computationally

expensive and can be difficult to scale to large systems. Furthermore, a significant engineering

effort is required to develop the simulation infrastructure. For these reasons, simulation-based

models are typically only used to model new or theoretical hardware where empirical data is not

available.

6

2.2 Large Language Models

When applying machine learning to textual data we need a model that takes text as input

and, through the process of training on previous data, learns how to predict some property of

that text. In recent years such models have been mostly dominated by large transformer-based

models. Transformers were first introduced by Vaswani et al. [137]. They are designed to work

with sequential data much like recurrent and long short-term memory neural networks. However,

they differ in their use of a self-attention mechanism to attribute importance weights to inputs

into the model. Due to this mechanism transformers also process entire sequences at once unlike

recurrent neural networks.

These self-attention units make up the basis of transformer networks. Weights are divided

into query, key, and value weights (namely WQ, WK , WV). These are multiplied by each input

token i and stacked to form the matrices Q, K, and V , respectively. Given these matrices and the

dimensions of the key vectors dk the attention can be computed as shown below.

Attention (Q,K, V) = softmax
(
QKT

√
dk

)
V

These weight matrices form a single attention head. Typically transformers employ several

attention heads to form a multi-attention head layer. Having multiple attention heads allows each

of them to learn, or attend to, different abstractions in the input, such as parts-of-speech for

natural language input.

Generally these networks are trained to model the conditional probability of observing

a language token or a sequence of tokens. For instance, given a string of observed tokens

7

t1t2 . . . ti−1 we may want to find the most likely next token ti.

ti = arg max
t

P (ti = t | t1t2 . . . ti−1)

Similarly we may want to know the probability of a sequence of tokens occurring given the

entire observed dataset P (t1, t2, . . . , tN) (i.e. how likely is a given english sentence to be real

given my previous knowledge of the language). Using this probability we can define a metric

called perplexity.

Perplexity(T) =

(
1

P (t1, t2, . . . , tN)

) 1
N

With this metric a model that scores a lower perplexity on its test set T is better as it assigns

a higher probability to the test data. The ratio is normalized to be invariant to the size of the test

set. Rewriting the formula for perplexity we can see that it is equivalent to the exponential of the

cross-entropy.

Perplexity(T) = (P (t1, t2, . . . , tN))−
1
N

= (exp logP (t1, t2, . . . , tN))−
1
N

= exp

(
− 1

N
logP (t1, t2, . . . , tN)

)

This allows us to train the language model with cross-entropy loss. Minimizing the loss

will, in turn, minimize the perplexity. The perplexity is recovered by simply taking the expo-

nential of the loss. It is important to note that perplexity measures model confidence and not

8

accuracy. However, it has been demonstrated empirically that lower perplexity generally leads to

better performance on downstream tasks.

Once a model is trained it can be used to generate new text given some context. Since

the LLM models token probability it may seem simple to select the most probable next token,

however, this can lead to poor text generation. Often a model’s attention puts more focus on

on the most recent tokens causing this selection method to get stuck in loops or suddenly forget

context. Most recent works combat this issue by sampling from the model’s distribution, but there

are several important caveats when doing this. For instance, we want to avoid sampling from the

tail as this could drastically throw off further tokens sampled. Here we discuss several of the

sampling methods used later in this paper such as temperature, top-k, and nucleus sampling.

Temperature

When sampling temperature controls how confident the model is in the sampled token.

Lower temperature leads the model to assign more confidence in the most likely tokens in the

distribution. On the other end, the model will more uniformly assign confidence across the distri-

bution when the temperature is higher. This term comes from statistical thermodynamics where

lower energy states are more frequent with a higher temperature.

Temperature is incorporated by dividing the logits by the temperature, temp, before com-

puting the softmax output. The logits are the raw, un-normalized outputs of the model and the

softmax is used to turn this vector into probabilities.

softmax
(
logits

temp

)

9

Thus, as temp → 0 the output becomes the argmax and as temp →∞ it leads to a uniform

sampling.

Top-k Sampling

In top-k sampling the most likely k tokens are sampled from the model. This aims to

exclude the distribution’s tail and prevent the model from rapidly getting off-topic. However,

this can also reduce the quality of predictions if the body of the distribution is wider than k. A

common choice for k is 50.

Nucleus Sampling

Nucleus, or top-p, sampling aims to solve the shortcomings of top-k sampling by choosing

a more meaningful cut-off point. In this method the CDF of the distribution is computed and

sampling is cut-off when the CDF exceeds p. A common choice for p is 0.9.

2.3 Applying LLMs to Code

LLMs can be trained on a variety of downstream tasks and objectives. When applied to

source code data they are typically trained as left-to-right, masked, or encoder-decoder models.

Left-to-Right

Left-to-right or causal language models are trained to predict the most probable next token

in a sequence. The model receives and generates text in a left-to-right fashion, which is where it

gets its name. This limits the amount of context the model can see as it cannot use later tokens

10

in its prediction even if they are present in the data. Left-to-right models are useful for text

generation related tasks.

Masked

Unlike left-to-right models, masked models can predict the most probable token for any

position in the text. After removing random tokens in the samples and replacing them with mask

tokens, the model is trained to predict the most probable tokens to replace the masks with. In this

configuration masked models can make use of more context in their predictions.

Encoder-Decoder

Another common approach is to train a left-to-right model to decode a sequence after it

has been passed through an encoder. This type of model can be combined with several different

objectives and is often used with sequence-to-sequence prediction.

To apply left-to-right models, which are focused on in this dissertation, to source code you

simply need to provide the model with prior context as a sequence of tokens and then let it gen-

erate new tokens until some stopping threshold. The prior context is typically a natural language

comment followed by a function declaration. Tokens are then generated until the function is

complete (a closing } bracket in the case of C/C++).

Additionally, when applying language models to code it is typical to customize the training

process slightly to take advantage of the syntactic differences between natural language and code.

For instance, the tokenizer, which is responsible for mapping text to a sequence of integers, is

often set to group whitespace into single tokens. This is not necessary in natural language inputs

11

as multiple consecutive spaces are uncommon. However, in code this can meaningfully reduce

the sequence size and a formatter can be applied after code generation to regain formatting.

12

Chapter 3: Related Work

In this section I highlight existing literature in performance modeling using both analytical

and machine learning approaches. I present the state-of-the-art in multi-modal machine learning

and the use of Large Language Models for code.

3.1 Machine Learning for Performance Modeling

Performance modeling is a well studied research area with lots of literature surrounding

analytical and statistical models. Recently, with the increase in machine learning innovations,

there has been a large focus on the latter. Machine learning can help model complex relationships

between applications and their final performance. It has been used to model job runtimes [152,

145], variability [105], power consumption [26], and many other things [93].

These models are often used to study and understand complex relationships between ap-

plications and their performance. Malakar et al. [93] compare the capability of various different

machine learning methods on modeling performance. Furthermore, Zhou et al. [153] demon-

strate how to extrapolate models from small scale runs to larger scale runs. Many works also use

these models in downstream tasks to improve performance. In [65] standard machine learning

techniques such as k-Nearest-Neighbors and XGBoost are used to model MPI collective per-

formance and inform auto-tuning decisions. This fits into the broader study of using machine

13

learning models to more efficiently explore the combinatorial search space in auto-tuning [94,

18, 34]. There are other works that use machine learning models to make informed scheduling

decisions on HPC systems such as to reduce variability [105] or avoid IO bottlenecks [144].

There are few works that take advantage of multiple modalities when modeling perfor-

mance. Dutta et al [43] combine IR and data-flow embeddings to model the performance of HPC

applications. The work proves to be very effective, particularly when applied to auto-tuning.

However, it fails to make use of all available modalities in its modeling, which limits its applica-

bility to instances where IR is available.

3.2 Large Language Models for Code

A large number of works have looked at applying LLMs to code. One of the first seminal

works in this area introduced Codex [31], which is a LLM trained on a large corpus of code from

GitHub. Codex is able to generate code from natural language descriptions and is the basis for

GitHub’s Copilot. Many works have built on top of this by creating their own models [83, 121,

115] or extending techniques to more efficiently generate code with them [63]. Surrounding this

work there has been a large number of benchmarks introduced to evaluate the ability of LLMs to

generate code [31, 16, 79, 28, 49, 147, 87, 42, 131].

Recently there has been a growing interest in applying LLMs to parallel and High Perfor-

mance Computing (HPC) code. Several works have looked at creating smaller specialized HPC

models [103, 70] or applying existing LLMs to HPC tasks [99, 29, 30]. Nichols et al. [103] intro-

duce HPCCoder, a model fine-tuned on HPC code, and evaluate its ability to generate HPC code,

label OpenMP pragmas, and predict performance. Kadosh et al. [70] introduce TOKOMPILER,

14

an HPC specific tokenizer for LLMs, and use it to train COMPCODER, a model trained on C,

C++, and Fortran code.

Other works have looked at applying existing LLMs to HPC tasks. Munley et al. [99]

evaluate the ability of LLMs to generate compiler verification tests for parallel OpenACC code.

Chen et al. [29] use LLMs to identify data races in parallel code and propose the DRB-ML data

set, which is integrated into the LM4HPC framework [30].

Currently, there is little work on applying LLMs to performance of code. Garg et al [50]

train a masked language model to suggest performance optimization edits to C# code. The model

is trained on git commits and is, thus, quite noisy. Furthermore, the model used for training is

no longer near the capabilities of current state-of-the-art code LLMs. Another study by Nichols

et al [103] attempts to model the performance of code changes using an LLM. While this work

is successful in modeling the performance of code changes, it is unable to write or suggest code

changes that will improve performance.

15

Chapter 4: Resource Utilization Aware Scheduling (RUSH)

In this chapter I present work on the RUSH algorithm, which is a novel algorithm for

scheduling jobs on a cluster that avoids congestion by using machine learning models that pre-

dict job runtime variability. The first main contribution of this chapter is a novel technique for

collecting network counters and developing an ML model to predict if jobs are likely to experi-

ence variability. The final contribution is a novel batch scheduling algorithm that makes use of

the ML model to schedule jobs optimally to prevent variation. It is shown that this algorithm in

combination with the trained ML model can reduce the expected variability in jobs and improve

the overall throughput of the system scheduler. The work presented in this chapter is published

in [105].

4.1 Introduction

Performance variability has become a significant problem for end users, especially as high

performance computing (HPC) systems grow in scale and complexity. It refers to the variation

in performance (execution time) observed when a given executable is run with the same input

parameters multiple times on an HPC system. Users may observe several times worse perfor-

mance than expected for jobs submitted at different times that are otherwise identical. This can

happen due to operating system (OS) noise or contention for shared resources such as the net-

16

work or filesystem [37, 22]. Performance degradation negatively affects the end user as well as

the operational efficiency of the system.

When faced with performance variability, users are unable to estimate run times for their

jobs accurately, and hence may request nodes for longer times than may be required. Most

HPC systems use batch schedulers such as Slurm [127] and LSF [66] to run jobs and assign

allocated resources to them. These batch schedulers require a run time limit provided by the

user that serves as an upper bound on the duration the job will be allocated resources. When

the end user cannot predict the total run time of their application due to large variances, they

will often over-estimate total job time input to the scheduler, which may result in longer queue

wait times [76]. On the other hand, if the user underestimates performance degradation, their

application may be terminated prematurely resulting in loss of job progress. Both these situations

adversely affect resource utilization as well as job throughput. In addition, variability also makes

it challenging to analyze the performance bottlenecks in a parallel application, and study the

impact of performance improvements made to a code.

The overall operational efficiency of the HPC system also suffers due to performance vari-

ability as jobs take longer to complete on average. This results in fewer jobs being completed

over time and causes the system’s throughput to diminish. Additionally, the scheduler receives

less realistic time estimates from users which inhibits its scheduling capability. Hence, it is im-

portant to tackle the performance variability problem not just at the individual user level, but at

the system level.

With storage becoming relatively inexpensive, the amount of system related data being

logged has increased considerably. Software such as the Lightweight Distributed Metric Service

(LDMS) [4] are being used to collect and aggregate multiple data streams from system hardware

17

and software on HPC systems. We believe that such system data holds clues about the perfor-

mance variability of individual jobs. Moreover, we hypothesize that past historical data can give

us a reasonable indication of the performance of jobs in the near future.

In this paper, we use historical job information and system monitoring data to accurately

predict if a job in the scheduler queue will experience variation if scheduled right away. We

observe that ML models trained on historical data for control jobs perform exceedingly well in

predicting if a job in the queue will experience variation. Our models obtain an F1 score of 0.95

in cross-validation. We use these trained models as an input to the job scheduler to influence

scheduling decisions with a goal to reduce variability. Predictions from the trained ML models

are used by the scheduling algorithm to delay scheduling of certain jobs in the queue if their run

time may vary significantly. We design and implement an end-to-end system, which we call the

Resource Utilization aware Scheduler for HPC (RUSH in short), for collecting application and

system data, accurately modeling and predicting application variation, and intelligent adaptive

scheduling based on such predictions.

Using real workloads and an implementation of our scheduling algorithm on a large allo-

cation of the Quartz cluster at LLNL, we show that RUSH effectively reduces the variation and

maximum run time of applications without significantly affecting makespan or mean queue time.

We see up to 5.8% improvement in maximum run time and no performance outliers. In our ex-

periments, we see the average number of runs experiencing variation drop from 17 to 4 using

RUSH. Additionally, we show that our ML model and scheduler can generalize to applications

not included in its training data as well as different inputs for the same applications.

18

4.2 Data Collection and Modeling

Previous work [144] that used I/O performance predictors has shown that using current

information about the file system to delay scheduling of I/O-intensive jobs can improve resource

utilization. This shows that the relative health of shared resources is a meaningful predictor

in determining if an application will experience performance variation in the near future. It also

shows that delaying the execution of an application when shared resources are congested can lead

to less variation and higher resource utilization. Thus, we hypothesize that deploying a resource

utilization aware scheduler will also improve these two metrics.

An adaptive job scheduler would require online knowledge of system health and its rela-

tionship with application performance. Existing works have shown that system monitoring data

can provide this meaningful insight into the health of shared resources. Moreso, [2] shows that

this data in conjunction with historical runs from proxy applications can accurately predict their

relative performance. With this information available apriori, the job scheduler can alter its queue

order to prevent variation and further congestion.

Thus, we collect system data, shared resource benchmarks, and proxy application profiles

over time to build statistical models to be used in our scheduling algorithm. Below, we present

the data used in our ML pipeline as well as our collection methodology. All of the data was

collected on the Quartz system at LLNL. Quartz is a fat-tree cluster with 2,988 Intel Xeon E5-

2695 compute nodes, connected by a Cornelis Networks Omni-Path fabric.

19

4.2.1 System Monitoring Data from the HPC Cluster

Recent years have seen the growth of software stacks to collect and analyze system data.

We utilize these to gather information about the state of the machine as proxy applications run.

With this data we can infer causes of performance anomalies and predict future occurrences with

statistical models.

We include two sources of system counters in our data: sysclassib and lustre client. Sysclas-

sib is a table of counters containing values for the endpoint traffic such as the xmit rate and recv

rate. The lustre client table of counters contains the number of system calls to the Lustre parallel

filesystem as well as the amount of data being written/read. These data are consistently collected

by LDMS, which writes the aggregated data into Cassandra tables on the LLNL Sonar system.

Each sample in the table is indexed on the hostname of its source node and the timestamp from

when it was recorded.

We utilize aggregate data points in training rather than temporal data (see Section 4.2.4).

These aggregate data points are calculated by aggregating counter values over some duration

before a job is run. In our training data we use five minutes as the duration. The counters are ag-

gregated via minimum, maximum, and mean and, thus, each counter column becomes 3. For ex-

ample, the xmit_rate counter in sysclassib becomes max_xmit_rate, min_xmit_rate,

and mean_xmit_rate. This data is also aggregated over compute nodes as it is recorded on

each node. In our dataset we include the aggregates over both all compute nodes and the nodes

exclusive to the job being run, so that we can compare the results from training the ML models

over data from the entire machine versus the nodes exclusive to each data sample.

20

4.2.2 Proxy Applications Used in Control Jobs

This system data provides insights into the state of the machine, while proxy applica-

tions can provide insight into how applications perform on that machine. Proxy applications

are simpler programs that mimic the typical workload of a larger scientific code. As a result,

they are ideal for generating data that is representative of historical workloads of HPC systems.

We run seven proxy applications at frequent intervals to collect performance data: Kripke [78],

AMG [61], Laghos [41], SWFFT [10], PENNANT [46], sw4lite [130], and LBANN [45]. These

applications represent a range of computational and communication patterns in a variety of sci-

entific domains. Each was compiled with the default build settings in their build documentation

using the system intel compiler.

We submitted jobs for each proxy application two to three times a day on the cluster from

August 2020 to February 2021 with each job being run at various times in the day. Each appli-

cation ran on 16 nodes using 512 cores in total. All of the applications use MPI for distributed

memory parallelism and run in CPU only mode. Each run was profiled with HPCToolkit [3]. We

use Hatchet [21] to read in the HPCToolkit profiles, and extract the inclusive run time of the main

compute region in each code. Figure 4.1 shows the variation experienced by each application

between November 12th, 2020 and December 31st, 2020 relative to each application’s minimum

running time. In mid-December, there was a significant spike in variation in all applications.

While all of the applications experienced some degree of variation, they may have different

sources of this variation from their types of workload. Thus, the type of workload is included

in the dataset as a one-hot encoded vector over compute, network, and I/O intensive. For the

training data we hand selected these values. However, in production this data needs to be provided

21

 1

 2

 3

 4

 5

 6

 7

 8

Nov 12 Nov 19 Nov 26 Dec 03 Dec 10 Dec 17 Dec 24 Dec 31

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Variability in performance of proxy applications over time

Kripke
AMG

Laghos
SWFFT
sw4lite
LBANN

PENNANT

Figure 4.1: Observed variability in the performance of proxy applications run in the production
batch queue of Quartz at LLNL over a period of two months in 2020. Performance is relative to
the lowest execution time per application. Several applications see over 2× performance variation
and some even up to 14×. (Several data points over 8× not shown in the plot.)

accurately to the scheduler. This can be given by the user, empirical methods, or binary analysis.

4.2.3 Benchmarks Used to Monitor System Health

Before and during proxy application runs we collected several metrics related to the health

of the system as well as the performance of the job. Right as each job is scheduled we ran two

MPI benchmarks with mpiP to gather information about the network health. These benchmarks

are used to offer some information to the ML model as to how congestion is currently affecting

running applications.

The first benchmark is a simple ring routine with send/recv that passes around a 100MB

token for ten iterations. The second calls AllReduce on 100MB of random data for five iterations.

Message sizes and iteration counts for these benchmarks were picked empirically such that there

was sufficient variance for the ML models to learn from, but not enough to cause significant

communication overhead.

Using mpiP we record the time spent waiting on the blocking Send, Recv, and AllReduce

calls on each node. For the dataset we record the minimum, maximum, and mean of each of these

22

values across used nodes. This becomes nine features in each data point.

4.2.4 Input to the Machine Learning Models

Each of these application runs becomes a sample in the final dataset. The input features for

each sample consist of the minimum, maximum, and mean of every counter in the sysclassib and

lustre client tables, the user provided application type label, and the nine aggregated benchmark

results. Finally, each sample has its run time and z-score as output labels. The resulting dataset

and its features are presented in Table 4.1.

Table 4.1: Description of data sources and the number of counters/features derived from them for
training the ML models.

Input source # Counters # Features Description

sysclassib 22 66 InfiniBand counters

opa info 34 102
Omni-Path switch
counters

lustre2 client 34 102 Lustre client metrics
MPI benchmarks 3 9 Execution time
Proxy applications - 1 Compute Intensive

- 1 Network Intensive
- 1 I/O Intensive

This collected data is designed to encapsulate the machine state during an application run

and the relative performance of that run. The goal of the ML models is to analyze the machine

state data and basic information about a job and predict if it will experience variation. Several

recent works have explored using various models to learn over system data [123]. We find static

models trained on aggregate statistics to work well for our purposes.

23

4.3 RUSH: Resource Utilization aware Scheduler for HPC

We now present the two main components of RUSH: an ML-based variability predictor,

and a model-based adaptive job scheduling algorithm, and also describe the design of the en-

tire pipeline. Figure 4.2 highlights how each component of the pipeline fits together and their

input/outputs.

Figure 4.2: Pipeline Overview. The ML model is trained offline on historical jobs and system
data. Optimal features are selected and a trained model is exported. This trained ML model,
current system data, and submitted jobs are provided as input to the job scheduler that, in turn,
decides a new order for scheduling jobs and mapping them to system resources over time.

4.3.1 Variability Predictor Module

The first module in the RUSH pipeline uses system and control job data to predict if vari-

ation will occur from running a job on the current system state. There are three inputs to this

module: system counters from Sonar, profiles from longitudinal runs of proxy applications, and

timings from the MPI benchmarks. Within this module feature and model selection are done first

followed by training and exporting the chosen model and features.

The ML models in the first component use the input data as described in Section 4.2. We

24

set up the ML problem as a classification task with the goal of classifying the occurrence of

variation given the system and benchmark data. The input to this model consists of the 282

features listed in Table 4.1. For model and feature selection we use binary classification and set

the label of each data as 0 or 1. The first label, 0, is assigned when an application’s run time

is less than 1.5 standard deviations of its mean run time. This signifies no variation. On the

other hand, we assign a label of 1 when the run time is greater than 1.5 standard deviations from

its mean. These variations are computed per-application using the mean and standard deviation

for each application’s run times, but the model is trained on data from all applications. Instead

of arbitrarily selecting an ML model we train a variety of models and use their F1 scores to to

compare their performance (see Section 4.4.2).

The set of classifiers used are standard models and we use the best performing in the

pipeline (see Section 4.3.3) based on F1 score. The models used are Extra Trees, Decision Forest,

K-Nearest Neighbors, and AdaBoost. Each is trained using stratified cross validation to preserve

the imbalance of the data. To cross validate we split the data using six applications for training

and one for validation. This is performed over every possible partitioning.

Features are selected after model selection using recursive feature elimination. Features

are eliminated recursively and the set with the highest F1 score are kept. For the Extra Trees and

Decision Forest models, which have metrics for feature importance, the least import features are

removed first during feature elimination.

After selecting the model and feature set the second component outputs the trained ML

model that can be used offline. The chosen model is trained using the same data and k-fold cross-

validation. However, this model is trained on three output classes: no variation, little variation,

and variation. Here the variation label stays the same while the no variation label is assigned

25

when an application’s run time is less than 1.2 standard deviations from its mean run time. Little

variation is when the application’s run time is between 1.2 and 1.5 standard deviations of its mean

run time. These labels are chosen based on our observations of application performance behavior.

4.3.2 Model-based Adaptive Job Scheduler

The second component of RUSH is an intelligent job scheduler that uses the models trained

by the variability predictor as input. The scheduler has three inputs: the trained ML model, job

queue, and systems data. It uses the ML model with the systems data as input to implement a

scheduling policy and map jobs from the queue to system resources.

The proposed scheduler utilizes predictions provided by the ML model to delay scheduling

of jobs that will experience variation. We do this by running the ML model on the current system

counters whenever a new job is about to be scheduled. If the model predicts variation for this job

we skip over it and look at the next one in the queue. The delayed job remains at the top of the

queue and will be the first to be considered for scheduling next time resources become available.

Our job scheduling modifications are general enough that they can be used to modify other

existing policies. For example, we show that we can easily modify the FCFS+EASY scheduling

algorithm presented in Algorithm 3. The main and backfilling policies can be replaced with other

queue ordering policies. One common example is Shortest Job First or SJF. This allows RUSH to

utilize the benefits from other optimal queue ordering policies assuming they work by statically

re-ordering the queue.

This algorithmic change only affects the job queue ordering. It is agnostic towards resource

mappings and network topology. These can be accounted for in the start function when jobs are

26

Algorithm 1 Scheduling Algorithm. This standard algorithm queues jobs using policy R1 and
uses EASY to backfill smaller jobs. Start(·) is used to launch jobs when resources become
available.

Input Q← queue of jobs
M ←ML model
S ← current machine state
SkipTable← Count of times skipped for each job
R1 ← Queue ordering policy
R2 ← Backfill ordering policy

1 sort Q according toR1

2 for job j ∈ Q do
3 if j can be started currently then
4 pop j from Q
5 Start(j,Q,M, S, SkipTable)
6 else
7 Reserve j at earliest possible time
8 L← Q \ {j}
9 sort L according toR2

10 for job j′ ∈ L do
11 if j′ can be started currently without delaying reservation of j then
12 pop j′ from Q
13 Start(j′, Q,M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for

being launched or by a separate software system. Therefore, the proposed algorithm only needs

to modify the Start(·) function as shown in Algorithm 2. This function takes care of putting jobs

back on the queue when they are being delayed.

However, continually delaying jobs can lead to starvation. To prevent job starvation the

modified schedule also includes a hard limit on the number of times a job can be skipped over.

In our experiments we set this to 10, but the threshold was never met. This parameter could be

extended to be per-job and used to enforce priorities or even ignore the scheduling delay entirely

for certain jobs.

This leads us to the following design of the Start(·) function in Algorithm 2. It first checks

27

Algorithm 2 Modified Start(·) Function. This is called to launch jobs when resources are avail-
able. This modified version in RUSH puts jobs back on the queue if they will vary in performance
significantly.

Input j ← job
Q← scheduler queue
M ←ML model
S ← current machine state
SkipTable← Count of times skipped for each job

1 if SkipTable[j] < j.skip threshold and
M(j, S) ∈ variation labels then

2 SkipTable[j]← SkipTable[j] + 1
3 push j after front of Q
4 else
5 launch job j
6 end if

if a job j is past its skip threshold (line 1). When j is past the threshold, then the and is short-

circuited and j will be run (line 5). If j is within its skip threshold, then RUSH will evaluate the

ML model M(j, S) (line 1). Variation being predicted will lead to j being put back on the queue

(lines 2-3). Otherwise, j will be run (line 5).

4.3.3 Implementation

In its entirety, RUSH requires recording large amounts of system data, training ML models,

and modifying an existing batch scheduler implementation. This section discusses how these

components of the pipeline were implemented.

4.3.4 Variability Predictor Implementation

To facilitate our scheduler, we utilize a data pipeline (Figure 4.2) that controls running the

proxy jobs, collecting the performance and run time system data, and training the ML models.

This pipeline needs to be portable and efficient, so that the same experiments and scheduler

28

adaptations can be used on other machines.

To make our pipeline portable we designed it entirely using bash to control job launches

and Python to collect and analyze data. Jobs are launched using configurations from environment

variables and can launch using either LSF or Slurm based job schedulers. Once the jobs run the

data from these jobs are aggregated and analyzed using Python.

In addition to portability the pipeline needs to be efficient in its storage and analysis of

large amounts of data. Collecting 32 HPCToolkit profiles per day can create several million files

in a short amount of time. To alleviate this storage burden we only store database files from

hpcprof-mpi in addition to the hatchet dataframes of them.

Given a set of application runs we collect a unified dataset depicted in Table 4.1. To build

contained datasets we query the Sonar tables for aggregated LDMS data. We collect counter

information for the duration prior to a job running. In our tests this was the five minutes prior to

each proxy application’s run. The counters were reduced over this interval with the minimum,

maximum, and mean of each being included as a column in the dataset. Next the profiling

information, including the wall clock time, is added into our table. This table is stored in a

Pandas dataframe, which is pickled and compressed for easier use in the rest of the pipeline.

Prior to running experiments we train the ML models over the collected data sets and

select the best one based on their F1 score and accuracy. At the end of the pipeline the models

are pickled and exported for use in the scheduler.

29

4.3.5 Job Scheduler Implementation

Using this exported model we modify the Flux [7] framework to implement our scheduler.

Flux is a job scheduling software designed for HPC that integrates graph-based resource model-

ing with traditional batch scheduling. This section details how we implement our algorithm in

Flux.

RUSH adds a scheduling policy within Flux to implement its algorithm. This is done by

adding a new “scheduling policy” class to Flux. We extend the class queue_policy_fcfs_t,

which in turn extends the general queue_policy_base_t class. Our implemented subclass

queue_policy_rush_t implements the scheduling algorithm detailed in Section 4.3.2.

The RUSH implementation provides a modified function for ordering the queue. It first

orders the queue withR1 as FCFS. When jobs are about to be run a Python script is first executed

that runs the ML model with the next job as input.

This Python script then reads the collected counter data, runs the ML models, and provides

its prediction to standard output. Our implementation uses this to make a scheduling determina-

tion as defined in Algorithm 2.

Jobs are matched to resources using Flux’s default algorithm. Information about this map-

ping is captured implicitly in the system counters. Thus RUSH can be utilized with any resource

mapping algorithm.

4.4 Experimental Setup

In this section, we describe the experiments and metrics used to evaluate the ML models

and the new job scheduler.

30

Table 4.2: Description of experiments run in a system reservation of 512 nodes of Quartz to
compare RUSH to the baseline.

Experiment Name Applications # of Jobs Description

ADAA All Data All Applications All 190 ML model trained on data from all
running applications

ADPA All Data Partial Applications Laghos, LBANN, PENNANT 150 Subset of 3 applications running

PDPA Partial Data Partial Applications Laghos, LBANN, PENNANT 150 ML model trained on AMG, Kripke,
sw4lite, SWFFT

WS Weak Scaling All 190 Jobs run on 8, 16, and 32 nodes; weak scaling
SS Strong Scaling All 190 Jobs run on 8, 16, and 32 nodes; strong scaling

4.4.1 Scheduling Experiments

To test the effectiveness of our scheduler we designed experiments to mimic typical work-

loads on an HPC system. We then compare the proposed scheduling policy on this workload with

the default FCFS+backfilling scheduler as a control.

In order to create an HPC system-like environment we ran all of the experiments within a

fixed set of 512 nodes on Quartz. These nodes lie in the same pod of the fat-tree cluster. The

nodes are allocated by the system Slurm scheduler as a single job and we run Flux within this

allocation to handle scheduling jobs in the experiments.

To mimic a typical HPC workload we design several experiments using the seven proxy

applications listed in Sec 4.2.2. We setup a queue of jobs that takes between 30 and 50 minutes for

all of them to run to completion. Each job runs on 16 nodes with 512 processes. At the beginning

of the experiment we submit 20% of the jobs to the Flux queue immediately and submit the rest

uniformly over 20 minutes. This mimics normal scheduling behavior where knowledge of every

job to be scheduled is not known apriori.

Since we ran on a single pod on the fat-tree, we used a noise job that runs on 1/16th of

the nodes in the experiment that continuously sends variable amounts of all-to-all traffic on the

31

network. This allowed us to run fewer experiments as we observed variation more frequently

with the noise. To account for other system noise we run ten trials of each experiment: five with

FCFS+EASY and five with RUSH.

We ran several different experiments to test how the scheduling policy performed under

different circumstances. Table 4.2 highlights the experiments conducted within each 512-node

reservation.

We first test the scheduling policy on all of the applications in “ADAA”. This experiment

runs all seven proxy applications and uses an ML model trained on a dataset containing runs from

all seven applications.

To test the generalizability of the scheduler experiment “PDPA” only runs three applica-

tions and uses the ML model trained on the other four applications exclusively. We use Laghos,

LBANN, and PENNANT as the applications to run and AMG, Kripke, sw4lite, and SWFFT to

train the ML model. Experiment “ADPA” runs the same applications, but uses the full dataset for

training. This serves as a control for “PDPA”.

The final two experiments, “WS” and “SS”, test how the policy generalizes to different

scales of the jobs. Both run all of the applications and use an ML model trained on all of the data.

However, they run each application on 8, 16, and 32 nodes. “WS” uses weak scaling to change

the input parameters and “SS” strong scaling.

4.4.2 Metrics for Evaluating the ML Models

Before the scheduler is run in these experiments the ML models need to be trained and ex-

ported. This section discusses the metrics used to evaluate the success of the models in predicting

32

variation.

Performance variation is rare and, thus, the dataset is imbalanced. There are significantly

more samples with little or no variation than there are samples with variation. This means testing

accuracy is not a useful performance metric. A model that always predicts that no variation will

occur would still yield an accuracy greater than 90%, but not provide any meaningful information

to the scheduler. Due to this limitation, we use precision and recall related metrics to evaluate

the success of our models. In particular, we use the F-measure (F1 score) to compare and find the

best performing model.

F1 =
tp

tp + 1
2

(fp + fn)

where tp is the number of true positive predictions, fp the false positives, and fn the false

negatives. F1 score is a standard measure for how well models predict imbalanced labels.

When comparing different models, we use the average F1 score from cross-validation. The

F1 score was calculated for the binary classification problem of variation vs no variation.

4.4.3 Metrics for Evaluating the Job Scheduler

We record different metrics that help us evaluate our new job scheduler across multiple

different axes of improvement. Schedulers can provide improvement in several different areas,

each of interest to different parties in the supercomputing eco-system. Providing reliability and

high resource utilization is important to system administrators, while end-users may be more

concerned with wait queue time and ease-of-use. Additionally, the efficiency of the scheduler is

typically crucial to everyone.

Scheduler efficiency can be measured in terms of the makespan, which is defined as the

33

duration from the submission of the first job to the end of the last job. The makespan describes

the amount of time it takes a scheduling policy to complete a workload on a certain system.

However, some policies with better makespans may see adverse performance in other areas.

So we also record the mean time in queue as well as the mean job variation per application. The

mean time in queue will show how delaying jobs impacts the average time spent waiting in the

queue. The job variation will indicate to what degree RUSH successfully mitigates run time

variation.

4.5 Results

We now present our results from training the machine learning models and the job schedul-

ing experiments.

4.5.1 Prediction Accuracy of ML Models

Figure 4.3 presents the performance of different ML models we experimented with based

on their F1 scores. We see that given the system data in Table 4.1 and longitudinal run time data

(see Section 4.2.2), the ML pipeline described in Section 4.3.1 is able to accurately predict run

time variation.

The high F1 scores show that the models can predict true labels or instances of variation

well. While all of them perform well in this regard, the AdaBoost classifier outperforms the

others. The results in the rest of the paper use Adaboost as the classifier.

The models are also insensitive to data exclusivity. We have two choices when aggregating

data from the system. We can either aggregate over all the nodes on the system or only over

34

 0

 0.2

 0.4

 0.6

 0.8

 1

AdaBoost DecisionForest ExtraTrees kNN

F 1
 S
co
re

All Nodes Job-only Nodes

Comparing F1 Scores for All vs. Job-only System Data

Figure 4.3: F1 scores for different ML models. We see that the AdaBoost model has the highest F1

scores. Additionally, we see that the models have comparable performance even without access
to full system data.

those nodes that are allocated to the jobs in the dataset. When system data from only the job’s

nodes are used, we see comparable performance to training over all the nodes in the system.

This is an important performance component as it allows the scheduler to only collect subsets of

system data at a time (from the nodes a job is going to be scheduled on) when making scheduling

decisions. This is a significant reduction in data processing that allows the scheduler to aggregate

counters more frequently and efficiently.

4.5.2 Reduction in Application Performance Variability

The model accuracy results above confirm that we can use the trained model to advise

the job scheduler regarding whether an incoming job will experience variation or not. Next, we

discuss results from the experiments described in Section 4.4.1 and how RUSH helps in reducing

performance variation.

Figures 4.5 and 4.4 show the number of runs that experienced variation in the first three ex-

periments in Table 4.2. Averaged across the five repetitions of the ADAA experiment, FCFS+EASY

35

 0

 2

 4

 6

 8

 10

Laghos PENNANT LBANN

N
um
be
r
of

 jo
bs

 w
ith

 v
ar
ia
tio
n FCFS

RUSH + ADPA

Number of Occurrences of Variation (ADPA)

 0

 2

 4

 6

 8

 10

Laghos LBANN

N
u
m

b
e
r

o
f

jo
b

s
w

it
h
 v

a
ri

a
ti

o
n

Number of Occurrences of Variation (PDPA)

FCFS
RUSH + PDPA

Figure 4.4: There is only a slight increase in the number of applications experiencing variation
when using the ML model trained on data from all of the applications (left plot, ADPA) and
separate applications (right plot, PDPA.)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Lag
ho
s

AM
G

Kr
ipk
e

SW
FFT

PE
NN
AN
T

sw
4lit
e

LB
AN
N

N
um
be
r
of

 jo
bs

 w
ith

 v
ar
ia
tio
n FCFS

RUSH + ADAA

Number of Occurrences of Variation (ADAA)

Figure 4.5: The number of runs that experience variation significantly reduces under the proposed
scheduler (RUSH) for the ADAA experiment when compared to FCFS+EASY.

has between 1.5 and 3.5 runs on average per application with significant variation (see Figure

4.5). Using RUSH, this is reduced to between 0 and 1.5. The most variation prone applications,

Laghos and LBANN, have almost no occurrences of significant variation when the RUSH sched-

uler is used. This shows the ability of the scheduler to reduce variation when its ML model has

apriori knowledge of all the applications being run.

Experiments ADPA and PDPA show that the variation improvement also holds when the

ML model has been trained on a subset of the running applications. This is shown in Figure

4.4 where we see similar improvement when the ML model is trained over the full dataset (left)

36

versus a partial dataset (right). Compared to ADAA, ADPA and PDPA show slightly higher

amounts of variation in both FCFS+EASY and RUSH. This is due to the fact that Laghos and

LBANN are the applications with the most variation and now more instances of them are running

together than before. Pennant ends up having more runs with variation on average in PDPA than

ADPA in the RUSH experiment. However, the increase is small in comparison to the decreases in

LBANN and Laghos.

Since fewer runs suffer from variation using RUSH, we also expect the run times of each

application to be more predictable. Figures 4.6, 4.7, and 4.8 present the run time distributions in

each experiment. The run time distribution includes all of the runs of each experiment in Section

4.4.1 split by application. Figure 4.6 compares the run times of the proxy applications between

FCFS+EASY and RUSH scheduling policies for the ADAA experiment. We observe that the

maximum and mean run times reduce for the most sensitive applications, Laghos, LBANN, and

sw4lite. The scheduling policy is able to successfully reduce variation in most instances. This is

shown by the smaller ranges in run times and number of runs closer to the mean.

 650

 700

 750

 800

 850

Laghos LBANN

T
im
e
(s
)

4.9%

4.0%

475

500

550

600

650

675

AMG Kripke SWFFTPENNANTsw4lite

FCFS
RUSH + ADAA

2.6%

2.4%

0.2%

-0.1%

5.8%

Variability in Application Performance (ADAA)

Figure 4.6: Distribution of execution times for each application in the ADAA experiment. RUSH
reduces the maximum run time and the range of run times.

37

 650

 700

 750

 800

 850

 900

Laghos LBANN

Ti
m

e
 (

s)

Variability in Application Performance (PDPA)

FCFS
RUSH + PDPA

5.0%

6.0%

Figure 4.7: Distribution of execution times for each application in the PDPA experiment. The
scheduler still performs well for applications where its ML model has never seen their data.

 600

 650

 700

 750

 800

 850

8 16
Laghos

32 8 16
LBANN

32

T
im
e
(s
)

1.9%

1.6%
2.2%

0.9%

4.1%
0.7%

 450

 500

 550

 600

 650

8 16
AMG

32 8 16
Kripke

32 8 16
SWFFT

32 8 16
PENNANT

32 8 16
sw4lite

32

FCFS
RUSH + WS

1.4%

0.9%
1.5%

0.6%
0.9%

1.6%

1.6%

1.0%
0.6% 0.7%

0.2%
0.0%

3.3%

2.0% 0.0%

Variability in Application Performance (WS)

Figure 4.8: Distribution of execution times for each application in the Weak Scaling (WS) exper-
iment.

From these results we also see an improvement in the maximum run time. This is likely

the most important improvement from the perspective of an end-user as now they have a tighter

upper limit on their application’s running time. As before, Laghos, LBANN, and sw4lite, all

experience the largest improvement in terms of maximum run time.

In Figure 4.7 we see that RUSH performs just as well when it has partial data versus full

data. PDPA has similar improvements in maximum run time when compared with ADAA. In

our experiments we find that ADPA, the control for PDPA, shows similar results to ADAA for

LBANN, PENNANT, and Laghos. We can conclude that having access to historical runs for an

38

application prior to scheduling is not necessary to reduce its maximum run time. The generaliz-

ability of RUSH is important, since this data is typically not readily available.

Figures 4.8 and 4.9 present the experiments where the applications are run under weak

and strong scaling respectively. In the WS experiment, RUSH reduces the spread of run times

and the maximum run time more in the 8 and 16 node count runs. This is likely due to more

communication in the 32 node runs and bias in the ML model from only training on 16 node

runs.

Figure 4.9 shows the percent improvement in maximum run time when the applications

are strong scaled. We see that the scheduler still provides improvement even as the amount of

work per node decreases. For each application the maximum run time is reduced and sw4lite and

LBANN show the greatest improvements. In experiments WS and SS, there were no applications

with increase in the maximum run time. The run time distributions either stayed the same or,

more often, reduced in range. This displays the ability of RUSH to extend to other node counts

even under different types of scaling.

 0

 1

 2

 3

 4

 5

8 16 32
Laghos

8 16 32
AMG

8 16 32
Kripke

8 16 32
SWFFT

8 16 32
PENNANT

8 16 32
sw4lite

8 16 32
LBANN

Pe
rc
en
t
Im
pr
ov
em
en
t
in

 M
ax

 R
un

 T
im
e

Variability in Application Performance (SS)

Figure 4.9: Percentage improvement in the maximum run time for each application in the Strong
Scaling (SS) experiment when comparing RUSH with the baseline.

39

4.5.3 Scheduler Evaluation

In addition to mitigating variation for individual users, we also want to ensure that the

scheduler does not impact system throughput negatively. We start with comparing the makespan

for the two scheduling policies in Figure 4.10. For each experiment, the makespan is improved

by between 18 and 66 seconds. The variation in each application has been reduced without

burdening the makespan significantly and in some cases improving it. By reducing the expected

run time of some of the applications, RUSH reduces the duration of some of its jobs. In cases

where a significant amount of variation is prevented, the scheduler will have a lower makespan.

 0

 10

 20

 30

 40

 50

 60

 70

ADAA ADPA PDPA WS SS

M
ak
es
pa
n
(m
in
s.
)

Experiment

FCFS

46.1 44.5 44.4
50.1 50.1

 RUSH

45.8 44.0 44.0
49.7 49.0

Comparison of Makespan

Figure 4.10: Scheduler makespans. For each experiment this figure displays FCFS+EASY and
RUSH’s makespans averaged over their five trials. RUSH outperforms FCFS+EASY in each ex-
periment.

Figure 4.11 shows the differences in wait times for each application for the ADAA experi-

ment. This plot only includes wait times for the 80% of applications that were not placed in the

queue at the start of the experiment. In the case of RUSH, the wait times are spread out and show

both favorable and worse performance compared to the FCFS+EASY scheduler. The average

wait time went up for variation intensive applications such as Laghos, sw4lite, and LBANN. This

40

 0

 5

 10

 15

 20

Lag
ho
s

AM
G

Kr
ipk
e

SW
FFT

PE
NN
AN
T

sw
4lit
e

LB
AN
N

W
ai
t T
im
e
(m
in
s.
)

FCFS

12.2 12.3 12.1 12.6 12.3 12.1 12.4

RUSH + ADAA

13.1 12.5 11.8 11.6
12.9 12.8 13.1

Comparison of Average Wait Time

Figure 4.11: Average wait time per application in experiment ADAA. RUSH has a larger range
of wait times and is often higher.

is due to them being pushed back in the queue more often than others. Both Kripke and AMG got

through the queue faster on average in the RUSH scheduler. Though the wait times vary, they are

always within a minute. This less than a percent increase in wait time is insignificant, especially

compared to the reduction in variation that can be obtained at its cost.

41

Chapter 5: Predicting Cross-Architecture Performance of Parallel Programs

This chapter describes work in cross-platform performance modeling that develops an ap-

proach for using machine learning to predict the performance of an application on several differ-

ent architectures using performance counters. The performance prediction model is then used in

a novel batch scheduling algorithm to schedule work across a heterogeneous cluster efficiently.

It is demonstrated that this approach can reduce the overall throughput of a multi-cluster setup

by placing jobs on the most efficient resource. The contributions in this chapter are published

in [104].

5.1 Motivation

An increasing number of scientific workloads are being expressed as workflows with sets of

computational tasks and dependencies between them [67, 8]. These workflows typically involve

ensembles of tasks (jobs) in a pipeline that run different codes such as simulations, uncertainty

quantification analysis, and machine learning training. As applications become more portable

due to the emergence of portable programming models [64], package managers [47], and con-

tainerization techniques, different tasks or jobs might be better suited for different hardware ar-

chitectures. Given these portable workflows and the increasingly heterogeneous set of computing

resources available to end users today, it is important to develop capabilities to efficiently place

42

these tasks on the most efficient resources available.

Different tasks or applications in a workflow can be assigned to different architectures

if users have access to a variety of compute nodes via a multi-resource job scheduler, which

is becoming increasingly common, both in data centers and HPC facilities. As a result, the

demand for such multi-resource schedulers [7] is emerging. In an ideal setting, scheduler can

automatically decide the most suitable architecture for different jobs in terms of performance.

This can remove the user from the decision making process and let a system scheduler decide

what hardware to run an application on. However, in practice, this requires being able to predict

the performance of incoming jobs across diverse architectures. This is a complex problem that

would involve developing models for understanding the performance of scientific applications

across diverse architectures.

Cross-architecture performance modeling is a challenging problem because application ex-

ecution times are dependent on several factors with non-trivial relationships to performance. The

performance depends on how well the application’s behavior aligns with the properties of the

hardware it is running on. These hardware properties, such as peak flop/s, memory bandwidth,

and cache sizes are easy to obtain, however, the behavior of the application is non-trivial to model.

Application performance can depend on a number of characteristics such as arithmetic intensity,

memory loads/stores, branching behavior, I/O, and many more. Characterizing these and using

them to model performance on a diverse set of architectures is challenging due to the number of

contributing factors and complexity of the relationship.

In this chapter, we propose a solution to the cross-architecture performance modeling task

by training a machine learning model to predict the relative performance of an application across a

set of architectures given performance counters of the application from one architecture. In order

43

to accomplish this, we collect a data set of application runs from four different HPC systems

with different architectures and measure a hand selected set of performance counters. These

counters, along with the recorded execution times, are used to train a regression model to predict

relative performance vectors. Additionally, we demonstrate the generalizability of our model by

evaluating it on a set of applications it has not seen before. To our knowledge, this is the first

model to be able to predict performance across multiple architectures at the same time that works

on entire applications. Finally, we demonstrate the makespan improvement from using this model

in a multi-resource scheduling simulation.

5.2 Overview of Methodology

We first provide an overview of our methodology to predict the relative performance of

an application across a set of architectures given performance counters of the application from

one architecture. This includes two things – the data collection phase and the model training

phase (Figure 5.1). In the first phase, we collect performance profiles for a variety of applications

running on N different HPC systems with different architectures and record a hand-selected set

of performance counters. These counters, along with the recorded execution times, are used to

train a regression model to predict relative performance in the second phase.

Since our goal is to predict performance on other architectures relative to a baseline on one

architecture, we introduce the term Relative Performance Vector (RPV) that encodes the relative

performance of an application across several architectures. To define RPV, let us consider a set

of applications A, corresponding input problems IA, and systems S. For a particular application

and input problem pair (a, i) ∈ A × IA executed on N systems in S we can define the Relative

44

Figure 5.1: Overview of data and machine learning pipeline. Applications are profiled on several
architectures and performance counters are collected for training the model. Model and feature
selection are done iteratively until the best set is selected.

Performance Vector as rpv : (A, IA) × S 7→ RN such that rpv(a, i, s) is the vector of the

performance of (a, i) across all platforms relative to that on system s. Here we assume that

(a, i) can run on all the systems in S. For example, consider running an application-input pair

(TestApp, “-s 5”) on systems X , Y , and Z. If the application runs in ten minutes on system X ,

eight minutes on system Y , and 21 minutes on system Z, then the performance vector relative to

X would be:

rpv(TestApp , “-s 5” , X) =


1.0

0.8

2.1



Time on X relative to X Time on Y

relative to X
Time on Z

relative to X

Application being run

Input Arguments

System run on

We also define rpv(·, ·,min) and rpv(·, ·,max) as the performance vectors relative to the

systems where lowest and highest performance is obtained, respectively. The rpv provides a

concise, mathematical representation for relative performance across systems that can be used in

45

our further downstream modeling tasks.

In order to model the mapping rpv : (A, IA)× S 7→ RN , we need a large number of input

and output data to train on. This requires a large number of samples in the (A, IA)× S space. To

collect these, we profile a variety of aplications at several of their inputs on several architectures.

These runs provide hardware counters that may provide insight into an application’s behavior for

many application, input, and architecture tuples.

We use the counters collected during profiling as the data set for the machine learning

(ML) component (second phase). The ML component uses the profiled counters from a particular

architecture to predict the relative performance vector across a set of systems. We try different

ML models and feature sets to identify the best performing model. This model is exported and

used in downstream relative performance prediction tasks such as cross-architecture scheduling.

5.3 Data Collection and Pre-processing

In this section, we provide details of how we generated the dataset used for our modeling

problem. We describe the process of running and profiling the applications, and collecting the

performance metrics.

5.3.1 Scientific Applications

In order to model the relative performance of applications run on an HPC machine, we

need to collect performance data from applications that are typically run on these machines. We

accomplish this by running a set of applications, benchmarks, and proxy applications from the

ECP Proxy Applications Suite [44] and E4S Test Suite [133]. These are chosen because they are

46

Table 5.1: Overview of the four architectures we collect performance data on. There are two
CPU only systems and two CPU+GPU systems. The CPUs span three vendors: Intel, IBM, and
AMD, while the GPUs originate from two: NVIDIA and AMD.

System CPU Type CPU CPU GPU Type GPUs/node
cores/node Clock Rate (GHz)

Quartz Intel Xeon 36 2.1 — —
E5-2695 v4

Ruby Intel Xeon 56 2.2 — —
CLX-8276

Lassen IBM Power9 44 3.5 NVIDIA V100 4
Corona AMD Rome 48 2.8 AMD MI50 8

designed to be representative of actual workloads on HPC systems, but are simpler to build and

run than full scientific applications.

Table 5.2 lists the applications used in our data set. There are 20 applications in total, and

eleven of them have GPU support. The GPU support comes from a variety of libraries such as

OpenMP, Kokkos [135], RAJA [64], and native CUDA or HIP. Each application is paired with

different input configurations when run, in order to test different problems and problem sizes.

We build and install all of the applications with their default build settings in their respective

Spack [47] packages.

5.3.2 Architecture Descriptions

We run each application-input pair on four different machines with different architectures.

These are listed in Table 5.1. There are two Intel Xeon based, CPU-only machines and two GPU-

based machines. The first GPU machine uses IBM Power9 CPUs and NVIDIA V100 GPUs,

while the second uses AMD Rome CPUs and AMD MI50 GPUs.

On each of these systems the applications are run in three configurations – on one core, on

47

Table 5.2: The applications used in our study listed alongside a brief description of what each
application does and whether it supports running on a GPU.

Application Description GPU

AMG Algebraic multigrid solver X

CANDLE
Deep learning models for
cancer studies X

CoMD
Molecular dynamics and materials
science algorithms

CosmoFlow
3D convolutional neural network
for astrological studies X

CRADL
Multiphysics and ALE
hydrodynamics X

Ember Communication patterns
ExaMiniMD Molecular dynamics simulations X

Laghos
FEM for compressible
gas dynamics X

miniFE Unstructured implicit FEM codes X

miniGAN
Generative Adversarial Neural
Network training X

miniQMC
Real space quantum
Monte Carlo algorithms X

miniTri
Triangle based data
analytics algorithms

miniVite Graph community detection
DeepCam Climate segmentation benchmark X

Nekbone
High-order, incompressible
Navier-Stokes solver

PICSARlite Particle-in-Cell simulation
SW4lite Seismic wave simulation X

SWFFT
Distributed-memory
parallel 3D FFT

Thornado-mini
Radiative transfer solver in
multi-group, two-moment estimations

XSBench Monte Carlo neutronics simulations

one node using all the cores, and on two nodes. The one-core runs use one GPU if applicable.

MPI is used for the one and two node runs to make use of all the cores and GPUs on the node.

Some applications only support run configurations with square or power of two MPI processes

and are, thus, run on the nearest number of ranks possible to one or two nodes. If an application

48

does not support running on a GPU, we run it on the CPU only and use comparable CPU counters.

If an application does support running on a GPU, then only GPU counters are collected. During

these runs, HPCToolkit [3] (with CUPTI [39] on NVIDIA GPUs or rocProfiler [120] on AMD)

is used to record the application counters, and after the application run is complete, Hatchet [21]

is used to parse these counters from the HPCToolkit output. For multi-process and multi-GPU

runs, we record the mean value of the counters across all processes. The final results from all

runs are then collected into a Pandas dataframe for use in the later tasks.

5.3.3 Details of Recorded Hardware Counters

To understand the varied computational characteristics of different applications in Table 5.2,

we record several hardware counters during the application runs. Table 5.3 lists the counters

recorded on each architecture in our data set. Counter names are not consistent across different

architectures and they may also represent slightly different data. However, we have tried to iden-

tify similar counters that model the same underlying performance characteristics that affect final

performance. Most of these counters fit into one of three categories: control flow, data inten-

sity, or I/O. These categories capture the main performance characteristics of applications across

different architectures. Broadly speaking, applications with more complex control flow will fair

better on CPUs, which are geared towards latency. On the other hand, applications with more

data intensity generally benefit on throughput-geared GPUs.

49

Table 5.3: Final features in the collected data set and the counters/values they are derived from.
We combine derived values from the recorded counters and meta-data about the run configuration.

Feature Description Source Counters & Values
Quartz Ruby Lassen Corona

Branch Intensity
Ratio of branch instructions
to total instructions PAPI BR INS PAPI BR INS cf executed –

Store Intensity
Ratio of store instructions
to total instructions PAPI SR INS PAPI SR INS

inst executed local stores,
inst executed global stores

LDSInsts,
GDSInsts

Load Intensity
Ratio of load instructions to
total instructions PAPI LD INS PAPI LD INS

inst executed local loads,
inst executed global loads

LDSInsts,
GDSInsts

Single FP Intensity
Ratio of single precision FP
instructions to total instructions PAPI SP OPS PAPI SP OPS flop count dp

VALUInsts,
SALUInsts

Double FP Intensity
Ratio of double precision FP
instructions to total instructions PAPI DP OPS PAPI DP OPS flop count sp

VALUInsts,
SALUInsts

Arithmetic Intensity
Ratio of integer arithmetic
instructions to total instructions bdw ep::ARITH clx::ARITH inst integer –

L1 Load Misses L1 cache load misses PAPI L1 LDM PAPI L1 LDM
local load requests,

local hit rate –

L1 Store Misses L1 cache store misses PAPI L1 STM PAPI L1 STM
local store requests,

local hit rate –

L2 Load Misses L2 cache load misses PAPI L2 LDM PAPI L2 LDM gld efficiency
TCC MISS sum,
TCC EA RDREQ

L2 Store Misses L2 cache store misses PAPI L2 STM PAPI L2 STM gst efficiency
TCC MISS sum,

TCC EA WRREQ
IO Bytes Written Bytes written to IO IO IO IO IO
IO Bytes Read Bytes read from IO IO IO IO IO
Extended Page Table Extended page table size EPT EPT EPT EPT
Memory Stalls Memory stalls PAPI MEM SCY PAPI MEM SCY GINST:STL ANY MemUnitStalled
Nodes Nodes Run Configuration Run Configuration Run Configuration Run Configuration
Cores Cores Run Configuration Run Configuration Run Configuration Run Configuration

Uses GPU
1 if counters from GPU;
0 otherwise 0 0 1 if app uses GPU 1 if app uses GPU

Architecture
one-hot-encoded vector for what
architecture these counters were
recorded on

(1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1)

5.3.4 Preparing the Final Dataset

Using the counters listed on the right of Table 5.3 we compute a set of derived values

as the final features in the data set. These features are detailed on the left of Table 5.3. The

instruction related counters branch, store, load, single FP, double FP, and integer arithmetic are

all computed to be ratios of the total number of instructions. This normalizes the values across

runs, which may have drastically different numbers of total instructions. The remaining eight

features are normalized by subtracting that feature’s mean to center its values and dividing them

by its standard deviation. We additionally include whether the run was from a GPU or not, how

50

many nodes, and how many cores the run used. The architecture feature is a one-hot-encoded

vector encoding what architecture the counters were collected on. In the context of this paper, that

is four separate features that are used to denote whether the run is from Quartz, Ruby, Corona, or

Lassen.

The final data set has 21 columns and 11,312 rows. Each row represents a run of an

application-input pair for a specific number of MPI processes on a single architecture. The

columns are derived from the counters collected during the run and meta-data about the run

(see Table 5.3).

5.4 Modeling with Machine Learning

In this section we present our methodology for training the machine learning models, find-

ing the best features/models, and evaluating their performance.

5.4.1 Training

Now that we have a data set of counters from applications and the corresponding relative

performance vectors across a set of architectures, we want to use machine learning to predict

the relative performance vectors given counters from one of the architectures. In order to learn

how to predict relative performance vectors we use the XGBoost (eXtreme Gradient Boosting)

regression model [33]. This model is an ensemble of decision trees that are additively combined

to make final predictions. If ŷi ∈ R is the predicted regression value of the model, then it can be

computed as

51

ŷi =

K∑
k=1

fk (xi), fk ∈ F .

predicted value

number of trees

regression tree k

space of regression trees

To minimize over-fitting we can add a regularized objective function that models the com-

plexity of the trees.

L (ŷi) =
∑
i=1

l (ŷi , yi) +
∑
k

Ω(fk) (5.1)

predicted value

training loss convex loss function

complexity of tree fk

Since this is parameterized by functions (fk ∈ F) it cannot be optimized using typical

optimization methods. Thus, gradient tree boosting greedily adds in the best functions throughout

training iterations by selecting the ft that minimizes Equation 5.1 the most. These ft can be

additively combined into a new loss function as

L (t)
=
∑
i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ Ω(ft).

training iteration tree that minimizes L(t−1)

This can be optimized using 2nd-order approximizations and standard convex minimization

methods. XGBoost implements this gradient tree boosting method alongside a number of state-

of-the-art techniques for tree splitting and pruning. Additionally, it provides efficient implemen-

tations that can scale to large numbers of data samples and run on GPUs. It is a state-of-the-art

machine learning algorithm for learning on tabular data.

52

In order to train an XGBoost regressor we use its publicly available Python library at ver-

sion 1.7.1. We train the model on a CPU on the Ruby system. Training the XGBoost model takes

on the order of tens of seconds on average. The model takes the features from Section 5.3.4 and

predicts the relative performance across all four architectures as a vector. Mean absolute error

(MAE) is used as the minimization objective during training. During this training 10% of the

data is set aside as a testing data set, while the other 90% is shown to the model as a training data

set. While training on the training data set, the data is further split into 5 folds as part of k-fold

cross-validation. The model is trained on 4 out of the 5 folds at a time, while the other is used as

validation. This is done for all 5 combinations and the average MAE is reported.

We additionally train several other common machine learning regressors to compare the

quality of the XGBoost model to other state-of-the-art methods. For this we include linear re-

gression and decision forests. These are implemented from the scikit-learn Python library. As

with XGBoost these are trained with a 90-10 train-test split and 5-fold cross-validation. We also

test against mean prediction as a baseline for the ML models. This regressor guesses the mean

rpv in the training set for all samples in the test set.

5.4.2 Model and Feature Selection

To select the best model and feature set we first train all the models on all the features.

After training we select the best set of features using those reported by XGBoost and the decision

forest, since these models expose feature importances. These features are then used to re-train all

the models again.

In order to measure the feature importances of the trained model we use XGBoost to easily

53

recover importance values. XGBoost, in its Python framework, computes feature importances

during training and exposes them in its model interface. It calculates them based on the average

gain across all decision splits in the trees. During training a tree will add splits on a feature to

improve its predictive performance. The improvement in performance from this split is called the

gain. When there are multiple regression targets the gain is averaged over each output.

For any given feature if we average the gain from all the splits on that particular feature in

a tree, then we can compute the importance of the feature for that tree. This includes all the splits

in XGBoost’s sets of trees. Finally, we can compute this value for all of the features in the data

set to retrieve a feature importance vector.

With this method of calculating feature importances we can expose the relative contribution

of each feature to the model’s predictions. A higher importance indicates that that feature con-

tributes more to the models performance than other lower scored features. Decision tree feature

importances can also be calculated based on the frequency and coverage of splits for a feature,

however, these can be biased towards features with a large number of unique values and numeric

features. Both of these are present in our data set, so we elect to use the average gain.

Since the data set has a relatively small number of features, the feature selection will likely

have negligible impact on model training time. However, discovering the most impactful features

gives insight into what is most necessary in predicting cross-architecture performance. Addition-

ally, it allows us to collect less features in future implementations of this methodology. This is

a considerable optimization as data collection is the most time and resource intensive portion of

our machine learning pipeline.

54

5.4.3 Evaluation Metrics

We evaluate the model’s performance by two different metrics: Mean Absolute Error

(MAE) and Same Order Score (SOS). The MAE encodes the average magnitude of error in

the relative performance predictions. This measure provides a value that is easy to reason about

regarding predictive performance. An MAE of 0.1 means that the model predicts the relative

performance of applications within ±0.1 on average across each vector.

MAE =
1

| Drpv |

| Drpv |∑
i=1

‖ rpvi − r̂pvi ‖1
d

data set of relative performance vectors

rpv for run i

predicted rpv for run i

number of architectures

The SOS score denotes the number of samples where the model predicts the relative per-

formance vector in the correct order. We define two vectors a and b as being in the same order

if the i-th elements ai and bi are both the n-th largest in their respective vector, for all i. The

SOS is then defined as the fraction of predicted relative performance vectors that are in the same

order as their respective true relative performance vector. This metric shows how well the model

understands the ordering of performance on different architectures, but ignores the magnitude of

its predictions. Thus, the SOS combined with MAE gives reasonable insight into how well the

model is predicting relative performance vectors. Both of these metrics are computed over the

testing set for data samples that the model has not seen before.

55

5.5 Scheduling Experiment

Once a model is trained to predict relative performance vectors it can be used to make

informed cross platform scheduling decisions. We test this capability in our trained model by

simulating a multi-resource scheduling environment. We create a workload of 50,000 jobs ran-

domly sampled from our existing data set with replacement. These are scheduled using the First-

Come-First-Serve with EASY backfilling scheduling algorithm (FCFS+EASY) [81] presented in

Algorithm 3. This algorithm uses the Machine function to map a job to a machine: Quartz,

Ruby, Lassen, or Corona. If the machine cannot satisfy the resource requirement of a job (the

number of nodes it needs), then the job is reserved at the earliest possible time or backfilled. Oth-

erwise, it is run immediately, and the function Start(j,m) represents running job j on machine

m. We use the observed run times on each machine from the data set to determine how long the

job would run for simulation purposes.

We run this scheduling simulation with four different machine placement functions: Round-

Robin, Random, User+RR, and Model-based. These functions expose the common interface for

scheduling, Machine(j, i,M), where j is the job to schedule, i is the index of j in the queue, and

M is the set of machines considered for multi-resource scheduling. Depending on the algorithm

some of these arguments are not used. The Round-Robin placement places jobs on machines in

a round robin fashion rotating between machines for each consecutive job. The Random place-

ment uniformly selects a random machine of the four to run on. The User+RR placement mimics

traditional user behavior by running on GPU systems for GPU enabled apps and CPU only sys-

tems otherwise. Round robin is used to decide which GPU system to use for GPU enabled apps

and likewise for CPU-only apps. Finally, the Model-based placement, Algorithm 4, uses an ML-

56

Algorithm 3 Multi-Resource Scheduling Algorithm using FCFS+EASY. This standard algorithm
queues jobs using policy R1 and uses EASY to backfill smaller jobs. The function Machine is
used to map jobs to resources. The symbol \ represents the set minus operation.

Input Q← queue of jobs
R1 ← Queue ordering policy
R2 ← Backfill ordering policy
M ← Set of machines used for multi-resource scheduling
Machine(j, i,M)← Function that maps jobs to machines

1: i← 0
2: sort Q according toR1

3: for job j ∈ Q do
4: if j can start now then
5: pop j from Q
6: Start(j, Machine(j, i,M))
7: i← i+ 1
8: else
9: Reserve j at earliest possible time

10: L← Q \ {j}
11: sort L according toR2

12: for job j′ ∈ L do
13: if j′ can start now without delaying j then
14: pop j′ from L and Q
15: Start(j′, Machine(j′, i,M))
16: i← i+ 1
17: end if
18: end for
19: end if
20: end for

based model to pick the fastest machine for each job and run it there. If the machine cannot

satisfy the resource requirement of the job, then it picks the next fastest and so on.

We implement this scheduling simulation in Python using our data set to get run time

information for jobs. The nodes available on each machine reflect the number available on the

actual machines. This is not meant to substitute rigorous scheduling simulation studies but only

to demonstrate a potential use case.

57

Algorithm 4 Performance-aware machine placement for scheduled jobs using the machine learn-
ing model to predict relative performance.

Input j ← Job to schedule
i← Index of j in queue
M ← Set of machines used for multi-resource scheduling

1: function MachineGreedyj, i, M
2: rpv ← Model(j)
3: m← argmaxi∈M rpv
4: if all i ∈M are full then
5: return m
6: else
7: M ′ ←M
8: while m is full do
9: M ′ ←M ′ \ {m}

10: m← argmaxi∈M ′ rpv
11: end while
12: end if
13: return m
14: end function

5.5.1 Evaluation Metrics

When evaluating the efficiency of our scheduling algorithm we are concerned with perfor-

mance from the perspective of individual jobs as well as the scheduler as a whole. Users will hope

to see a faster turnaround time from job submission to completion for their jobs, while system

administrators may look at the job throughput of a given scheduler to measure its performance.

To quantify both of these we use average bounded slowdown and makespan.

The average bounded slowdown represents the average slowdown of a set of jobs with a

fixed bound to prevent overpenalizing very short jobs. Slowdown is the ratio of submission-to-

completion time with a wait time versus without a wait time. This provides a per-job evaluation

metric to see how much each job is affected by the scheduling algorithm. The bounded slowdown

can be calculated as shown below.

58

BoundedSlowdown(j) = max

 wj + pj

max
(
pj , τ

) , 1


batch job
wait time of j run time of j

small time interval to

prevent overpenalizing short jobs

τ = 10 in our evaluation. Using the function below we can compute the average bounded

slowdown over a set of jobs J .

BoundedSlowdown(J) =
1

|J |
∑
j∈J

BoundedSlowdown(j)

set of jobs

Using the same set of jobs J we can also define the makespan as the time from the first job

submission to the time when the last job finishes. This measures the amount of time it takes for

a scheduler to complete a set of work and is commonly used to compared different scheduling

algorithms over fixed workloads.

makespan(J) =

(
max
j∈J

(
wj + rj + pj

))
−
(

min
j∈J

rj

)
set of jobs

wait time of j

duration of j

start time of j

Both of these metrics are computed for each scheduling algorithm across our workload.

We compare them between all the scheduling algorithms to observe the benefit from cross archi-

tecture performance modeling. For each metric a lower value indicates better performance.

59

5.6 Results

In this section we present the results from our training and scheduling experiments.

5.6.1 Evaluation of ML Models

Figures 5.2 and 5.3 show the mean absolute error and same-order-score of each model on

the testing data set. We see that XGBoost performs the best for both of these metrics.

Mean Pred. Linear Regr. Decision Forest XGBoost
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
A

bs
ol

ut
e

Er
ro

r

Mean Absolute Error of Models

Figure 5.2: The MAE of each machine learning model over the testing data set after training.
XGBoost outperforms the other models with an MAE of 0.11. Lower MAE is better.

The XGBoost model scores a MAE of 0.11 (see Figure 5.2). This means that the model can

take counters recorded on one architecture and predict its relative performance to the others within

0.11 on average. This is a 81.6% improvement over guessing the mean relative performance

vector from the data. From this we can infer that the model is not simply guessing according to

the distribution of the runtime data, but is rather correlating counter data with its performance

prediction.

60

The linear and decision forest models perform better than guessing the mean, but do not

exceed the MAE of XGBoost. The decision forest scores the closest to XGBoost likely since

they are both ensembles of decision trees. However, XGBoost implements boosting alongside a

number of other pruning techniques that strengthen its prediction.

Mean Pred. Linear Regr. Decision Forest XGBoost
0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

e
O

rd
er

 S
co

re

Same Order Score of Models

Figure 5.3: The SOS of each machine learning model over the testing data set after training.
Higher SOS is better.

We see similar performance from XGBoost on the SOS metric where it is the best model

(see Figure 5.3). It is able to predict the relative performance vector in the correct architecture

order in 76% of samples in the testing set. This means it is frequently able to predict the fastest

and slowest architectures for a particular application and input, which is a valuable result to a

user who is likely trying to avoid the slowest architecture and run on the fastest. Additionally, if

the system with the fastest architecture is busy, then the user can select the next fastest and so on.

As with the MAE metric the decision forest has similar, but lower performance to XGBoost.

The linear model is next as with MAE. It scores slightly higher than the SOS from guessing only

the mean relative performance vector.

61

5.6.2 Ablation Study

Quartz Ruby Lassen Corona

Mean Pred.

Linear Regr.

Decision Forest

XGBoost

Mean Absolute Error By Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5.4: The MAE of each model when predicting using profiles from one particular ma-
chine. For instance, the bottom right of the plot represents the MAE when predicting relative
performance vectors with XGBoost and profiles from Ruby.

Here we study the effects on modeling performance when removing certain features and/or

data from the training set. Figures 5.4 and 5.5 further detail how well the models perform when

given counters from each individual architecture. In both of these figures the ”mean” prediction

row is constant, since the mean relative performance vector is independent of the input features.

The first, Figure 5.4, shows the MAE scores for each ML model. We observe the same trends as

Figure 5.2 where XGBoost has the best MAE. However, we notice that profiles from Ruby lead

to a lower MAE and, thus, better predicted relative performance vectors. In fact, profiles from the

two CPU systems, Ruby and Quartz, generally leader to better MAE. This same trend continues

for the SOS metric.

The fact that counters recorded on CPU machines lead to better predictions on average is

62

Quartz Ruby Lassen Corona

Mean Pred.

Linear Regr.

Decision Forest

XGBoost

Same Order Score By Machine

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: The SOS of each model when predicting using profiles from one particular machine.

an important observation for using this model in practice. CPU machines are generally cheaper

and more readily available. Users can run their code on them and get predictions from the model

for less available resources, such as GPUs. Additionally, users can obtain an estimate of the

speedup from running on a given architecture without actually being capable of running on that

architecture. For instance, if a particular application does not support AMD GPUs a user could

estimate the performance increase/decrease if they were to implement AMD GPU support.

We hypothesize that the CPU performance metrics give better predictions due to the matu-

rity of CPU performance counters and the profiling tools used to record them. CPU performance

counters have been used extensively and the difficulties in recording them accurately have been

well studied. On the other hand, GPU profiling, particularly for AMD, is a relatively new feature

in HPCToolkit and the counters may not be as reliable as those recorded on a CPU.

Figure 5.6 shows the performance of XGBoost when trained on data from two of the three

resources amounts and evaluated on the third. We observe that predicting the one node relative

63

1 Core 1 Node 2 Nodes
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n
A

bs
ol

ut
e

Er
ro

r

XGBoost Mean Absolute Error
with Different Node Counts as Test Set

Figure 5.6: Evaluation MAE of XGBoost when each resource count is removed from the training
set and used for evaluation. The model performs best at predicting 1 node performance when
trained on 1 core and 2 node date. Note that all scores are lower and still very strong.

performance vectors gives the best MAE. It is unclear whether this is because modeling the

one node performance is easier or that the one core and two node data is more representative.

Regardless, all three node counts score very close to 0.11 MAE, which is still a strong result.

Additionally, we can see the performance of XGBoost when trained on all but one appli-

cation and evaluated on the remaining applications in Figure 5.7. Again, we see that the model

performs well across all applications. However, it does notably perform worse for the ML and

Python-based applications. This is possibly due to more noise and/or complicated software stacks

involved in running each of these applications. These applications also tend to depend on more

libraries and have more dependencies than the other applications.

64

A
M

G
C

A
N

D
LE

C
oM

D
C

os
m

oF
lo

w
C

R
A

D
L

Em
be

r
Ex

aM
in

iM
D

La
gh

os
m

in
iF

E
m

in
iG

A
N

m
in

iQ
M

C
m

in
iT

ri
m

in
iV

ite
D

ee
pC

am
N

ek
bo

ne
PI

C
SA

R
lit

e
SW

4l
ite

SW
FF

T
T

ho
rn

ad
o

X
SB

en
ch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ea

n
A

bs
ol

ut
e

Er
ro

r

XGBoost Mean Absolute Error
with Different Applications as Test Set

Figure 5.7: Evaluation MAE of XGBoost when each application is removed from the training set
and used for evaluation. Results are generally strong across all applications.

5.6.3 Feature Importances

Figure 5.8 shows the feature importances for the XGBoost model. The most important fea-

ture is the ratio of branch to total instructions. This feature captures the control flow complexity

of a program as those with more branch instructions have a more complex control flow. Since

programs with more control flow generally perform worse on GPUs, the model likely uses this

feature to make CPU-GPU predictions.

Next we see that the ratio of integer and single precision FP arithmetic to total instructions

are the next most important features in prediction. These provide insight into the data throughput

of the model. In this case, applications with higher data intensity are more likely to perform

better on the GPU as they are designed for high throughput data-parallel computation. These two

features combined with the branching intensity make sense as the three most important features

as they help the model predict relative performance between CPUs and GPUs, which is where

65

Br
an

ch
 In

te
ns

ity

Sto
re

 In
te

ns
ity

Lo
ad

 In
te

ns
ity

Sin
gle

 FP
 In

te
ns

ity

Dou
ble

 FP
 In

te
ns

ity

Arit
hm

et
ic

Int
en

sit
y

L1
 Lo

ad
 M

iss
es

L1
 St

or
e M

iss
es

L2
 Lo

ad
 M

iss
es

L2
 St

or
e M

iss
es

IO
 B

yte
s R

ea
d

IO
 B

yte
s W

rit
te

n

Ex
te

nd
ed

 Pa
ge

 Ta
ble

Mem
or

y S
tal

ls

O
ve

rh
ea

d

Nod
es

Cor
es

Use
s G

PUru
by

qu
ar

tz
las

se
n

co
ro

na
0.00

0.05

0.10

0.15

0.20

Im
po

rt
an

ce

Feature Importances for XGBoost

Figure 5.8: Importances of each feature in the XGBoost model. A higher feature importance
value means it is more influential in the decision making of the model. The branch instructions
intensity is the most important feature followed by the integer and floating point arithmetic in-
tensity.

we see the largest performance differences in the data.

The next three most important features are Ruby, Lassen, and Uses GPU, which detail

where the counters were collected. This is necessary for the model to predict the relative perfor-

mance vector and is likely why these are the next three most important features. We also see that

the L2 store misses and extended page table features are not used in the prediction, so we can

remove these during feature selection.

5.6.4 Evaluation of Scheduling Simulations

Figures 5.9 and 5.10 show the results from the scheduling simulation. The first, Figure 5.9,

lists the makespan for the scheduler with each machine placement algorithm. The Model-based

machine placement method gives the lowest makespan at 0.87 hours on the set of jobs meaning

it is able to finish the job set in a shorter amount of time than the others. Placing jobs on the

66

most efficient resource helps improve the makespan by allowing jobs to finish sooner. The next

best method is the User+RR placement algorithm. This method represents how users submit jobs

to the scheduler with only the limited knowledge of the performance of their applications across

machines. This is followed by the Round-Robin and Random placement methods that perform

the worst.

Round-Robin Random User+RR Model-based
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ak

es
pa

n
(h

ou
rs

)

Scheduler Makespan

Figure 5.9: The makespan of each machine selection algorithm in the scheduling simulation.
Lower is better.

Figure 5.10 shows the average bounded-slowdown for each machine placement method.

The slowdown measures the ratio of wait time and run time to just run time. As with makespan

the Model-based placement performances the best compared to the other algorithms.

67

Round-Robin Random User+RR Model-based
0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 B
ou

nd
ed

-S
lo

w
do

w
n

Scheduler Average Bounded-Slowdown

Figure 5.10: The average bounded-slowdown of each machine selection algorithm in the schedul-
ing simulation. Lower is better.

68

Chapter 6: PAREVAL: Creating a Benchmark for Understanding Parallel Code

Modeling Capabilities

Before developing techniques to model parallel code we first need to understand how ca-

pable current LLMs are at modeling parallel code. In this chapter, we introduce the PAREVAL

benchmark for evaluating the parallel code modeling capabilities of state-of-the-art LLMs. The

insights from this chapter will aid in incorporating code as an input modality to performance

models. The contents of this chapter are presented in [102].

6.1 Motivation

Large language model (LLM) based coding tools are becoming popular in software devel-

opment workflows. Prior work has demonstrated their effectiveness at performing a variety of

tasks, including code completion, summarization, translation, and lookup [56, 6, 59, 5, 119, 73,

50]. Popular models such as StarCoder [83], span a wide range of programming languages and

domains, and can be used to complete or generate code during the development process. This

makes them a promising tool for improving developer productivity and the overall quality of soft-

ware. However, despite the rapid advancement and scaling of LLMs in recent years, they still

struggle with more complicated tasks such as reasoning and planning. One particularly complex

task that LLMs struggle with is generating parallel code. This task involves reasoning about data

69

distributions, parallel algorithms, and parallel programming models.

Parallel code is essential to modern software development due to the ubiquity of multi-core

processors, GPGPUs, and distributed systems. However, writing parallel code is difficult and

error-prone. Parallel algorithms are generally more complicated than their sequential counter-

parts, and parallel bugs such as race conditions and deadlocks are notoriously non-trivial to de-

bug. Further, it can be challenging to reason about the performance of parallel code and identify

“performance bugs” [71]. LLMs can potentially help developers overcome these challenges but,

this requires an understanding of the current capabilities of LLMs, and in turn, a well-designed

and reproducible methodology to assess these capabilities.

There are several existing benchmarks for evaluating the capabilities of LLMs to generate

correct code. However, none of them test generation of parallel code. Most existing benchmarks

focus on short, array or string manipulation tasks, and are predominantly in Python (or translated

to other languages from Python [28]). Only more recent benchmarks such as DS-1000 [79], test

the usage of APIs, which are critical to using parallel programming models. Further, these bench-

marks do not evaluate the performance of the generated code, instead testing only correctness.

While correctness is a crucial metric, performance is also vital for developers writing parallel

code. Thus, it is imperative to design new benchmarks and metrics to evaluate the usefulness of

LLMs for parallel code generation tasks.

Developing a set of benchmarks that fully covers the space of desired capabilities is non-

trivial. Identifying the best LLM for parallel code generation requires testing on problems that

cover shared- and distributed-memory programming models, different computational problem

types, and different parallel algorithms. This can become a large quantity of benchmarks that

must be manually designed. Further, these benchmarks are challenging to test. Traditional Python

70

code generation benchmarks are tested by running eval on the generated code for a small number

of small unit tests. On the other hand, in the case of parallel code — we must compile C/C++

code, link against one or more parallel libraries, and run the code in the proper parallel envi-

ronment. Additionally, if we want to test the performance of the generated code, then we must

choose reasonable input sizes for each benchmark.

In order to evaluate the current capabilities and limitations of LLMs in generating par-

allel code, we propose the Parallel Code Generation Evaluation (PAREVAL) benchmark: a set

of benchmarks (prompts) for evaluating how well LLMs generate parallel code. These bench-

marks cover twelve different computational problem types, and seven different execution models:

serial, OpenMP, Kokkos, MPI, MPI+OpenMP, CUDA, and HIP. We evaluate several state-of-the-

art open- and closed-source LLMs using these benchmarks, and report metrics that represent the

correctness and performance of the generated code. We introduce novel code generation evalu-

ation metrics that assess performance and parallel scaling. We further analyze how each model

performs with respect to the various programming models and computational problem types. We

discuss the areas where current state-of-the-art LLMs are already performing well and the areas

where they can be improved.

In this chapter, we make the following important contributions:

• We design the PAREVAL benchmark for evaluating the ability of LLMs to generate and

translate parallel code. PAREVAL is available online at: github.com/parallelcodefoundry/ParEval.

• We introduce two novel metrics, speedupn@k and

efficiencyn@k, for evaluating the performance and scaling of LLM generated code.

• We evaluate the effectiveness of several state-of-the-art open- and closed-source LLMs

71

https://github.com/parallelcodefoundry/ParEval

using the PAREVAL benchmark.

• We identify several areas where current state-of-the-art LLMs can improve their capabili-

ties on parallel code generation.

In addition to these contributions, we explore the following research questions:

RQ1 How well do state-of-the-art LLMs generate parallel code, and which models are the best?

RQ2 Which parallel execution models and problem types are most challenging for LLMs?

RQ3 How performant and scalable is the parallel code generated by LLMs?

RQ4 How well can LLMs translate between execution models? How performant and scalable is

the translated code?

6.2 PAREVAL: Prompts for Parallel Code Generation

In order to evaluate the ability of LLMs to generate parallel code, we propose the Parallel

Code Generation Evaluation (PAREVAL) benchmark. Below, we discuss the design of PAREVAL,

and its various components that lead to the creation of concrete prompts for LLMs.

To disambiguate the use of the terms prompt, task, problem, problem type, and benchmark

we define them as follows.

Task/Prompt: An individual text prompt that is given to the LLM to generate code. The output

can be compiled, executed, and scored as either correct or incorrect code.

Problem: A set of tasks or prompts that test the ability of the LLM to generate code for the

same computational work, but each task or prompt may use a different execution model.

72

Problem Type: A set of problems that test computational problems with similar work or from

similar domains (for example, sorting problems).

Benchmark: A set of prompts that are all tested together to evaluate the performance of the

LLM. We name the collection of all the prompts we have designed as the PAREVAL benchmark.

Benchmark Requirements

The goal of PAREVAL is to evaluate the ability of LLMs to generate parallel code. To do

this, the prompts should be such that:

1. The prompts should cover a wide variety of computational problem types, and parallel pro-

gramming models.

2. The prompts should be simple enough that they can be generated as a standalone function, but

complex enough that they are not too trivial to solve.

3. The prompts should not exist within any of the LLMs’ training datasets, to prevent the LLMs

from simply copying solutions from their training data.

4. The prompts and corresponding outputs should be able to be evaluated automatically, since

there will be many different tasks and LLM outputs.

In order to fulfill the requirements above, we propose PAREVAL, a set of 420 prompts

that cover twelve different computational problem types and seven different execution models.

Each problem type has five different problems, and each problem has a prompt for each of the

seven execution models, resulting in 420 total prompts. Each prompt in PAREVAL is a standalone

73

function that requires the LLM to generate code that solves the problem either sequentially or in

parallel.

Problem Types

The problem types are listed and described in Table 6.1. These were hand-selected by us,

and represent a wide variety of common computational problems that are often parallelized. Each

requires different strategies or APIs to solve in parallel. For instance, the problems in the Sort

problem type require the LLM to generate code that sorts an array of values.

Problems

The five problems within each problem type are designed to test the core functionality of

the problem type. To prevent prompting the model for a solution that is already in its training

dataset, the five problems are small variations of the usual problem type. For example, one of the

scan problems is to compute the reverse prefix sum of an array, rather than directly computing

the prefix sum. These variations still test the model’s understanding of the core computational

problem, but mitigate the likelihood of it simply copying code from its training dataset. Listing 1

shows another example of these problem variations. Another benefit of having five problems per

problem type is that it provides more data points for evaluating the LLM’s performance on that

problem type, but not so many that it becomes infeasible to implement and maintain.

74

Table 6.1: Descriptions of the twelve problem types in PAREVAL. Each problem type has five
concrete problems, and each problem has a prompt for all seven execution models.

Problem Type Description

Sort
Sort an array or sub-array of values;
in-place and out-of-place.

Scan
Scan operations, such as prefix sum,
over an array of values.

Dense Linear Algebra
Dense linear algebra functions from
all three levels of BLAS.

Sparse Linear Algebra
Sparse linear algebra functions from
all three levels of BLAS.

Search
Search for an element or property in
an array of values.

Reduce
Reduction operation over an array
dimension, such as computing a sum.

Histogram
Binning values based on a
property of the data.

Stencil
One iteration of 1D and 2D stencil
problems, such as Jacobi relaxation.

Graph
Graph algorithms, such as
component counting.

Geometry
Compute geometric properties,
such as convex hull.

Fourier Transform
Compute standard and inverse
Fourier transforms.

Transform
Map a constant function to each
element of an array.

Prompts

Each problem has a prompt for each of the seven execution models that the LLM is required

to generate code for. The seven execution models we test are: serial, OpenMP [111], MPI [128],

MPI+OpenMP, Kokkos [135], CUDA [106], and HIP [62]. All the prompts are in C++, CUDA,

or HIP. These represent both shared and distributed memory programming models, as well as

GPU programming models. The prompts for each execution model are designed to be as similar

75

to the other prompts for that problem as possible, while still being idiomatic for the programming

model. For serial, OpenMP, MPI, and MPI+OpenMP prompts, we use STL data structures such

as std::vector and std::array. For Kokkos, we utilize the Kokkos::View data struc-

ture (as shown in Listing 1). The CUDA and HIP prompts use raw pointers to represent array

structures.

Listing 1 An example Scan prompt for Kokkos. The LLM will be tasked with completing the
function body.
#include <Kokkos_Core.hpp>

/* Replace the i-th element of the array x with the minimum
value from indices 0 through i.
Use Kokkos to compute in parallel. Assume Kokkos has
already been initialized.
Examples:

input: [8, 6, -1, 7, 3, 4, 4]
output: [8, 6, -1, -1, -1, -1, -1]

input: [5, 4, 6, 4, 3, 6, 1, 1]
output: [5, 4, 4, 4, 3, 3, 1, 1]

*/
void partialMinimums(Kokkos::View<float*> &x) {

We list an example prompt in Listing 1 for a variant of a scan problem to generate Kokkos

code. The goal of this problem is to compute the minimum value of the array up to each index.

We include example inputs and outputs in the prompt as this can significantly improve the quality

of the generated code [16]. The necessary #include statements are also prepended to the

prompt as we found that this improves the likelihood of the LLM correctly using the required

programming model.

76

Table 6.2: The models compared in our evaluation. CodeLlama and its variants currently repre-
sent state-of-the-art open-source LLMs and GPT represents closed-source LLMs. OpenAI does
not publish the numbers of parameters in their models.

Model Name No. of
Parameters

Open-source
Weights License HumanEval†

(pass@1)
MBPP‡

(pass@1)

CodeLlama-7B [121] 6.7B 3 llama2 29.98 41.4
CodeLlama-13B [121] 13.0B 3 llama2 35.07 47.0

StarCoderBase [83] 15.5B 3
BigCode

OpenRAIL-M 30.35 49.0

CodeLlama-34B [121] 32.5B 3 llama2 45.11 55.0
Phind-CodeLlama-V2 [115] 32.5B 3 llama2 71.95 —
GPT-3.5 [27] — 7 — 61.50 52.2
GPT-4 [107] — 7 — 84.10 —

†HumanEval results are from the BigCode Models Leaderboard [23], except for GPT-3.5 and GPT-4 which are from [148].
‡MBPP results are from [121].

6.3 Description of Evaluation Experiments

Now that we have described the prompts in the previous section, we describe how we can

use them to evaluate the performance of LLMs on two different tasks – code generation and

translation.

6.3.1 Experiment 1: Parallel Code Generation

The first experiment studies the ability of LLMs to generate code, either sequential or in

a specific parallel programming model, given a simple description in a prompt (see Listing 1).

We evaluate LLMs on how well they can generate code for all the prompts in PAREVAL. We do

so by asking the model to complete the function started in the prompt, and then evaluating the

generated code. By compiling and executing the generated code, we report different metrics that

will be described in Section 6.5. The metrics are computed over the combined results from the

77

OpenMP, MPI, MPI+OpenMP, Kokkos, CUDA, and HIP execution models, and compared with

the same metrics computed over the serial results. These results will provide insight into how

well the model can write parallel code based on natural language descriptions. The results can

also be compared along the axes of execution model and problem type.

6.3.2 Experiment 2: Parallel Code Translation

The second experiment studies the ability of LLMs to effectively translate code provided

in one execution model to another execution model. To accomplish this, we prompt the LLM

with a correct version of the code in one execution model and ask it to translate it to another

execution model. An example of this prompt format is shown in Listing 2. We evaluated several

prompting formats for translation, such as giving examples of other successful translations, but

found the format in Listing 2 to be the most effective.

In theory, we could have evaluated translation capabilities between each pair of execution

models for each problem. However, to limit the quadratic increase in the number of prompts,

we only evaluate translations for these pairs: serial→ OpenMP, serial→ MPI, and CUDA→

Kokkos. We identify these as some of the most relevant translation tasks for HPC developers. We

compute the same metrics as for Experiment 1. These results will provide insight into how well

the model can translate between different execution models. The results can also be compared

along the axes of source and target execution model and problem type.

78

Listing 2 An example prompt given to the model for code translation. The model is given a se-
quential implementation of sumOfMinimumElements and tasked with translating it to OpenMP.
// A serial implementation of sumOfMinimumElements
/* Return the sum of the minimum value at each index of vectors

x and y for all indices.
i.e. sum = min(x_0, y_0) + min(x_1, y_1) + min(x_2, y_2) + ...
Example:

input: x=[3, 4, 0, 2, 3], y=[2, 5, 3, 1, 7]
output: 10

*/
double sumOfMinimumElements(std::vector<double> const& x,

std::vector<double> const& y) {
double sum = 0.0;
for (size_t i = 0; i < x.size(); ++i) {

sum += std::min(x[i], y[i]);
}
return sum;

}

// An OpenMP implementation of sumOfMinimumElements
/* Return the sum of the minimum value at each index of vectors

x and y for all indices.
i.e. sum = min(x_0, y_0) + min(x_1, y_1) + min(x_2, y_2) + ...
Use OpenMP to sum in parallel.
Example:

input: x=[3, 4, 0, 2, 3], y=[2, 5, 3, 1, 7]
output: 10

*/
double sumOfMinimumElements(std::vector<double> const& x,

std::vector<double> const& y) {

6.4 Models used for Comparison

We choose to compare several state-of-the-art open-source and closed-source LLMs, as

well as smaller LLMs that are more practical for use in production. We provide brief descriptions

of the LLMs used in our evaluation, and their properties below. Table 6.2 provides a summary

and some salient properties of the models used.

79

CodeLlama (CL-7B, CL-13B, and CL-34B)

Rozière et al. originally introduced CodeLlama models in [121] as variants of the Llama 2

model [134], fine-tuned for code. All three models started with Llama 2 weights and were then

fine-tuned on 500 billion tokens from a dataset of predominantly code. The Llama 2 models were

also extended to support longer context lengths of 16k and infilling to generate code in the middle

of sequences. We select these models as they are amongst the top performing open-source LLMs.

Additionally, the CodeLlama models are very accessible as there are small model sizes available

and there exists a thriving software ecosystem surrounding Llama 2 based models.

StarCoderBase

The StarCoderBase model [83] is a 15.5B parameter model trained on 1 trillion tokens

from The Stack [77]. In addition to code from 80+ programming languages, its data set includes

natural language in git commits and Jupyter notebooks. StarCoderBase supports infilling as well

as a multitude of custom tokens specific to code text data. The model architecture is based on the

SantaCoder model [11], and it supports a context length of 8K tokens. We select StarCoderBase

as it is one of the best performing open-source models around its size, and is frequently used for

comparisons in related literature.

Phind-CodeLlama-V2

The Phind-CodeLlama-V2 model [115] is a CodeLlama-34B model fine-tuned on over 1.5

billion tokens of code data. At the time we were selecting models for comparison it topped the

BigCode Models Leaderboard [23] among open-access models on HumanEval with a pass@1

80

score of 71.95. However, the fine-tuning dataset for this model is not publicly available, so it

is not possible to ensure that the BigCode benchmarks themselves are not included in Phind’s

fine-tuning dataset.

GPT-3.5 and GPT-4

GPT-3.5 and GPT-4 are closed-source LLMs from OpenAI [27, 107]. Most information

about these models is not publicly available, however, they can be used for inference via a paid

API. We use the most up-to-date versions of these models available at the time of writing, the

gpt-3.5-turbo-1106 and gpt-4-1106-preview models. Unlike the other models tested, these are

instruction-tuned and aligned to human preferences. Rather than using them for direct code

generation, we have to interact with them via a chat interface. As with the Phind-CodeLlama-

V2 model, the data used to train these models is not publicly available, so it is difficult to fairly

compare them with the other models as they might have seen some prompts during training.

6.5 Evaluation Metrics

It is important to be able to meaningfully compare the performance of the selected LLMs

at generating correct and efficient code for the prompts in PAREVAL. This section details how

we accomplish this by adopting a popular correctness metric for code LLMs, and defining two

new performance-related metrics.

81

6.5.1 Metric for Correctness

We adopt the pass@k metric from [32] to quantify correctness of the generated code. For

a given prompt, pass@k estimates the probability that the model will generate a correct solution

given k attempts. Often the average pass@k over all prompts in a benchmark is reported. To

estimate the pass@k over a set of prompts, we first generate N samples for each prompt using

the model, where N > k. These samples are then evaluated for correctness. The number of

correct samples can be used to estimate the pass@k value as shown in Equation (6.1).

pass@k =
1

| P |

∑
p∈ P

[
1−

(
N − cp

k

)
/

(
N

k

)]
(6.1)

Number of samples generated per prompt

Set of prompts

Number of correct

samples for prompt p

This metric provides insight into how often do models generate correct code. The proba-

bility that the model will generate a correct solution in one attempt, pass@1, is the most useful

metric for end-users as it aligns with how LLMs are used in practice. In this paper, we report

100× pass@k as is common in related literature and online leaderboards [23, 31]. Additionally,

as models have become more capable, studies have shifted toward only reporting pass@1 values.

However, pass@k values for k > 1 are still useful for understanding how models perform on

more difficult prompts. Commonly reported values of k are 1, 5, 10, 20, and 100. It is also

common to report pass@1 values using a generation temperature of 0.2 and pass@k for higher

values of k using a generation temperature of 0.8. This higher temperature allows the model to

more extensively explore the solution space when generating a larger number of attempts.

82

6.5.2 Performance Metrics

For parallel and HPC code, it is important to consider both the correctness and performance

of the generated code. To analyze and compare the runtime performance of LLM generated code,

we introduce two new metrics: speedupn@k and efficiencyn@k.

speedupn@k

The first metric, speedupn@k, measures the expected best performance speedup of the

generated code relative to the performance of a sequential baseline (see Section 6.6.2) if the

model is given k attempts to generate the code. The relative speedup is computed based on the

execution time obtained using n processes or threads. For a given prompt p, the expected best

speedup relative to a sequential baseline, T ∗p , is given by Equation (6.2).

E
[
max

{
T ∗p

Tp,s1,n
, . . . ,

T ∗p
Tp,sk,n

}]
=

N∑
j=1

(
j−1
k−1

)(
N
k

) T ∗p

Tp,j,n
(6.2)

runtime of sample j of prompt p on n resources

runtime of sequential baseline for prompt p

To demonstrate that Equation (6.2) represents the desired quantity, consider the set of N

generated samples is in order from slowest to fastest. This is without loss of generality as we

assume the k samples are selected uniformly and, thus, all size k permutations are equally likely.

The probability that the max is the jth sample is given by
(
j−1
k−1

)
/
(
N
k

)
, as there must be j − 1

elements before j and, thus,
(
j−1
k−1

)
ways to select the remaining elements. The sum of these

probabilities, each weighted by their respective speedups, gives the expected max speedup over

83

k samples. Taking the average of Equation (6.2) over all prompts we can define the speedupn@k

metric as shown in Equation (6.3).

speedupn@k =
1

|P |
∑
p∈P

N∑
j=1

(
j−1
k−1

)(
N
k

) T ∗p
Tp,j,n

(6.3)

For a single LLM, the speedupn@k metric can be used to understand how well its gener-

ated code performs compared to sequential baselines. A value greater than 1 indicates that the

generated code is faster than the baseline on average, while a value less than 1 indicates that the

generated code is generally slower than the baseline. When comparing multiple LLMs, a higher

value of speedupn@k signifies more performant code. It is important to note that this metric is

hardware dependent and, thus, to compare models fairly all the run times need to be collected on

the same hardware.

efficiencymax@k =
1

|P |
∑
p∈P

N ·|procs|∑
j=1

n∈procs

(
j−1
k−1

)(
N ·|procs|

k

) T ∗p
n · Tp,j,n

(6.4)

The speedupn@k metric also gives insight into how well the generated code makes use of

parallelism in its computation. It is fixed to a given number of resources, n, which can either be

threads or processes, depending on the model of parallelism being used. It also adds another axis

to vary when comparing models. When studying a single model, the speedupn@k metric can

be compared at different values of n to understand the complete scaling behavior of that model.

When comparing multiple models, it is typically most useful to fix n to a single value. One could

84

also average over many values of n, but this risks hiding too much information to be useful.

speedupmax@k

We also define a variant of the speedupn@k metric, speedupmax@k, as shown in Equa-

tion (6.5), which estimates the maximum speedup over all n and not a fixed resource count.

speedupmax@k =
1

|P |
∑
p∈P

N ·|procs|∑
j=1

n∈procs

(
j−1
k−1

)(
N ·|procs|

k

) T ∗p
Tp,j,n

(6.5)

Here procs is the set of resource counts over which the experiments can be performed. For

example, if there are 128 hardware cores, procs = 1, 2, 4, 8, 16, 32, 64, 128 processes or threads.

efficiencyn@k

To further understand the parallel performance of the generated code, we define the efficiencyn@k

metric. This metric measures the expected best performance efficiency (speedup per process or

thread) if the model is given k attempts to generate the code. This is easily defined by modifying

Equation (6.3) to divide by n as shown in Equation (6.6). The possible values of this metric

range between 0 and 1.0, with 1.0 representing a model that generates code that scales perfectly

with the number of processes or threads. This metric is useful for understanding how well the

generated code makes use of parallel resources. In addition to efficiencyn@k, we also define

efficiencymax@k in the same fashion as Equation (6.5).

efficiencyn@k =
1

|P |
∑
p∈P

N∑
j=1

(
j−1
k−1

)(
N
k

) T ∗p
n · Tp,j,n

(6.6)

85

Even though we explore parallel code generation in this paper, these metrics can be used

to consider the performance of sequential code generation as well. For example, examining

speedup1@k for the HumanEval, MBPP, or DS-1000 benchmarks will lead to a better under-

standing of how efficient the generated Python code is compared to a human created baseline.

Additionally, both performance metrics could be modified to be parameterized by problem size

instead of number of processes/threads in order to study the computational complexity of the

generated code.

6.6 Experimental Setup

This section describes how we generate outputs using each of the LLMs (Section 6.4) and

the prompts in PAREVAL, and how we evaluated the generated code using the PAREVAL test

harness.

6.6.1 LLM Inference: Generating Code Output

To generate outputs with the open-source models, we use the HuggingFace library [143]

with PyTorch [113] as the backend to load the LLM weights and use them for inference. Specif-

ically, we create a PyTorch Dataset object that wraps the set of prompts and we pass this as input

to a Huggingface Pipeline object, which then runs the models in inference mode and generates

the outputs. We do these runs on a single NVIDIA A100 80GB GPU using 16-bit floating point

precision. Since the prompt workloads are fairly regular, we get the best inference performance

for larger batch sizes. So for each model, we use the largest batch size that fits in GPU memory.

To generate the GPT-3.5 and GPT-4 outputs we use the OpenAI API [108] via OpenAI’s Python

86

client [109].

For all of the tasks, we use nucleus sampling with a value of p = 0.95. Additionally, we

limit the maximum number of new tokens generated to 1024. We experimentally found this to be

long enough for all of the tasks to be completed, but short enough to limit long, repetitive outputs.

Using this configuration, we create two sets of outputs for each model: one with 20 samples per

prompt and a temperature of 0.2, and the other with 200 samples per prompt and a temperature

of 0.8. The former is used to calculate the metrics at k = 1 (such as pass@1) and the latter for

larger values of k. This is in line with the generation configurations in related literature [83, 121].

Note that we exclude the evaluation of GPT-3.5 and GPT-4 with 200 samples per prompt and a

temperature of 0.8 due to the high monetary cost of generating these outputs.

6.6.2 Evaluating the Generated Code

To evaluate the generated code, we use the PAREVAL test harness. The test harness is a set

of scripts that compile and run the generated code using manually written test drivers for each

problem. The scripts handle recording the compile status, correctness, and execution time of the

generated code.

To compile the generated code, we use the GNU Compiler Collection (GCC) version 9.4.0.

For serial, OpenMP, and Kokkos versions, we use GCC as the primary compiler, whereas we

use it as the backend to the respective frontend compiler for the other models (i.e. the backend

compiler to mpicxx). All compilations use the flags -O3 -std=c++17 and the OpenMP tasks

add the -fopenmp flag. We use version 4.1.0 of Kokkos, and the threads execution space,

which uses C++ threads for parallelism. MPI codes are compiled with OpenMPI version 4.1.1.

87

CUDA programs are compiled with nvcc and CUDA version 12.1.1. Likewise, HIP programs are

compiled with hipcc and ROCm version 5.7.0.

Before compiling an output, the prompt and generated code are written to a header file

that is included by the driver script for that task. Once compiled, the generated binary is run

by the test harness. The test harness checks if the generated code produces the same results

as the sequential baseline. The sequential baselines are handwritten, optimal implementations

of the prompt that are used to test correctness and to calculate the performance metrics (see

Section 6.5.2). Additionally, a code can be labeled as incorrect for the following reasons:

• The code does not compile or it takes longer than three minutes to run. We choose the problem

sizes for each prompt such that any reasonable implementations execute in much less than three

minutes.

• The code does not use its respective parallel programming model. For example, if the model

generates a sequential implementation rather than using OpenMP when prompted to do so, it

is labeled as incorrect. We utilize several string matching criteria to implement this check.

The output of the program includes the result of the correctness check of the generated code, the

average runtime of the generated code, and that of the sequential baseline over ten runs. We use

the default timer for each execution model to measure its run time.

The CPU runs are conducted on an AMD EPYC 7763, 2.45 GHz CPU with 64 physical

cores and 512 GB of RAM. We run with 1, 2, 4, . . . , 32 threads for OpenMP and Kokkos. For

MPI, we run with 1, 2, 4, . . . , 512 processes across multiple nodes with one process per physical

core. For MPI+OpenMP we run on 1, 2, 3, and 4 nodes with 1 process per node and 1, 2, 4, . . . , 64

threads per node. The CUDA runs are completed on an NVIDIA A100 80GB GPU and the AMD

88

runs on an AMD MI50 GPU. Kernels are launched with the number of threads indicated in the

prompt text (i.e. at least as many threads as values in the array).

6.7 Evaluation Results

We now present detailed results from evaluating the LLMs described in Section 6.4 using

the PAREVAL prompts and test harness.

6.7.1 Experiment 1: Parallel Code Generation

To evaluate the correctness of the code generated by the LLMs we first look at the pass@1

scores over PAREVAL. Figure 6.1 shows the pass@1 score for each LLM for generating the serial

code versus the average over the six parallel execution models. As defined in Equation (6.1),

these values are aggregated over all the prompts including problem types and execution models.

Notably, all of the LLMs score significantly worse for parallel code generation than they do

for serial code generation. The best performing models, GPT-3.5 and GPT-4, both achieve ∼76

pass@1 on the serial prompts. This is a strong score in the context of other benchmarks, such

as HumanEval, where GPT-4 gets 84.1 (see Table 6.2). Despite the strong serial scores, GPT-3.5

and GPT-4 only achieve 39.6 and 37.8 pass@1, respectively, on the parallel prompts.

The open-source models show a significant decrease in performance for parallel code gen-

eration with all of them except Phind-V2 (Phind-CodeLlama-V2) scoring between 10.2 and 18.6.

Phind-V2 does much better than the other open-source models, achieving 32 pass@1 on the par-

allel prompts. This suggests that further fine-tuning of the open-source code models can improve

their performance on parallel code generation. Additionally, it is significant that an open-source

89

CL-7B CL-13B StarCoderBase CL-34B Phind-V2-34B GPT-3.5 GPT-4
0

20

40

60

80

100

pa
ss

@
1

48.4 52.8 51.7 54.0

65.6
76.0 76.1

15.3 17.4 18.6
10.2

32.1
39.6 37.8

Serial vs Parallel pass@1
serial parallel

Figure 6.1: Each LLM’s pass@1 score over PAREVAL. All of the LLMs score significantly worse
in generating parallel code than serial code.

model performs near to the closed-source models on parallel code generation. Open-source mod-

els are more accessible and, thus, having a strong open-source model for parallel code generation

would be beneficial to the community.

Another interesting trend we observe in Figure 6.1 is that CodeLlama-34B and GPT-4 both

score worse than their smaller counterparts on parallel code generation. The reasons for this

decrease in performance are not immediately obvious. However, we observe that CodeLlama-

34B and GPT-4 often generate the same output for a given prompt for most or all of the 20

samples. This is due to the larger models being more “confident” in their outputs, but this can

have an adverse effect on the pass@1 score when the output is incorrect.

Ultimately, the closed-source models are better than the open-source models at parallel

code generation. Interestingly, GPT-3.5 beats GPT-4 on the parallel prompts by almost 2 per-

centage points, suggesting it may be better suited for parallel code generation tasks. This is

interesting since GPT-4 is bigger and newer than GPT-3.5 and generally obtains better results on

other code and natural language benchmarks. Amongst the open-source models, Phind-V2 has

the best results, but still lags behind the closed-source models by almost 8 percentage points.

90

In addition to pass@1 it is also useful to consider pass@k for k > 1 to understand how the

LLMs perform provided more attempts at a problem. Figure 6.2 shows the pass@k for each LLM

for k = 1, 5, 10, 20 with 200 samples and a temperature of 0.8 for k 6= 1. The GPT models are

omitted for k > 1 due to the monetary cost of generating a large number of samples with these

models. We observe the same relative ordering as in Figure 6.1 is maintained for all values of k

with Phind-V2 leading the open-source LLMs. At k = 20 Phind-V2 achieves a pass@k of 46

meaning that on average it is able to generate a correct answer to one of the parallel prompts in 20

attempts 46% of the time. The scores of each LLM improving with an increase in k is expected

due to the nature of the pass@k metric. The fact that each LLM begins to plateau suggests that

there is an upper limit to their ability to generate correct parallel code and giving them more

attempts does not significantly improve their performance.

1 5 10 20
k

0

20

40

60

80

100

pa
ss

@
k

pass@k for Parallel Execution Models
CL-7B

CL-13B

StarCoderBase

CL-34B

Phind-V2

Figure 6.2: The pass@k for various values of k. The relative order of the LLMs is the same for
all values of k with Phind-V2 leading the group.

91

6.7.1.1 Breakdowns by Execution Models

We further break down the pass@1 results by each execution model in Figure 6.3. From

this data we observe that every LLM follows a similar distribution of scores across the execu-

tion models: serial (best), OpenMP, CUDA/HIP, and MPI/MPI+OpenMP (worst) with Kokkos

varying between LLMs.

CL-7B CL-13B StarCoderBase CL-34B Phind-V2-34B GPT-3.5 GPT-4
0

20

40

60

80

100

pa
ss

@
1

pass@1 by Execution Model
serial
omp

kokkos
cuda

hip
mpi

mpi+omp

Figure 6.3: pass@1 for each execution model. The LLMs generally follow the same dis-
tribution of scores across the execution models: serial (best), OpenMP, CUDA/HIP, and
MPI/MPI+OpenMP (worst) with Kokkos varying between LLMs.

The pass@1 of LLMs being better with OpenMP than other parallel execution models is

likely due to the fact that OpenMP code is the most similar to serial code. For many problems

it only requires adding an OpenMP pragma, and occasionally a reduction clause. GPT-4 gets

nearly as many OpenMP problems correct as serial problems, with an OpenMP pass@1 of 60 vs

a 76 serial pass@1. The other top LLMs, GPT-3.5 and Phind-V2, are also nearly as efficient on

OpenMP problems as serial problems. StarCoderBase and the CodeLlama models have a larger

gap between their serial and OpenMP pass@1 scores, but still have better results on OpenMP

than the other parallel execution models.

With the larger LLMs, Kokkos is consistently just behind OpenMP in its pass@1 results.

92

CL-7B CL-13B StarCoderBase CL-34B Phind-V2-34B GPT-3.5 GPT-4
0

20

40

60

80

100
pa

ss
@

1

pass@1 by Problem Type
sparse_la
fft

geometry
scan

sort
stencil

histogram
dense_la

graph
reduce

search
transform

Figure 6.4: pass@1 for each problem type. The LLMs are best at transform problems, while they
are worst at sparse linear algebra problems.

Like OpenMP, Kokkos is a shared memory parallel programming model that relies mostly on

high-level abstract constructs to parallelize code. These high-level abstractions make it simpler

for the LLM to translate the prompt text to code. The smaller LLMs struggle with Kokkos, likely

due to the fact that Kokkos is more verbose than OpenMP and is more niche than the other parallel

execution models leading to less inclusion in their training data. With fewer Kokkos examples in

the dataset the smaller LLMs likely struggle to learn how to model Kokkos code well.

Following Kokkos, we observe that all the LLMs are next most efficient for CUDA/HIP.

These two always have a similar pass@1 score, which is likely due to the similarity of CUDA

and HIP. All of the open-source LLMs have a slightly better pass@1 with HIP than CUDA,

while the closed-source LLMs are slightly better with CUDA than HIP. CUDA/HIP kernels are

more complex than OpenMP and Kokkos, but the parallelism is intrinsic to the kernel making it

easier than MPI, since the LLM does not need to reason about large changes to the underlying

algorithm.

MPI and MPI+OpenMP are generally the worst parallel execution models for all the LLMs

(except for CodeLlama 7B and 13B where they are second and third worst). Compared to the

93

other execution models in our testing, MPI implementations often differ the most from their

sequential counterparts. This complexity makes it difficult for the LLMs to generate correct MPI

code. Based on the results for all the execution models, we hypothesize that this trend generalizes

to all parallel execution models: the more different a parallel programming model’s code is from

the corresponding serial code, the more difficult it is for the LLMs to generate correct code in

that programming model.

6.7.1.2 Breakdowns by Problem Types

In addition to execution models it is also important to understand what types of compu-

tational problems LLMs struggle to parallelize. Figure 6.4 shows the pass@1 score for each

problem type across all the LLMs. As a general trend, we observe that all LLMs are better at

generating parallel solutions for structured, dense problems and worse for unstructured, sparse

problems.

All of the LLMs get their best pass@1 scores for transform problems with the exception of

GPT-3.5 where it is the second best. Transform problems are the simplest as they are completely

data parallel. In addition to transform, all of the LLMs generally score well on reduction and

search. These are also fairly simple to parallelize as searching requires little to no communication

and reductions are often offered as high-level constructs in parallel programming models.

Phind-V2 and the GPT LLMs score well on stencil, histogram, and dense linear algebra

problems. These problems are all structured and dense, which makes them easier for the LLMs

to parallelize. These three problems are in the middle of the group for StarCoderBase and the

CodeLlama LLMs coming after transform, search, and reduce. This suggests that the larger

94

LLMs are better at parallelizing these types of problems. Interestingly, StarCoderBase and the

CodeLlama LLMs all have graph problems in their top four to five problem types, which is not

the case for Phind-V2 and the GPTs.

The bottom five problem types for all of the LLMs are sparse linear algebra, scan, fft, ge-

ometry, and sort. GPT-4 is the exception with graph instead of sort as the fifth-worst problem

type. Sparse linear algebra is generally the worst problem type, which is likely due to the diffi-

culty in parallelizing sparse computations. FFT and geometry problems are also generally more

difficult to parallelize so it readily follows that the LLMs would struggle with them. The sorting

and scan results are more surprising. Parallel implementations for sort and scan are well known

and certain execution models like OpenMP and MPI even offer high-level abstractions for scan.

Figure 6.5 provides an even more detailed view of the pass@1 metric across both execution

models and problem types for GPT-4. We see the same trends as in Figures 6.3 and 6.4 for GPT-4,

however, we can also see where certain trends do not hold. For example, despite being the best

LLM for search problems and the best LLM at Kokkos, GPT-4 does not do well on Kokkos search

problems. We also see that MPI and MPI+OpenMP scores on a particular problem type are not

always the same. This suggests that the model has difficulty dealing with these dual execution

models.

6.7.1.3 Speedup and Efficiency

When writing parallel code, it is important to consider performance in addition to correct-

ness. A parallel implementation that is correct, but makes inefficient use of resources is not useful

in practice. Hence, we compare the speedupn@k and efficiencyn@k metrics for each LLM.

95

sparse_la fft geometry scan sort stencil hist. dense_la graph reduce search transform

Problem Type

serial

omp

kokkos

cuda

hip

mpi

mpi+omp

Ex
ec

ut
io

n
M

od
el

35.00 55.00 60.00 40.00 100.00 80.00 100.00 85.00 58.00 100.00 100.00 100.00

40.00 35.00 0.00 2.00 79.00 80.00 89.00 80.00 45.00 100.00 89.00 80.00

39.00 3.00 35.00 35.00 64.00 80.00 58.00 73.00 46.00 61.00 27.00 100.00

0.00 40.00 0.00 39.00 20.00 60.00 64.00 60.00 15.00 2.00 41.00 100.00

0.00 0.00 0.00 21.00 20.00 60.00 44.00 60.00 7.00 21.00 60.00 100.00

7.00 13.00 51.00 9.00 24.00 23.00 6.00 27.00 15.00 19.00 76.00 5.00

9.00 20.00 21.00 0.00 23.00 44.00 12.00 11.00 44.00 42.00 21.00 22.00

pass@1 for GPT-4

0

20

40

60

80

100

Figure 6.5: pass@1 for GPT-4 across all execution models and problem types. GPT-4 excels with
the Kokkos and OpenMP execution models, while getting more problems correct for transform,
search, and reduce problems.

Figure 6.6 shows the speedupn@1 and efficiencyn@1 scores for each LLM, averaged

across the parallel execution models. For comparison, we use the highest value of n for each

execution model that we ran in our experimentation: n = 32 threads for OpenMP and Kokkos,

n = 512 processes for MPI, and n = (4 processes)× (64 threads) for MPI+OpenMP. For CUD-

A/HIP, n is set to the number of kernel threads, which varies across prompts.1

In Figure 6.6, we see a trend similar to the pass@1 scores in Figure 6.1, with the GPT

models scoring the highest and the CodeLlama models scoring the lowest. Despite GPT-3.5 hav-

ing the highest pass@1 for parallel prompts, GPT-4 has the highest speedupn@1 for all parallel

execution models at 20.28. This means that on average GPT-4’s parallel code achieves a 20.28x

speedup over the sequential baseline. To help interpret this result, we also show the efficiencyn@1

for each LLM for the parallel prompts in Figure 6.6. From this we see that none of the LLMs use

1Search problems are omitted from speedupn@k and efficiencyn@k results due to their high super-linear
speedups preventing a meaningful analysis of the performance results for other problem types.

96

CL-7B CL-13B StarCoderBase CL-34B Phind-V2-34B GPT-3.5 GPT-4
0

5

10

15

20

25

sp
ee

du
p@

1

6.98

10.28
8.73

6.91

12.90

16.52

20.28

3.85
0.22

0.16 0.15 0.15 0.19
0.25

speedupn@1 and efficiencyn@1 for Parallel Problems

speedup@1 efficiency@1

0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y@
1

Figure 6.6: speedupn@1 and efficiencyn@1 for parallel prompts. Results are shown for n =
32 threads for OpenMP and Kokkos, n = 512 ranks for MPI, and n = (4 ranks)× (64 threads)
for MPI+OpenMP. For CUDA/HIP n is set to the number of kernel threads, which varies across
prompts. 1

parallel resources efficiently. The best efficiencyn@1 is 0.13 for GPT-4 meaning that on average

GPT-4’s parallel code achieves 13% of the maximum possible speedup. CodeLlama-34B has the

worst efficiencyn@1 at 0.06. From the results in Figure 6.6 we can conclude that the parallel

code produced by LLMs is generally inefficient even when correct.

It is also important to consider how efficiencyn@1 varies across n. Figure 6.7 compares

the efficiencyn@1 curves for MPI, OpenMP, and Kokkos. We see Phind-V2 is the most efficient

at MPI prompts, while the least efficient at OpenMP and second to least for Kokkos. GPT-4

produces the most efficient code on average as it is one of the top two most efficient for all

three execution models. All of the models start with better efficiencyn@1 for OpenMP than

Kokkos, but rapidly decline towards an efficiencyn@1 of ∼0.2. On the other hand, the Kokkos

efficiencyn@1 values stay roughly consistent across n, showing efficient use of threads.

Figure 6.8 further shows the expected maximum speedup and efficiency across all resource

counts n. We see the same trends as in Figure 6.6 with the speedups at similar values and the

97

1 2 4 8 16 32 64 128 256 512
Number of Processes

0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y n
@

1

MPI efficiencyn@1 Across Process Counts
CL-7B

CL-13B

StarCoderBase

CL-34B

Phind-V2

GPT-3.5

GPT-4

1 2 4 8 16 32
Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y n
@

1

OpenMP efficiencyn@1 Across Thread Counts
CL-7B

CL-13B

StarCoderBase

CL-34B

Phind-V2

GPT-3.5

GPT-4

1 2 4 8 16 32
Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y n
@

1

Kokkos efficiencyn@1 Across Thread Counts
CL-7B

CL-13B

StarCoderBase

CL-34B

Phind-V2

GPT-3.5

GPT-4

Figure 6.7: efficiency@1 for MPI (left), OpenMP (middle), and Kokkos (right) prompts across
rank and thread counts. Phind-V2 is most efficient for MPI prompts, but is one of the least
efficient for OpenMP and Kokkos. GPT-4 is the most efficient for OpenMP and Kokkos prompts.
1

efficiencies higher. This is likely due to a number of the generated code samples plateauing at a

certain n, so choosing a smaller n can give a better efficiency with the same speedup.

6.7.2 Experiment 2: Parallel Code Translation

In addition to generating parallel code from scratch, we also evaluate the LLMs ability to

translate between execution models (see Section 6.3.2). Figure 6.9 shows the pass@1 scores for

each LLM for translating serial to OpenMP, serial to MPI, and CUDA to Kokkos. We also include

the generation pass@1 scores from Figure 6.3 for each LLM for OpenMP, MPI, and Kokkos.

98

CL-7B CL-13B StarCoderBase CL-34B Phind-V2-34B GPT-3.5 GPT-4
0

5

10

15

20

25

sp
ee

du
p m

ax
@

1

5.77

11.05

7.64 7.53

13.06

16.79

20.11

0.40 0.42
0.37 0.33

0.45 0.45 0.48

speedupmax@1 and efficiencymax@1 for Parallel Problems

speedupmax@1 efficiencymax@1

0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y m
ax

@
1

Figure 6.8: The expected max speedup and efficiency across all resource counts n.

Several LLMs score significantly better when given a correct example implementation in a

different execution model i.e. translation. All LLMs, except for GPT-3.5, have a higher pass@1

score for translating to OpenMP than they do for generating OpenMP code from scratch. We

observe that the LLMs are able to correctly parallelize the provided serial code with OpenMP.

A similar trend emerges with the serial to MPI translation. All of the LLMs score better when

translating serial code to MPI than they do when generating MPI code from scratch. Likewise,

all of the LLMs see an improvement translating from CUDA to Kokkos over native Kokkos

generation with the exception of the GPT models.

It is expected that the pass@1 scores would either increase or stay the same, since the

LLM is given more information during translation than when generating code from scratch. It

is surprising, however, the magnitude of improvement that the smaller LLMs experience. For

example, CodeLlama-7B has a pass@1 of 20 for generating OpenMP code from scratch, but a

pass@1 of 52 for translating serial code to OpenMP. This suggests that providing LLMs with

correct implementations can improve their ability to generate correct parallel code.

99

CL-7B StarCoderBase Phind-V2 GPT-4
0

20

40

60

80

100
pa

ss
@

1
pass@1 for Translation

omp
serial ⇒ omp

mpi
serial ⇒ mpi

kokkos
cuda ⇒ kokkos

Figure 6.9: pass@1 for each LLM when translating serial to OpenMP, serial to MPI, and CUDA
to Kokkos compared to the pass@1 score for generating code in the destination execution model.
The smaller LLMs see a significant improvement when shown an example correct implementa-
tion.

6.7.2.1 Speedup and Efficiency

While translating between execution models improves the pass@1 score it does not gener-

ally improve the performance of the generated code as shown in Figure 6.10. Most LLMs see a

similar efficiencyn@1 for OpenMP, MPI, and Kokkos whether generating from scratch or trans-

lating between execution models. A number of LLMs actually perform worse when translating

from serial to OpenMP.

We observe similar trends with OpenMP and Kokkos for speedupn@1 as shown in Fig-

ure 6.11. The LLMs generally perform similarly for translation and generation. The excep-

tion is MPI where CodeLlama-13B, CodeLlama-34B, and GPT-4 all get significantly better

speedupn@1 when translating from serial to MPI code. From the results in Figures 6.9 to 6.11

we conclude that providing LLMs with correct implementations in one execution model helps

100

CL-7B StarCoderBase Phind-V2 GPT-4
0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y@
1

efficiencyn@1 for Translating Parallel Problems
omp
serial ⇒ omp

mpi
serial ⇒ mpi

kokkos
cuda ⇒ kokkos

Figure 6.10: efficiency@1 translation scores compared to generation scores. The LLMs generally
score similarly for translation and generation.1

them generate correct code in another execution model, but does not necessarily improve the

performance of the generated code.

101

CL-7B StarCoderBase Phind-V2 GPT-4
0

5

10

15

20

25

sp
ee

du
p@

1

speedupn@1 for Translating Parallel Problems
omp
serial ⇒ omp

mpi
serial ⇒ mpi

kokkos
cuda ⇒ kokkos

Figure 6.11: speedup@1 translation scores compared to generation scores. The LLMs generally
perform similarly for translation and generation with the exception of MPI.1

102

Chapter 7: Modeling Parallel Programs with Large Language Models

This chapter presents work towards fine-tuning large language models to model parallel

programs. These models are evaluated against several downstream tasks such as parallel code

generation, sequential to parallel code translation, and performance modeling. It is found that

fine-tuned language models are capable of modeling relative performance differences across com-

mit history in real programs. The work presented in this chapter is published in [103].

7.1 Motivation

In recent years, large language models (LLMs) have become the state of the art for many

language modeling related tasks [149]. Their ability to model token probabilities within a se-

quential context make them desirable for language tasks such as text generation and sequence

classification. In addition to being used for natural language, such models have recently been

applied to many programming language related tasks [31, 83, 121]. The predictive capabilities of

these models translate well to coding tasks, and the wealth of open-source code available online

provides significant data for training large models.

LLMs trained on source code data have been utilized to automate numerous software de-

velopment tasks such as code completion, malware detection, code refactoring, etc [121, 83, 124,

96, 56, 6, 59, 5, 119, 73]. Additionally, they have been able to automate tasks previously consid-

103

ered impossible to automate such as code summarization and generation using natural language.

Training LLMs for these tasks requires significant amounts of source code data that is fortunately

available online from open-source code repositories on GitHub, gitlab etc. However, this data

requirement for training LLMs is prohibitive for tasks where such data may not exist. One such

task is that of modeling performance (execution time) based on source code. Another difficult

task is modeling parallel and HPC code where there is less data available and it is often more

complex code.

Performance data for arbitrary code is difficult to obtain at scale with large numbers of

samples. First and foremost, it is non-trivial to automate the collection of performance data for

arbitrary source code. The code needs to be built and run in order to measure performance,

and this process can vary significantly across repositories. This can be particularly difficult for

production scientific codes due to code complexity, dependence on external libraries, and the fact

that it often needs to be run in parallel with many resources. Second, performance depends on

numerous variables besides just the code such as input problem, architecture, and current machine

load/congestion. These either need to be fixed in the dataset or accounted for within the modeling

pipeline. Finally, source code needs to be considered holistically when modeling performance,

since minor changes in one place may drastically impact performance elsewhere. For example,

changing the data layout within a data structure will impact the performance of data access where

that structure is used. This means that the entirety of the source code needs to be included in the

dataset and performance needs to be collected at a finer granularity.

When a lack of data becomes a hurdle in machine learning tasks, it is typically solved

through data augmentation and/or transfer learning. Data augmentation involves extending and/or

duplicating data in a manner that still preserves meaning and representational capacity. Transfer

104

learning is done by first training a model on a related or simpler task and then transferring that

knowledge to a new problem requiring fewer samples to learn. For our task we employ transfer

learning by using LLMs that have learned to model source code and then transferring that knowl-

edge to then learn how to model performance of source code using fewer samples. In particular,

we explore modeling parallel and HPC codes.

In this chapter, we utilize LLMs to model high performance and scientific codes, and then

apply that to the problem of performance modeling. In order to accomplish this, we introduce a

new dataset of HPC and scientific codes from popular open-source repositories. We first demon-

strate how our trained model, HPC-Coder, outperforms other LLMs on HPC specific tasks such

as code generation and OpenMP pragma labeling. A set of code generation tests specific to HPC

are introduced and the model can pass these at up to 53% higher rate than the other models. Ad-

ditionally, it is able to label for loops with OpenMP pragmas with 97% accuracy. Finally, we

demonstrate how the model can predict relative performance of source code changes with up to

92% accuracy.

7.2 Overview

Figure 7.1 provides an overview of the data gathering, training, and downstream application

in this paper. In order to train a large HPC-specific language model we need a large dataset of

HPC code. To obtain this, we gather a dataset of HPC source code and use it to fine-tune a

pre-trained language model. This data gathering is described in Section 7.3 and presents what

HPC sources are used and how they are pre-processed. Following this, the model fine-tuning and

selection are detailed in Section 7.4 where we explain the training setup and methodology.

105

Figure 7.1: Overview of the steps described in this paper to train an HPC specific model and run
it on several downstream tasks. After collecting a large dataset of HPC code we fine-tune several
pre-trained language models and select the best one. The selected model is then used to generate
code, label OpenMP pragmas, and predict relative performance as part of several downstream
tasks.

We need several realistic tests to study the performance of the language model on relevant

metrics. We present three main downstream tasks for evaluation in Section 7.5. The first two,

code generation and OpenMP pragma labeling, test the model on its ability to generate correct

and meaningful code. The last test, relative performance prediction, shows how this trained

model can be used for useful tasks that require language comprehension. Results from each of

these tests are presented and discussed in Section 7.6.

7.3 Data Gathering and Pre-processing

In order to train a large language model to understand and generate HPC code, we need

to show it lots of examples. We must first build a dataset to accomplish this. In this section,

we detail our collected dataset and how it is processed. We present two additional code datasets

paired with performance data for further fine-tuning model performance.

106

7.3.1 HPC Source Code Data

We first collect a sufficiently large dataset of source code to train the model on HPC and

scientific code. The HPC source dataset is collected from GitHub repositories. The source files

are pulled from repositories with C/C++ marked as the primary language and with≥ 3 stars. The

repositories are additionally filtered by HPC related GitHub topics. Once cloned, we collect all

the C/C++ source files based on their file extension.

This dataset is collected and structured in the same manner as the C/C++ source dataset

from Xu et al. [146]. Their dataset is scraped from GitHub in a similar manner with the exception

of only including repositories with ≥ 5 stars. Figure 7.2 shows the distribution of lines of code

(LOC) by file types in the HPC source dataset. There are roughly the same number of LOC in

both C and C++ files. The distribution of actual file counts follows the same trend.

.c .h .cc .cpp .hpp .C
0

5

10

15

20

25

30

Li
ne

s
of

 C
od

e
(in

 m
ill

io
ns

)

24

8

0.9

17

2 0.9

Distribution of Lines-of-Code by File Type

Figure 7.2: Distribution of no. of lines of code in each file type. .cxx, .hh, .H, and .hxx files are
included in the dataset, but omitted here due to small counts.

107

7.3.2 Data Pre-processing

Allamanis [12] shows how duplicate source data, which is prevalent across GitHub reposi-

tories, can adversely bias LLMs during training. To prevent this we filter our datasets by removing

duplicate files based on the hash of their contents. We use sha256 to hash the contents of the file.

In addition to deduplicating we also filter out small and large files. Source files larger than

1 MB are designated as large files and removed. These are generally entire libraries in a single

source file or contain raw data within the code. Additionally, files containing less than 15 tokens,

as defined by the language vocab, are not included. The reduced dataset sizes after deduplication

and filtering are listed in Table 7.1. Approximately 18% of the files are removed during this

processing. Table 7.1 shows the properties of the dataset after each step of deduplication and

filtering.

Table 7.1: Properties of the HPC source code dataset.

Filter # Files # LOC Size (GB)

None 239,469 61,585,704 2.02
Deduplicate 198,958 53,043,265 1.74
Deduplicate + remove

small/large files
196,140 50,017,351 1.62

After filtering source files, we tokenize the dataset to obtain integer values for the text that

can be used as input into the model. We use the pre-trained tokenizers for each of our selected

models (see Section 7.4). These are all GPT-2 [116] based Byte-Pair Encoding (BPE) tokenizers.

108

7.3.3 Performance Datasets

In addition to the large HPC source code dataset, we create two datasets of code paired

with performance data. These datasets contain code pairs with performance data for both codes

in the pair, and can be used to train an LLM to model performance characteristics between them.

We create two datasets – one with pairs of code that are functionally different and one

where they are the same. The first dataset is created by using version control history to capture

performance regressions. We run each commit for the Kripke [78] and Laghos [41] applications.

These are small HPC apps meant to mimic the computational behavior of larger scientific appli-

cations. We automate building and running each commit to the best of our ability and collect

performance results for 830 commits in total.

The second dataset is a set of programming competition solutions from the code contests

dataset [85]. These are aggregated from several online programming competitions: Aizu, At-

Coder, CodeChef, CodeForces, and HackerEarth. This dataset allows us to create pairs of code

that solve the same problem (the contest problem), but may be different in implementation. We

run every correct solution for each problem in the dataset, with the corresponding problem’s test

cases as inputs, and record the run time. Using all the C++ solutions in the dataset we create ∼1.7

million samples of code. Using the run times, we group the solutions into pairs and label them as

slower and faster pairs.

7.4 Fine-Tuning Methodology

In this section, we describe the models used and how they were selected. We also discuss

the methods used to fine-tune them on our collected dataset.

109

7.4.1 Models Selected For Fine-tuning

Recent years have seen the introduction of a significant number of large language models.

These models can range in size from 100 million to more than 100 billion parameters. Such large

models have been shown to work well for language modeling, but pose significant hurdles to train

and use in practice. They can take months to train on large GPU clusters and typically cannot

feasibly run inference on consumer-grade hardware. Thus, choosing the right model requires

selecting one that can sufficiently model the language data, but also be reasonably deployed for

downstream tasks.

Table 7.2: Description of the models used for fine-tuning.

Model # Params. # Layers Hidden
Size

Window
Size

Pre-Training
Set

GPT-2 [116] 1.5B 48 1600 1024 WebText [53]
GPT-Neo [24] 2.7B 32 2560 256 Pile [48]
PolyCoder [146] 2.7B 32 2560 2048 Source Code

Keeping the above mentioned requirements in mind, we select several models for fine-

tuning and/or testing. These are listed in Table 7.2. All of these are based on GPT-2 [116]

and/or GPT-3 [27] architectures with slight variations in size, configuration, and pre-training

data. GPT-2, the smallest in our experiments, is pre-trained on the WebText [53] dataset, which

is a collection of language data scraped from the internet. We use the 1.5 billion parameter GPT-2

model variant in this paper. PolyCoder [146] is pre-trained on a collection of solely source code

data from GitHub that contains a mixture of 12 popular programming languages [146]. Between

these two is GPT-Neo [24] that is pre-trained on the Pile dataset [48]. This dataset contains a

collection of approximately 800GB of text data from the internet, academic articles, source code,

110

etc. Notably this dataset has a mixture of natural language and code. It has been demonstrated

that pre-training over both natural language and code can improve the performance of the model.

We exclude models such as GPT-4 [107], the state-of-the-art model that powers GitHub

CoPilot, from our experiments due to the model and its dataset being closed source. It is cur-

rently only accessible for inference via a non-free API. GPT-4’s dataset being closed source is

significant as we cannot remove data it has trained on from the dataset we use to evaluate its

performance, so its results would be overly optimistic. This prevents a realistic evaluation and

comparison.

7.4.2 Fine-tuning Setup and Hyperparameters

We rely on the functionality provided in the HuggingFace [143] Python library for fine-

tuning the models. This library automates many of the tasks related to loading and pre-processing

datasets, and running language models on the datasets. In particular, we use the Trainer

interface with DeepSpeed [95] as the backend to optimize fine-tuning. DeepSpeed is a framework

that provides distributed training functionality and several memory optimizations to enable large

models to fit in GPU memory.

Starting with the pre-trained models, we fine-tune them on a single node with an AMD

EPYC 7763 CPU, 512 GB memory, and four 40 GB NVIDIA A100 GPUs. With DeepSpeed’s

ZeRO memory optimizations [118], all of the models fit entirely within a single A100 GPU

and are, thus, fine-tuned using pure data parallelism. We refer the reader to [20, 101] for a

comprehensive overview of training deep neural networks in parallel.

We use the AdamW [90] optimizer for all the models to update model weights and mini-

111

mize the loss. We set the learning rate to 5 × 10−5 and Adam parameters β1 and β2 to 0.9 and

0.999, respectively. These hyperparameters are consistent with typical values in the literature.

16-bit floating point precision is used to accelerate fine-tuning and reduce model size on the

A100s. We record the perplexity of the model on the training data during fine-tuning. This is

calculated as the exponential of the training loss. Every 1000 optimizer steps, we also test the

model using the validation dataset, and record the perplexity and accuracy at predicting tokens.

The validation dataset is 5% of the full dataset, separate from the training dataset.

7.5 Downstream Inference Tasks and Evaluation Metrics

In this section, we introduce the benchmarks and metrics used to evaluate the performance

of the language models.

7.5.1 Code Completion

A standard benchmark for code generation tasks is the HumanEval benchmark [32]. This

is comprised of 164 sample Python problems, where the input to the model is a natural language

description of a function and function header. The model generates code for the function imple-

mentation, and is scored on functional correctness rather than textual similarity or equivalence.

We introduce our own adaptation of this benchmark for HPC C/C++ programs. Our bench-

mark consists of 25 custom HPC code generation problems including simple numerics, OpenMP

parallel code, and MPI routines. Table 7.3 lists the tests used in our evaluation. Figure 7.3

shows a sample prompt (top) and output (bottom) for a shared-memory parallel implementation

of saxpy. The prompt is provided as input to the model and it is expected to generate text

112

functionally equivalent to the text on the bottom.

Table 7.3: Code generation tests. OpenMP and MPI columns denote if the test includes a version
with that parallel backend.

Name Description Seq. OpenMP MPI

Average
Average of an array
of doubles X X X

Reduce
Reduce by generic
function foo X X X

Saxpy Saxpy X X X
Daxpy Daxpy X X X

Matmul
Double-precision
matrix multiply X X X

Simple Send Send MPI message X
Simple Receive Receive MPI message X
FFT Double-precision FFT X X X

Cholesky
Single-precision Cholesky
factorization X X X

Ping-pong MPI ping-pong X
Ring pass MPI ring pass X

(a) Prompt

/ *
m u l t i p l y s c a l a r f l o a t a by v e c t o r x and add t o y
v e c t o r s x and y a r e l e n g t h N
use OpenMP t o compute i n p a r a l l e l

* /
vo id saxpy (f l o a t *x , f l o a t *y , f l o a t a , i n t N) {

(b) Output

pragma omp p a r a l l e l f o r
f o r (i n t i = 0 ; i < N; i ++) {

y [i] += a * x [i] ;
}

}

Figure 7.3: An example prompt asking the model to generate a parallel version of saxpy. The
comment and function header make up the prompt. The function body on the bottom shows a
potential model output.

Evaluation Metric: We first record the ratio of generated samples that build correctly to those

113

that do not. This indicates the model’s ability to generate syntactically correct code. For those

that compile we compute the pass@k metric that denotes the probability that at least one of k

samples out of Np code samples is correct. We do Np trials with each prompt p to generate Np

code samples, compile/run the samples, and record the number that are functionally correct (cp).

To estimate the probability that at least one of k samples chosen from Np samples is correct for

a particular prompt, p, we can use the number of generated samples that are functionally correct,

cp, out of the Np total samples generated to calculate pass@k for a given k as,

pass@k = 1−
(
Np − cp

k

)
/

(
Np

k

)
(7.1)

For each model, we report the average pass@k metric as the average pass@k over all P prompts

as shown below:

average pass@k =
1

P

P∑
i=1

[
1−

(
Ni−ci
k

)(
Ni

k

)] (7.2)

This metric provides insight into the probability of a model generating functionally correct

code. In our experiments, we calculate the pass@k score for several temperatures, namely 0.1,

0.2, 0.4, 0.6, and 0.8, and select the best one. This is in line with experiments in related liter-

ature [146]. For each temperature and prompt, we generate Np = 100 samples. The code is

generated with nucleus sampling using 0.93 as the cutoff value in the CDF.

To compile the generated code samples, we use g++with the “-O2 -std=c++17 -fopenmp”

flags. For tests that need MPI we use the OpenMPI mpicxx compiler. If the build is success-

ful, then a corresponding driver binary is called that will call and test the generated function for

correctness. These are run on a AMD EPYC 7763 CPUs with 64 physical cores at 2.45 GHz

114

each. For tests that require OpenMP or MPI we only denote them as correct if they used the

corresponding parallel framework to compute their result.

7.5.2 Predicting OpenMP Pragmas

A common HPC coding task is decorating for loops with OpenMP pragmas. Every

pragma starts with #pragma omp parallel for and is followed by a list of optional clauses

that modify the behavior of the parallel for. We test the model’s ability to write OpenMP prag-

mas for arbitrary for loops.

Further Fine-tuning: We cannot directly use the existing models to generate pragmas before a

for loop, since they are all left-to-right and can only append tokens to sequences. Thus, we need

to further fine-tune the models on a smaller dataset that puts the for loop before the pragma. To

accomplish this, we first create a dataset of every for loop with an OpenMP pragma from our

HPC code dataset. 500 tokens of context from before the for loop are also included. This results

in a dataset with 13,900 samples.

Since our model is left-to-right, we format each sample by moving the pragma to directly

after the loop and a unique separating token <begin-omp>. This allows us to use the model by

providing a for loop plus some context and the model will generate an OpenMP pragma for the

for loop.

Each model is fine-tuned on this smaller dataset for three epochs (passes over the entire

dataset). To prevent overfitting we use a starting learning rate of 3× 10−5. During training 10%

of the dataset is set aside for validation.

Evaluation Metric: To measure the success of this test, we use the accuracy of generating correct

115

pragmas. This is calculated as shown in Equation 7.3.

accuracy =
correct pragmas

total pragmas tested
(7.3)

For this problem, we define a correct pragma in two ways: syntactic and functional. To mea-

sure syntactic correctness we compare the generated pragma with the actual pragma for textual

equivalence. Since it is impossible to automate the running and evaluation of arbitrary for loops

from our dataset we measure functional correctness by comparing the generated pragmas with

the actual ones while ignoring differences that do not contribute to functionality. For instance we

ignore reordering of variables and clauses where these do not matter. Additionally, clauses such

as schedule are ignored. This correctness check is done using a custom Python script that parses

the pragmas and compares them. We record accuracy from both of these correctness metrics for

each model.

7.5.3 Relative Performance Prediction

In addition to text generation, we can also use the LLMs for classification. Here we use

them to predict performance slowdowns between two pairs of code.

Further Fine-tuning: In order to use the models for relative performance classification we need

to first fine-tune them on new data for this output task. Using the Git commit data from Sec-

tion 7.3.3 we give the model text for a region of code before and after a Git commit. The codes

are concatenated with a unique token separating them, namely <COMMIT>. We repeat a similar

process for the code contest dataset, but instead separate pairs by the token <PAIR>. With this

data the model is fine-tuned to predict whether the second code will be slower (positive) or the

116

same/faster (negative).

For each dataset we fine-tune the model on 90% of the data with the other 10% set aside

for evaluation. The model takes the concatenated sequences of the two versions of the code

implementation and is fine-tuned for the binary classification problem of predicting relative per-

formance. The training objective is classification accuracy, which we also use to measure success

for this task.

Evaluation Metric: To evaluate the performance on this task we measure the model’s classifica-

tion accuracy. This is calculated as shown in Equation 7.4.

accuracy =
correct performance predictions

total performance predictions
(7.4)

For this metric higher is better and a classification accuracy of 100% signifies a perfect score.

7.6 Results

We now present the fine-tuning and evaluation results using the downstream tasks discussed

in Section 7.5.

7.6.1 Fine-tuning on HPC Source Code Data

We first show the results of fine-tuning the three models selected in Table 7.2. Table 7.4

shows the validation perplexity at the end of fine-tuning. Here perplexity is calculated as the

exponential of the loss. Each model converges to a low perplexity score over the separate testing

set (between 2 and 4). GPT-Neo and PolyCoder achieve comparable perplexity scores (within

117

0.01) while GPT2 achieves a higher perplexity. All three have different pre-training datasets and

the former two are of a larger size than GPT2 (see Table 7.2). From this we can conclude that

for this problem the pre-training dataset had less of an impact on validation perplexity than the

model size. The lower perplexity of the larger models means that they model the language better.

Table 7.4: Final validation perplexities for each model after fine-tuning on the HPC source code
dataset.

Model GPT-2 GPT-Neo PolyCoder

Final Validation Perplexity 4.47 2.23 2.24

For the rest of the results presented in this section we will use PolyCoder+HPC, GPT-

Neo+HPC, and GPT2+HPC to refer to the respective models fine-tuned on the HPC dataset.

After fine-tuning each of the models and evaluating them on the downstream tasks we

noticed that the perplexity would keep improving with more fine-tuning, but the downstream

evaluation performance would start to decrease. This is likely because LLMs are subject to

catastrophic forgetting during fine-tuning. Catastrophic forgetting is the phenomenon where

previously learned information is lost or forgotten as the model continues training and updating its

weights. It is typically prevented by minimizing the amount of fine-tuning and using a sufficiently

low learning rate.

To explore this phenomenon we ran the code generation tasks every 1000 samples during

fine-tuning of the PolyCoder model. Figure 7.4 presents the results from our evaluation tests

during fine-tuning on the PolyCoder model. After seeing about 45,000 samples during fine-tuning

the model starts to decrease in evaluation performance. This is in contrast to the perplexity which

keeps improving past 45,000 samples. Based on this result we stop fine-tuning at 45,000 samples

and use these weights for the rest of the evaluations. Additionally, due to the computation time

118

needed to run this test we use the 45,000 samples stopping point for fine-tuning all the models.

10 20 30 40 50 60
1000x Samples

0.5

1.0

1.5

2.0

A
cc

ur
ac

y

Evaluation Performance During Training

average_pass@1

average_pass@10

average_pass@100

Eval Perplexity

Figure 7.4: Downstream evaluation performance across training iterations for PolyCoder+HPC.
The model starts to perform worse around 45,000 samples even though the perplexity keeps
improving.

7.6.2 Code Completion

Having fine-tuned the three models, we now start using them for the different down-

stream tasks described in Section 7.5. The first downstream task is code generation, described

in Section 7.5.1. Figure 7.5 shows the average pass@k rates for the code generation tests. The

average pass@k values are computed according to Equation 7.2. We use PolyCoder as a baseline

for comparison since it is a state-of-the-art LLM for code generation. PolyCoder+HPC scores the

best for average pass@1, pass@10, and pass@100. For each value of k the models score in the

order of PolyCoder+HPC, PolyCoder, GPT-Neo+HPC, and GPT2+HPC. PolyCoder+HPC gains

the slight edge over the original PolyCoder by successfully generating code for the HPC-specific

tasks (see Figure 7.6).

In Figure 7.5 we see that GPT2+HPC scores significantly lower than the other models. This

119

k=1 k=10 k=100

k

0

20

40

60

80

100

av
er

ag
e_

pa
ss

@
k

(%
)

19

41

66

25

43

71

17

38

60

1
6

13

Code Generation Scores

PolyCoder

PolyCoder+HPC

GPT-Neo+HPC

GPT-2+HPC

Figure 7.5: Comparison of models on code generation. The clusters represent the average pass@k
scores for k = 1, 10 and 100. Higher percentage is better.

is likely due to the smaller model size and the fact that there is no source code in its pre-training

dataset. In this instance fine-tuning is not enough to enable GPT-2 to generate correct C++ HPC

code.

Altogether, the scores are indicative that PolyCoder+HPC and GPT-Neo+HPC has learned

how to generate valid C++ code. For instance, if the best model, PolyCoder+HPC, is permitted

to generate 100 samples, then 71% of them are correct on average across all the tests. Similarly

for 1 sample generated this is 25%. These numbers roughly align with results from [146] on

the HumanEval Python tests. However, the results are not directly comparable since they are a

different set of tests in a different programming language.

To demonstrate the generative capabilities of the specialized models we reduce the code

generation tasks to those that are specific to HPC. This includes code that uses OpenMP and/or

MPI parallelism. Figure 7.6 shows the performance when restricted to these tests. We see that

PolyCoder is unable to generate OpenMP and MPI code as it scores significantly lower than the

rest. GPT2+HPC still performs fairly low, however, its score has actually improved slightly over

120

Figure 7.5. This is due to the fact that it has only seen HPC-specific code during training and that

is what is being tested here.

k=1 k=10 k=100
k

0

20

40

60

80

100

pa
ss

@
k

0 1
8

19

38

61

HPC Code Generation Scores

PolyCoder

HPC-Coder-v1

Figure 7.6: Comparison of models on code generation for HPC-specific functions. The clusters
represent the average pass@k scores for k = 1, 10 and 100. Higher percentage is better.

Another point of interest besides functional correctness is syntactic correctness. This can

be measured by the total number of generated samples that compile successfully. This is how

often the model generates valid code, whether it is functionally correct or not. This data is

presented in Figure 7.7. PolyCoder and PolyCoder+HPC both perform the best compared to the

other models with 84% and 86% of samples compiling correctly, respectively. GPT-Neo+HPC

performs slightly worse at 74% and GPT2-HPC has only 30% of samples compile. The worse

performance of the latter two can likely be attribute to their pre-training datasets having less code.

We also observe that for all models there is a visual correlation between build and correctness

rates, which is expected as a model needs to compile in order to be functionally correct.

The code in Figure 7.8 shows example output from PolyCoder and PolyCoder+HPC on

generating OpenMP code to compute a sum in parallel. We see that PolyCoder is able to produce

121

PolyCoder PolyCoder+HPCGPT-Neo+HPC GPT-2+HPC
0

20

40

60

80

100

Su
cc

es
sf

ul
 B

ui
ld

 (
%

)

86 84
74

30

Percentage of Generated Samples That Compile

Figure 7.7: Comparison of the models’ build rate. Both PolyCoder and PolyCoder+HPC have
the best percentage of total samples that successfully compile. Higher percentage is better.

correct sequential code, however, it fails to add any OpenMP pragmas. The PolyCoder+HPC

model is able to correctly tag the for loop with an OpenMP pragma.

A similar example with distributed memory is shown in Figure 7.9. The PolyCoder+HPC

is able to generate correct MPI code to compute an average in parallel across ranks. PolyCoder

often generated long and incorrect code that demonstrated little understanding of how to write

MPI routines. The example presented is indicative of the rest of the MPI samples generated by

PolyCoder. Notably, some instances did contain MPI calls, so PolyCoder must have some MPI

code in its pre-training dataset. However, it lacked the ability to properly use MPI.

Figure 7.10 shows the speedups for the code generated by PolyCoder+HPC over sequential

baselines. These are hand-written efficient, sequential implementations for each test. We see

that PolyCoder+HPC is able to generate code that is faster than the sequential baseline. This

demonstrates that it is not generating very poor performing parallel code and is likely using the

parallelism correctly.

Since PolyCoder+HPC scores the highest in training and these code generation tests we

122

(a) Prompt

/ *
Compute t h e sum of t h e a r r a y X and r e t u r n t h e sum .
X has N e l e m e n t s .
Use OpenMP t o compute t h e sum i n p a r a l l e l .

* /
f l o a t sum (f l o a t *X, i n t N) {

(b) PolyCoder output

f l o a t sum = 0 . 0 f ;
f o r (i n t i = 0 ; i < N; i ++)

sum += X[i] ;
r e t u r n sum ;

}

(c) PolyCoder+HPC output

f l o a t sum = 0 . 0 f ;
pragma omp p a r a l l e l f o r r e d u c t i o n (+ : sum)
f o r (i n t i = 0 ; i < N; i ++)

sum += X[i] ;
r e t u r n sum ;

}

Figure 7.8: Example OpenMP output from (b) PolyCoder and (c) PolyCoder+HPC. The comment
and function description (top) make up the prompt that is given to the model, while the bottom
two blocks are the generated text. We see that PolyCoder is unable to generate OpenMP pragmas
for the reduction in this example.

select it for further comparisons in the rest of the paper. PolyCoder+HPC is the fine-tuned model

we present as HPC-Coder. We continue to use PolyCoder as a baseline.

7.6.3 Predicting OpenMP Pragmas

Next, we examine the result from the OpenMP prediction tests described in Section 7.5.2.

Figure 7.11 shows the results from the OpenMP experiments detailed in Section 7.5.2. We see

that both models are able to generate functionally correct OpenMP pragmas with high accuracy

(right plot). PolyCoder+HPC is able to do this with 97% accuracy and PolyCoder 94%. The

123

LLMs are exemplary at understanding the dependencies of the for loop and what clauses are

required to correctly parallelize them. We see that the model that has seen large amounts of

OpenMP code performs better.

We can also look at how well the models reproduce the pragmas exactly. This means all the

clauses and variables within those clauses are in the same order in the dataset and in the output

from the model. These results are shown in the left plot in Figure 7.11. While less meaningful

than functional correctness, it is interesting that the model is able to exactly reproduce pragmas

it has not seen before with relatively high accuracy (67% and 61%). This is likely due to certain

trends in the construction and ordering of OpenMP clauses that the LLMs are learning as they

train.

7.6.4 Relative Performance Prediction

Finally, we look at the results from the relative performance prediction tests described in

Section 7.5.3. Figure 7.12 shows the results from the relative performance prediction tests (see

Section 7.5.3). Both models achieve high classification accuracy with PolyCoder+HPC being

slightly better for the two proxy applications at 88% and PolyCoder at 86%. This means that for

88% of the code changes in the two repositories version control history PolyCoder+HPC is able

to correctly identify if there will be a performance slowdown. Likewise for the programming

competition dataset we see that PolyCoder+HPC outperforms the PolyCoder baseline with an

accuracy of 92% vs 86%. This is a higher accuracy improvement than the proxy applications by

4 percentage points. This is likely due to the fact that the programming competition dataset is

larger and PolyCoder+HPC has been trained on more C/C++ code.

124

The success of this test demonstrates that the models are able to correlate their prior lan-

guage understanding with performance related properties of code. This means we can leverage

LLMs and fine-tuning to model code performance without the need to collect large amounts data.

125

(a) Prompt

/ *
Use MPI t o compute t h e a v e r a g e o f X a c r o s s r a n k s
and r e t u r n t h e r e s u l t on a l l r a n k s .
Use t h e d e f a u l t communica tor .

* /
do ub l e mpiAverage (d oub l e X) {

(b) PolyCoder output

i n t r ank ;
i n t n p r o c s ;
do ub l e a v e r a g e ;
M P I S t a t u s s t a t u s ;
MPI Request r e q u e s t ;

M P I I n i t (& argc , &argv) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &n p r o c s) ;

i f (r ank == 0) {
MPI Recv(& s t a t u s , 1 , MPI INT , 0 , 0 , MPI COMM WORLD,

&r e q u e s t) ;
MPI Send(&X, 1 , MPI INT , 0 , 0 , MPI COMM WORLD) ;
MPI Send(& average , 1 , MPI DOUBLE , 0 , 0 ,

MPI COMM WORLD) ;
}
r e t u r n a v e r a g e ;

}

(c) PolyCoder+HPC output

i n t s i z e ;
do ub l e sum ;

MPI Comm size (MPI COMM WORLD, &s i z e) ;
MPI Al l r educe (&X, &sum , 1 , MPI DOUBLE , MPI SUM ,

MPI COMM WORLD) ;

r e t u r n sum / s i z e ;
}

Figure 7.9: Example MPI output from (b) PolyCoder and (c) PolyCoder+HPC. The highlighted
region is code generated by the model (reformatted to fit the column). PolyCoder results varied
significantly, however, the above example demonstrates the general lack of understanding it had
for MPI.

126

average reduce axpy matmul fft cholesky

Problem

0

2

4

6

8

Sp
ee

du
p

2.8

1.5

6

2.1 1.9
2.3

Speedup of Generated Parallel Code

Figure 7.10: Comparison of the speedups for the code generation tests over sequential baselines.
They are all above 1 demonstrating that the model is not generating very poor performing parallel
code.

PolyCoder PolyCoder+HPC
0.0

0.2

0.4

0.6

0.8

1.0

Te
xt

ua
l E

qu
iv

al
en

ce
 A

cc
ur

ac
y

PolyCoder PolyCoder+HPC
0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 A
cc

ur
ac

y

OpenMP Pragma Generation Accuracy

Figure 7.11: Comparison of models on predicting OpenMP pragmas. The left plot presents
accuracy in predicting OpenMP pragmas exactly as they appear in the dataset. The right plot
shows the accuracy in predicting functionally correct OpenMP pragmas. Higher accuracy is
better.

127

Proxy Apps Coding Competitions
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0.86 0.860.88 0.92
Relative Performance Classification Accuracy

PolyCoder

PolyCoder+HPC

Figure 7.12: Comparison of models on predicting relative performance of code changes. Both
models achieve similarly high accuracy. The PolyCoder+HPC model performs slightly better on
both datasets. Higher accuracy is better.

128

Chapter 8: Understanding LLM Capabilities to Model Parallel Code: A De-

tailed Ablation Study

8.1 Motivation

Large language models (LLMs) have been a transformational technology in aiding software

development. Their ability to automate coding tasks and connect natural language descriptions

to code has improved developer productivity and enabled developers to more rapidly move from

concept to implementation. As of 2023 over 92% of surveyed developers use AI in some form to

aid their development process [125]. Beyond general development assistance these tools have the

potential to enhance developer capabilities on more complex programming tasks such as writing

parallel code. Writing correct, parallel code is an important problem facing modern developers

and is already difficult for humans. Using LLMs to improve the quality and quantity of parallel

code is an important step in improving the performance of modern software.

While code LLMs have shown promise in their code generation capabilities, they still strug-

gle with more complex programming tasks such as parallel code. Previous work [102] has ex-

tensively studied LLMs across various parallel execution models and algorithms and found that

LLMs are significantly worse at generating parallel code compared to sequential code. Two main

reasons are identified for this discrepancy: the lack of parallel code data in the pre-training data of

129

modern LLMs and the intrinsic difficulty of parallel code generation. Solving the latter issue is a

long-term effort that will require the development of more sophisticated AI models that can plan

and reason through complex problems. However, the former issue of obtaining high-quality par-

allel code data at scale and effectively learning from that data is a much more tractable problem

to tackle with current language modeling capabilities.

Creating HPC and parallel capable LLMs offers a great number of benefits to the HPC

community. They will drastically improve the productivity of scientific developers and, in turn,

the speed at which scientific discoveries are made. The process of designing these HPC capable

LLMs will involve the creation of large HPC datasets and studies into modeling that data. Build-

ing out a large corpus of HPC data and understanding how to best learn from and model that

data will be critical to developing future HPC AI developer tools. As the field of AI and code

LLMs continues to progress it is important that the HPC community understands and addresses

the unique challenges associated with HPC code generation.

Gathering parallel code data at scale and effectively learning from it is difficult. The data

samples are already underrepresented in large code datasets and simply collecting more is often

not enough; high-quality parallel code data is needed to train models effectively. This is evinced

by the results of the StarCoder2 project which trained code LLMs on The Stack v2 dataset that

contains nearly all permissively licensed code and code related data online [91]. Despite the im-

pressive data collection efforts, the StarCoder2 models perform similar or worse than comparable

models trained on less data. This suggests that we cannot keep improving model performance

by collecting more data, but rather we need to collect better data. Furthermore, it is not well

understood what makes data “better” for training code LLMs.

In this paper we address the lack of high-quality parallel code data by creating a large

130

synthetic code dataset, PARALLEL-INSTRUCT, using our proposed methodology to map existing

parallel code samples to high-quality instruct-answer pairs. We then fine-tune code LLMs on this

dataset and evaluate them against other code LLMs on ParEval [102], a state-of-the-art parallel

code generation benchmark. We find that our fine-tuned model, Parallel-Coder, is the best per-

forming open-source code LLM for parallel code generation and performs near GPT-4 level. We

conduct an in-depth study to better understand how data representation and training parameters

impact the models ability to learn how to model parallel code. These insights will be critical for

future efforts developing the next generation of HPC AI developer tools.

In this paper we make the following important contributions.

• We collect a large synthetic dataset of high quality parallel code instruction data, PARALLEL-

INSTRUCT.

• We fine-tune a code LLM, Parallel-Coder, that is the most capable open-source code LLM

for parallel code generation and completion.

• We conduct an in-depth study along the data and fine-tuning parameters to understand how

to best fine-tune code LLMs for parallel code generation.

Furthermore, we answer the following research questions:

RQ1 How does the choice of fine-tuning base model and the use of instruction masking impact

the performance of a code LLM on parallel code generation?

RQ2 How does the amount of fine-tuning data for a particular parallel execution model affect

the performance of a code LLM on that model?

131

RQ3 How does the quality of parallel code fine-tuning data impact the performance of a code

LLM on parallel code generation?

RQ4 How does model size impact the ability of a code LLM to learn from distilled synthetic

data?

8.2 Approach to Studying Data and Model Design Impacts on Parallel Code

Modeling

Our approach to improving Code LLMs for parallel languages involves creating a large

synthetic code dataset, PARALLEL-INSTRUCT, and then fine-tuning existing pre-trained Code

LLMs on this dataset. We first present an overview of our proposed approach (Figure 8.1) and

then present details of the various components.

synthetic data
generation

Ablation studies on fine-tuning

RQ1: prompt config RQ2: data amount

RQ3: data quality RQ4: model size

LLM fine-tuning

open-source parallel
code snippets

hpc instruction
data

hpc instruction
data

best data, model, and
fine-tuning configuration

HPC-capable
Code LLM

Figure 8.1: Overview of the methodology proposed in this paper. First, we use open-source par-
allel code snippets to generate a large synthetic instruction dataset of parallel code samples. We
then conduct ablation studies to understand how data, model, and fine-tuning parameters impact
the capability of a code LLM to write parallel code. Finally, we utilize the dataset and insights
from the ablation studies to fine-tune a code LLM for parallel code generation and evaluate it
against other code LLMs on the parallel code generation benchmark ParEval.

We begin by generating a large scale synthetic dataset of code samples using open-source

132

parallel code snippets and state-of-the-art LLMs. This dataset is comprised of roughly 120k

parallel code instruction-response pairs where the instruction is a natural language problem de-

scription and the response is the code that solves the problem. The construction of this dataset is

inspired by previous work [141] that demonstrated the success of fine-tuning smaller code LLMs

on synthetic data generated from larger foundation models.

Using the HPC instruction dataset, we then conduct an in-depth study along the axes of

code model fine-tuning to better understand how data representation and quality, model size, and

prompt construction impact the ability of a code LLM to learn how to generate parallel code. Each

of these ablation studies explores a research question raised in Section 8.1. During these studies

we evaluate each of the fine-tuned models against the ParEval [102] benchmark to understand

their performance on real parallel code generation tasks. These studies yield critical insights into

best practices for fine-tuning HPC code LLMs.

Finally, with the full HPC instruction dataset and insights from the ablation studies, we

fine-tune three state-of-the-art HPC capable code LLMs. These are evaluated against the ParEval

benchmark and compared to other state-of-the-art LLMs for their ability to generate parallel code.

8.3 Generating Synthetic Data for Studying Axes of Parallel Code Modeling

Before we can fine-tune HPC LLMs, we need to collect a large dataset of HPC relevant

code and dialog. While large datasets of open-source code exist [91], previous work has shown

that generating structured synthetic data with state-of-the-art LLMs can yield data much more

effective for fine-tuning specialized code LLMs [141]. This section details our approach to col-

lecting large-scale synthetic data for HPC based on this insight.

133

Sampling Seed
Snippets

Creating Prompts

Programming
problem

Code optimization
problem

Code translation
problem

Code parallelization
problem

Data

Problem Statement

Solution

Open Source
Codebase

Generating Code
using LLMs

Figure 8.2: Synthetic data generation process. We collect seed snippets from open source code-
bases and combine them with multiple prompt templates to create data generation prompts for an
LLM. These prompts are then used to generate problem-solution pairs with an LLM.

While state-of-the-art commercial LLMs like GPT-4o can generate high-quality instruction

samples, they tend to generate very repetitive samples. To address this, we adapt the use of seed

code snippets from [141] to get diverse outputs from the LLM. We gather a diverse set of seed

snippets from open-source codebases in The Stack V2 [91], focusing on code in HPC languages

(C, Fortran, etc.) and using HPC libraries (MPI, OpenMP, etc.). In total we collect 125k seed

snippets including 25,000 samples in Python, C, FORTRAN, and C++, 15,000 samples in CUDA,

and 5,000 samples in Chapel and OpenCL. When asked to generate a data sample, the LLM is

asked to be inspired by the seed snippet, yielding more diverse and creative outputs. This process

is visualized in Figure 8.2. An example programming template response can be seen in Figure 8.3,

illustrating the workflow from seed snippet selection to the final dataset sample.

We obtain further variety in the generated data by generating multiple sample types:

Programming Prompts: In this template, the LLM is tasked with generating a parallel program-

ming problem and a corresponding solution.

Translation Prompts: The translation template directs the LLM to create a problem focused on

converting code from one parallel programming language to another. For example, the model

might be prompted to translate a CUDA-based implementation into OpenMP or OpenMP to

MPI.

134

Seed:

TRANSA = 'C' or 'c', op(A) = A**T.

Prompt Template:

 Please gain inspiration from the random code snippet
 below to create a high-quality programming problem ...

Large Language Model

Solution:

Here's the translated OpenMP code:
 void op(float *A, float *result) {
 #pragma omp parallel for
...

Problem Statement:

 Here is a CUDA kernel that computes
 the transpose of a matrix A. translate
 to OPENMP
 __global__ void op(float *A, float
 *result) {

Figure 8.3: Example synthetic data generation output. Here, a random seed snippet is used
alongside the translation prompt template and fed into the LLM. The resulting synthetic sample
from the LLM is a problem of translating some code to OpenMP and the corresponding solution.

Optimization Prompts: For these prompts, we ask the LLM to generate an optimization problem

and a corresponding optimized solution.

Parallelization Prompts: The parallelization template asks the LLM to parallelize a given code

snippet, transforming it from a sequential implementation to an efficient parallel version.

Using the 125k formatted prompts we generate synthetic data samples with four state-

of-the-art LLMs: Gemini-Pro, DBRX, Llama-3-70B, and Mixtral-8x7B. The resulting dataset,

named PARALLEL-INSTRUCT, comprises over 122k synthetic data samples (some outputs were

not parsable and discarded). We use several LLMs to gather a variety of samples, further ensuring

data diversity. It also enables us to study the impact of data quality along the axis of source

135

generation model.

8.4 Ablation Studies Exploring the Impact of Data, Model, and Fine-tuning

Parameters

We now have a large dataset of synthetic instruction HPC data, PARALLEL-INSTRUCT,

and our goal is to fine-tuning existing models with this data. However, there are many unknowns

regarding the configuration of fine-tuning such as how to format prompts, how much and what

quality of data to use, what size of model to use, etc. In this section, we design a series of ablation

studies along different axes of model fine-tuning to better understand how each contributes to the

ability of a fine-tuned code LLM to generate parallel code.

8.4.1 Choice of Base Model and Instruction Masking

In this experiment, we explore the choice of base versus instruct models, and whether to

use instruction masking with the goal of answering RQ1. We choose to study the impact of

base versus instruct models as it is unclear from related literature which model type is better for

fine-tuning on specific tasks. Generally, most users interact with instruct models as they are able

to follow instructions and better engage in dialog-like interactions. For this reason, most open-

source models have instruct models available that have been fine-tuned from a base model. When

fine-tuning a new instruct model, on one hand, it may be better to reap the benefits of the existing

fine-tuned model and start from there. On the other hand, it may be better to start from scratch

with a base model, since they will be more general and easier to fine-tune. Instruction masking is

usually employed to prevent the model from learning bad patterns that may be present in the user

136

instruction. We only want to learn from the responses. While intuitive, we are actually learning

from less information when we mask the instruction and it is unclear if this trade-off between

learning from less information and learning from less noise is worth it.

We fine-tune the Deepseek-Coder 1.3B and 6.7B base and instruct models with and with-

out instruction masking on the PARALLEL-INSTRUCT, Magicoder-OSS-Instruct-75K, and Evol-

Instruct-Code-80k-v1 datasets. In total, we fine-tune eight models: {1.3B, 6.7B} × {base, in-

struct} × {masked, unmasked}. We omit the 16B model from this experiment due to its high

computational cost for fine-tuning. The goal of this experiment is to better understand the impact

of the choice of base model and instruction masking.

8.4.2 Studying the Impact of the Amount and Quality of Parallel Code Data

Even with an ideal base model and prompting strategy it is still difficult to fine-tune a good

model without the right amount and quality of data. To answer RQ2 and RQ3, we design two

experiments: one to study the impact of the amount of data from individual parallel models and

another to study the impact of the quality of data.

For the first experiment, we create several versions of the PARALLEL-INSTRUCT each with

varying amounts of MPI code samples: 0k, 2k, 4k, 6k, 8k, 10k, and 12k. We leave the other data

in the dataset unchanged and just vary the amount of MPI data. MPI samples are identified by

the presence of certain substrings like “mpi.h” or “MPI Init” in the code. These datasets are used

to fine-tune the 1.3B and 6.7B models resulting in 14 total models. We omit the 16B model from

this experiment due to its high computational cost for fine-tuning. The purpose of this study is to

shed light on how the amount of data from a specific parallel model affects the final performance

137

of the LLM on that parallel model. Does performance keep increasing with more data or does it

plateau at some point? This is important as it informs how we collect future data for fine-tuning.

We select MPI for this study as LLMs consistently perform worse at generating MPI code than

any other parallel programming model [102] and, therefore, it is desirable to improve their ability

to generate MPI code.

Tangentially, we also study the impact of the quality of data on the fine-tuned models.

As LLMs are increasingly getting more dependent on synthetic data for training, it is also getting

extremely important to validate the quality of the synthetic data being produced to see its effect on

model performance. We hypothesize that there is a trade-off between the amount of data and the

quality of data, where eventually more data stops improving performance and quality becomes

more important. Understanding this trade-off is particularly vital for synthetic data where we are

expending compute to create the data; we need to know whether compute time is better spent on

more data or better data.

Directly studying data quality is difficult as it is hard to quantify and the scale of data

is too large for qualitative analysis. In order to overcome this we instead use the base model

used for generating the synthetic data as a proxy for differences in data quality. We presume

that the different models generate data of different quality. This will not allow us to infer what

makes the data better or worse, but it will allow us to see if quality impacts the ability of the

fine-tuned model to generate parallel code. To conduct this experiment we fine-tune the 1.3B and

6.7B models on the PARALLEL-INSTRUCT dataset generated from four different LLMs: Gemini-

Pro, DBRX, Llama-3-70B, and Mixtral-8x7B. We also fine-tune both models on all of the data

together. Again, we omit the 16B model from this experiment due to its high computational cost

for fine-tuning. This results in ten total models that we can compare to see if the quality of the

138

data impacts the final performance of the fine-tuned model.

8.4.3 Studying the Impact of Model Size

Finally, we aim to study how model size impacts the final performance of a fine-tuned

model (RQ4). While larger models tend to be better at most tasks, there is a trade-off where

the time and resources necessary to run a larger model may not be worth the marginal increase

in performance. For example, if a 7B parameter model is able to generate code for a particular

niche task nearly as well as a 70B parameter model, then it is likely much more practical for

a user to simply use the 7B model. It will run quickly on a consumer laptop whereas the 70B

model will require specialized hosting or multiple GPUs. To study the impact of model size, we

fine-tune the 1.3B, 6.7B, and 16B models on the PARALLEL-INSTRUCT dataset. This will allow

us to compare the performance of the models across different sizes and see if the larger models

are worth the extra resources.

8.5 LLM Fine-tuning Setup

We use what we learn from conducting the experiments described in the previous section

to fine-tune the final versions of the fine-tuned Deepseek-Coder of different sizes.

8.5.1 Selecting a Pre-trained Model

We have to select a pre-trained model to fine-tune before starting to fine-tune. When fine-

tuning smaller open-source models, choosing a model already trained for code tasks tends to

yield better results [23]. Based on this and the successful results of previous code LLM fine-

139

tuning studies [141], we select the DeepSeek-Coder [57, 40] family of models for fine-tuning. In

particular, we fine-tuned the 1.3b, 6.7b [57], and 16b [40] parameter models. These models are

state-of-the-art in code modeling and outperform other LLMs on many coding benchmarks [23,

57, 40]. They are trained on a dataset of 87% code and 13% natural language with a 16k context

window. The 1.3b and 6.7b are based on the llama [134] model architecture, while the 16b is

a custom mixture-of-experts (MOE) [14] architecture. The MOE architecture enables the 16b

model to scale to larger sizes while maintaining faster runtime performance.

8.5.2 Fine-Tuning on Synthetic HPC Code Data

We fine-tune each of the models on the PARALLEL-INSTRUCT, Magicoder-OSS-Instruct-

75K [141], and Evol-Instruct-Code-80k-v1 [92] datasets. The latter two datasets are state-of-the-

art synthetic and semi-synthetic code instruction datasets. We include these since, although they

are not HPC specific, they can still improve the model’s generalization capabilities. In total the

fine-tuning dataset has 277k samples.

For generating the best 1.3b, 6.7b, and 16b fine-tuned models, we use the findings of the

ablation studies presented in Section 8.7. The ablation studies are not exhaustive, hence analyze

them to decide the best configuration setup.

8.6 Experimental Setup and Evaluation

In this section, we detail the fine-tuning step, other models used for comparison, and the

benchmarks and metrics used to compare models for parallel code generation.

140

8.6.1 Fine-tuning Setup

We use the AxoNN [126] framework to fine-tune the models. This is a parallel deep learn-

ing framework wrapped around PyTorch [113]. It handles automatically parallelizing the model

across GPUs and allows us to fine-tune the models that do not fit in memory on a single node.

The 6.7b and 16b models are fine-tuned on four nodes each with four 80GB A100 GPUs, while

the 1.3b model is fine-tuned on two A100 GPUs. The total fine-tuning times range between 3 and

20 hours.

We fine-tune the 1.3b and 6.7b models in bfloat16 precision with a batch size of 128 and a

sequence length of 8192 for two epochs. The 16b model is fine-tuned with a batch size of 1024

for one epoch. Furthermore, we employ the AdamW optimizer [90] to update the model weights

based on the fine-tuning loss. This training setup and hyperparameters are selected based on

those used in related literature to fine-tune code LLMs. Cursory experiments showed that these

hyperparameters work well for our fine-tuning task, however, it is possible that an exhaustive

search could yield better results. Performance hyperparameters, like batch size, are selected

based on the model size, available GPU memory, and desired performance. The context window

length is lowered from 16k to 8k from the base models, since none of the data samples in the

dataset exceed 8k tokens and this saves memory and performance during fine-tuning.

8.6.2 Other Models Used for Evaluation

We compare our final models with several other state-of-the-art code LLMs to better un-

derstand their performance and how our study’s insights can lead to improvements in the field.

We compare our models with the following models:

141

• StarCoder2 (1.3B, 7B, 15B): LLMs pre-trained on a large corpus of mostly code data from

The Stack V2 [91].

• Magicoder (6.7B): A fine-tuning of the DeepseekCoder-6.7B model fine-tuned on syn-

thetic data generated based on open-source code [141].

• Phind-V2 (34B): A fine-tuning of the CodeLlama-34B [121] model on a proprietary dataset [115].

At the time of its release it was the best model on the BigCode leaderboard [23].

• Gemini-1.5-flash: A commercial model avaiable via API from Google [132].

• GPT-3.5, GPT-4: State-of-the-art commercial LLMs from OpenAI only accessible via

API [27, 107].

8.6.3 Benchmark Used

When evaluating LLMs for code generation it is imperative to evaluate them on code cor-

rectness. To do this for parallel code generation we use the state-of-the-art benchmark ParEval [102].

ParEval has 420 coding problems that it uses to test an LLM’s parallel code generation capabil-

ities. These problems range across 12 different problem types: sort, scan, dense linear algebra,

sparse linear algebra, search, reduce, histogram, stencil, graph, geometry, fourier transform and

transform help us show the diversity on which the model has been tested on. For each of the

problem types there are problems across seven different execution models: mpi, mpi+omp, cuda,

kokkos, serial, hip, omp. ParEval provides drivers to run and unit test the generated code for cor-

rectness. Furthermore, the results can be analyzed along the many different axes of the problem

types and execution models.

142

We also compared our model’s memory requirements and throughput with other models to

better understand the trade-offs between model size, performance and accuracy. These numbers

are recorded on the ParEval benchmark when generating outputs using an H100 and a batch size

of one. These results are important to users who may be constrained by hardware with limited

memory or speed.

8.6.4 Metrics for Comparison

Since LLMs are probabilistic and may output different results for the same problem it

is generally best to evaluate them in a probabilistic manner. For code LLMs most papers have

adopted the pass@k metric to do this [31]. This metric quantifies the probability that an LLM can

generate at least one correct solution within k attempts. Since we cannot calculate this probability

directly we need to estimate it. To do this for one prompt, N samples are generated where N is

much greater than k, which are then evaluated on code correctness and used to estimate pass@k.

Choosing N to be much greater than k ensures that we can compute a statistically significant

estimate of pass@k. The pass@k compute is shown in Equation (8.1).

pass@k =
1

| P |

∑
p∈ P

[
1−

(
N − cp

k

)
/

(
N

k

)]
(8.1)

Number of samples generated per prompt

Set of prompts

Number of correct

samples for prompt p

To further demonstrate pass@k, say we want to generate a pass@1 score for a model, it will

generate N = 10 samples for a given prompt and out of these cp = 3 samples are correct. Using

the formula, we will get a score of 0.3 so the model has a 30 percent chance of generating the

143

correct solution in it’s first attempt. The pass@1 metric is an important benchmark that is used

to evaluate models’ usability which is why we use it to compare our model with other models to

see where it stands. In recent years, papers have resorted to just reporting pass@k for k = 1 as

LLMs have become more powerful and can generate correct code more often. It is also a more

desirable metric for the user who wants code to be generated correctly the first time.

8.7 Ablation Study Results

With the different models trained across the various configurations and data partitions, we

can now analyze each model’s parallel code generation performance to better understand the

impact of different training configurations. In this section we detail the results from each of these

ablation studies and provide insights into how to best train an HPC specialized code LLM.

8.7.1 Choice of Base Model and Instruction Masking

Figure 8.4 details the parallel code generation results on ParEval for the masked/unmasked

and instruct/non-instruct prompt formats. There are eight models shown in the figure; they were

fine-tuned on the Deepseek-Coder base models and the Deepseek-Coder instruct models using

either masked or unmasked gradients. We observe little correlation between using masked and

unmasked gradients on the instruction prompts. Using masked gradients instead of unmasked

provides a slight less than one percentage point improvement for the 1.3B models. However,

using masked gradients hurt performance when fine-tuning the 6.7B model. This goes against

traditional wisdom that using masked gradients is better for fine-tuning instruction models.

Unlike for masking, there is a notable difference between fine-tuning the base version of a

144

unmasked masked
0

20

40

60

80

100
Pa

ss
@

1

20.2 20.8

31.8 31.1

Base Model

1.3B

6.7B

unmasked masked
0

20

40

60

80

100

15.8 16.5

29.9 30.3

Instruct Model

1.3B

6.7B

Comparison of Parallel Code Generation Pass@1
for Fine-Tuning Prompt Strategies

Figure 8.4: ParEval parallel code generation scores for various prompt formats. Results are
shown for 8 total model configurations: {masked, unmasked} gradients × {instruct, non-
instruct} base models × {1.3B, 6.7B} model sizes. There is no correlation in parallel code
generation performance between masked and unmasked gradients, however, fine-tuning the base
model rather than the instruct gives much better results for both 1.3B and 6.7B models.

model and an existing instruct variant. We observe that fine-tuning base models, rather than

instruct variants, leads to better performance at parallel code generation. This is true across

all configurations: 1.3B and 6.7B models, masked and unmasked gradients. The difference is

most pronounced for the 1.3B models, where fine-tuning the base models gives a roughly 4

percentage point advantage over fine-tuning the instruct models. While it is difficult to pinpoint

the exact cause of this difference, it is likely that the instruct models were fine-tuned to model

a less general distribution when they were first fine-tuned from the base model. In other words,

it is better to fine-tune base models and not further derivations (fine-tunings) of them, since the

base models are more general and can be fine-tuned to a specific task more effectively.

145

8.7.2 Studying the Impact of the Amount and Quality of Parallel Code Data

Figure 8.5 presents the MPI code generation performance for various amounts of MPI fine-

tuning data. MPI is selected for this study since LLMs consistently perform worse at generating

MPI code than any other parallel execution model [102] and, therefore, it is desirable to improve

their ability to generate MPI code. In total there are 14 models shown in the figure: the 1.3B and

6.7B Deepseek-Coder models each fine-tuned on datasets with 0k, 2k, 4k, 6k, 8k, 10k, and 12k

MPI samples. After running ParEval’s MPI benchmarks on these models, we observe that in-

creasing the amount of training data for a particular parallel execution model can improve

the performance of smaller code LLMs on that execution model with diminishing returns,

but has little to no effect on larger code models.

0k 2k 4k 6k 8k 10k 12k
Number of MPI Training Samples

0

5

10

15

20

25

Pa
ss

@
1

Pass@1 for ParEval MPI Problems

1.3B

6.7B

Figure 8.5: ParEval MPI code generation performance for increasing amounts of MPI fine-tuning
date. As the amount of MPI fine-tuning date increases the smaller 1.3B model sees an increase in
ability to generate MPI code with diminishing returns after 6k samples. The larger 6.7B model
sees no improvement in MPI code generation performance with additional data.

The 1.3B models see a gradual increase in MPI code generation performance until 6k MPI

146

samples, after which the performance plateaus and eventually decreases at 12k MPI samples.

The plateau can be explained by smaller models being more susceptible to overfitting. The 6.7B

models, on the other hand, have fairly consistent MPI code generation performance across all

amounts of MPI fine-tuning data. The model has already learned all it can from the data and

adding more has no effect on performance.

DBRX Mixtral Gemini Llama All
Data Source

0

20

40

60

80

100

Pa
ss

@
1

17.89 20.12 20.40 23.50 20.15

31.15 30.35 32.01 33.28 31.81

Comparison of Parallel Code Generation Pass@1
for Different Fine-Tuning Data Sources

1.3B

6.7B

Figure 8.6: ParEval parallel code generation performance across different synthetic data sources.
There is a clear difference in performance across data sources with Llama generated synthetic
data leading to the best performing LLMs and DBRX leading to the worst.

In addition to the amount of data, the quality of the data can also impact the ability of

an LLM to learn from it. To study this, we examine the performance of the models when fine-

tuned on PARALLEL-INSTRUCT synthetic data with different LLMs used to generate the data.

Figure 8.6 shows the ParEval performance of each of these models. We observe that the quality

of the parallel code fine-tuning data can have a significant impact on the performance of a

code LLM on parallel code generation. Models trained on Llama3-70B generated data have

up to six percentage points higher parallel code generation performance than those trained on

147

Parallel-Coder-1.3B Parallel-Coder-6.7B Parallel-Coder-16B
0

20

40

60

80

100
Pa

ss
@

1
Pass@1 by Problem Type

sparse_la

fft

geometry

scan

sort

histogram

graph

search

reduce

stencil

dense_la

transform

Figure 8.7: ParEval code generation performance by problem type. These results follow similar
trends to those shown in [102] except with higher performance across all problem types.

DBRX data. While it is difficult quantify the quality of these data samples, it is clear that the

quality of the data does lead to a measurable difference in generation quality. This motivates

further investigation into what makes a training data sample high quality.

8.7.3 Studying the Impact of Model Size

Finally, we investigate the impact of base model size when fine-tuning a code LLM. This

is a crucial question as larger models are considerably more expensive to fine-tune, store, and

deploy for inference. Understanding the trade-offs between size and generative capabilities is

essential for designing practical code LLMs. Figure 8.8 shows the ParEval performance of the

1.3B, 6.7B, and 16B models fine-tuned on the same PARALLEL-INSTRUCT data. We observe

a significant increase in performance from 1.3B to 6.7B, but a much smaller increase from

6.7B to 16B.

The diminishing return as model size increases is expected as we are using knowledge dis-

tillation to train the models; the performance of the LLMs is unlikely to surpass the performance

of the teacher model. Based on the ParEval results in [102], the 16B model is approaching the

parallel code generation performance of foundation models like GPT-3.5 and GPT-4.

148

1.3B 6.7B 16B
0

20

40

60

80

100

Pa
ss

@
1

23.5

33.3 34.1

Parallel Pass@1 Across Model Sizes

Figure 8.8: ParEval serial and parallel code generation performance along various base model
sizes. There is a significant increase in performance from 1.3B to 6.7B, but a much smaller
increase from 6.7B to 16B.

8.8 An Improved Parallel Code LLM Based on Ablation Study Results

Using the insights from the ablation studies we train a series of models with the best con-

figuration to create state-of-the-art parallel code generation LLMs. In this section we evaluate

these models, Parallel-Coder-1.3B, Parallel-Coder-6.7B, and Parallel-Coder-16B, on the ParEval

benchmark suite and compare their performance with other state-of-the-art code LLMs.

8.8.1 Parallel-Coder Across Problem Types and Execution Models

Figure 8.7 shows the code generation performance of Parallel-Coder across the twelve

problem types in the ParEval benchmark suite. We observe similar trends to those shown in [102]

except with higher performance across all problem types. The LLMs tend to struggle with sparse

unstructured problems, such as sparse linear algebra and geometric problems. The models per-

149

Parallel-Coder
1.3B

StarCoder2
3B

Magicoder
6.7B

Parallel-Coder
6.7B

StarCoder2
7B

StarCoder2
15B

Parallel-Coder
16B

Phind-V2
34B

Gemini-Pro GPT-3.5 GPT-4
0

20

40

60

80

100
Pa

ss
@

1 54.7

42.7

73.6
67.2

59.4 61.6

72.8
65.6

59.3

76.0 76.1

23.5

9.6

30.4 33.3

15.9
23.1

34.1 32.1
25.1

39.6 37.8

Code Generation Performance Comparison on ParEval

serial

parallel

Figure 8.9: Comparison of ParEval parallel and serial code generation performance across all
models. The Parallel-Coder models perform as well or better than other models of similar size.

form much better on dense, structured problems such as dense linear algebra, stencil, and simple

data transformation problems. With the exception of geometric problems, the models perform

better as their size increases with the 16B model performing the best across all problem types.

Interestingly, the models perform worse on geometric problems as the model size increases.

Parallel-Coder-1.3B Parallel-Coder-6.7B Parallel-Coder-16B
0

20

40

60

80

100

Pa
ss

@
1

Pass@1 by Problem Type
mpi+omp

mpi

cuda

hip

kokkos

omp

serial

Figure 8.10: ParEval code generation performance by execution model. The LLMs perform best
on serial code followed by OpenMP. The models struggle most with MPI code generation.

Another axis of comparison besides problem type is the parallel execution model. Fig-

ure 8.10 shows the code generation performance of the three LLMs across the seven execution

150

models in ParEval. As with the problem types we see similar trends as in [102]. The LLMs al-

ways perform best on serial code followed by OpenMP. This is expected as OpenMP code is most

similar to its serial counterpart. The next best performing execution models are the GPU models,

CUDA and HIP. These are followed by Kokkos and the MPI models, MPI and MPI+OpenMP,

reinforcing the trend that LLMs struggle with MPI code generation.

8.8.2 Comparison with Other Models

Finally, we compare the performance of the Parallel-Coder models with other state-of-

the-art code LLMs. Figure 8.9 shows ParEval parallel and serial code generation performance

across all models. We see that, while the commercial models still dominate, the Parallel-Coder

models are competitive. At each relative model size class we see that the Parallel-Coder models

perform better than comparative models for parallel code generation. The Parallel-Coder-1.3B is

significantly better than StarCoder2-3B despite being much smaller. Furthermore, the Parallel-

Coder-6.7B model performs better than the 34B Phind-V2 model. Despite their success at parallel

code generation, the Parallel-Coder models are still beaten by Magicoder-6.7B for serial code.

This highlights, however, the success of our data and fine-tuning strategies at training models to

generate parallel code.

Although parallel code correctness is the most important metric for an HPC code LLM,

the system requirements of the model and the speed at which it can generate code are also very

important to developers. A model that can generate correct code nearly as often as a larger model,

but can run quickly on a consumer laptop, is arguably much more useful for developers than the

larger model. To study this trade-off in the Parallel-Coder models, we present the throughput,

151

required memory, and ParEval parallel pass@1 results for each model in Figure 8.11. The size

of the dots are scaled based on the memory requirement of the model with larger dots indicating

larger models. The ideal location for a model is the top right where the model generates correct

code quickly.

0 20 40 60 80 100 120 140
Throughput (tokens/s)

0

10

20

30

40

50

Pa
ra

lle
l C

od
e

Pa
ss

@
1

bs=1, dtype=float16 on H100

Parallel-Coder-1.3B
3.9 GB

StarCoder2-3B
7.1 GB

Parallel-Coder-6.7B
14.6 GB Magicoder-6.7B

14.6 GB

Phind-V2-34B
67.1 GB

Throughput, Memory, and Correctness

Figure 8.11: Comparison of parallel code generation pass rate (pass@1), model memory require-
ments (GB), and generation throughput (tokens per second). The top right of the graph is the
ideal location where models generation correct code quickly. The smaller the dot the lower the
model memory requirements. We see that the 6.7B model gets similar performance to the much
larger 34B model while generating tokens significantly faster.

We see that the Parallel-Coder models generate parallel code just as well or better than

the other models while being faster and more memory efficient. Parallel-Coder-6.7B is signif-

icantly faster than Phind-V2-34B while requiring much less memory and having slightly better

performance on ParEval. Magicoder-6.7B has similar throughput and memory requirements as

Parallel-Coder-6.7B, but performs worse at generating parallel code. The Parallel-Coder-1.3B

model is the fastest and requires the least amount of memory, yet it outperforms other models in

its size class (StarCoder2-3B). These results demonstrate that with high quality fine-tuning data

152

we do not need to sacrifice memory and throughput to generate high quality parallel code.

153

Chapter 9: Improving the Performance of LLM Generated Code using Rein-

forcement Learning

9.1 Motivation

Developing fast and scalable code is a difficult, but often necessary task for scientific soft-

ware developers. It can require expert knowledge of the application domain, algorithm design,

programming languages, and hardware. This is a challenging task for even serial code, and even

more complex for parallel code. Further, programmers and performance engineers are often

tasked with optimizing existing code, often not written by them, which requires understanding an

existing codebase and the performance implications of changes. Large language models (LLMs)

have emerged as a powerful tool for assisting in the software development process for a variety

of tasks such as code completion [31], bug detection [119, 73], and code summarization [5, 59,

56, 6]. Recently, they have also been used with limited success to generate parallel code [103].

Yet they struggle to understand performance aspects of code because they were not designed for

this task. Code LLMs are trained on just code as text, and as a result, are not well-suited to rea-

son about complex performance issues. Additionally, the code they generate does not consider

performance and could be slow, despite being correct. This has been demonstrated in existing

works that show LLMs often generate inefficient parallel code [102, 136].

154

Creating artificial intelligence (AI) models that can generate faster code has the potential

to significantly improve the productivity of software developers. By using performance-aware

code LLMs, developers can focus on design and correctness without worrying about the perfor-

mance implications of using LLMs to generate code. Additionally, as LLM-based tools become

more integrated with software development workflows, developers will become more and more

reliant on the quality of their outputs. Improving the performance of LLM generated code while

maintaining its correctness will improve the quality of the target software being developed. Fur-

ther, code LLMs that can write fast code can remove the need for every scientific and parallel

programmer to be a performance expert in addition to their existing domain expertise.

It is non-trivial to create code LLMs that can generate faster code. Since creating performance-

aware code LLMs will require fine-tuning of LLMs using performance data, one challenge is

creating such datasets. LLMs typically require very large, general datasets for training tasks,

and it is challenging to create such large datasets for performance data. Arbitrary code can have

a wide range of performance characteristics, and depend on many factors such as input data,

hardware, and software environment. Due to the complexity in collecting performance data for

arbitrary code, performance datasets are often small and/or narrow in focus. Further, even with

such a dataset in hand, an LLM needs to be carefully fine-tuned to align its generated outputs

with more performant code. There are many potential pitfalls here, for instance, improving the

performance of generated code at the cost of correctness. Additionally, fine-tuned LLMs can

learn a distribution too disjoint from their initial code distribution they modeled and lose their

ability to generalize.

In order to overcome the challenges associated with collecting large scale performance

data, we propose a new approach that combines a structured, narrow performance dataset with

155

a more general synthetic code dataset for fine-tuning. We also propose two novel fine-tuning

methodologies: (1) reinforcement learning with performance feedback (RLPF), which is based

on reinforcement learning with human feedback (RLHF) [112], and direct performance align-

ment (DPA), which is based on direct performance optimization (DPO) [117]. We use these two

approaches and the new dataset to align an existing code LLM to generate faster code. These

proposed fine-tuning methodologies use fast and slow code pairs to fine-tune the LLMs to gen-

erate samples more similar to the fast code and less similar to the slow code. The aligned model

is then evaluated on two code generation benchmarks and one code optimization benchmark. We

find that the aligned model is able to generate code with higher expected speedups than that of

the original model, while maintaining correctness.

This work makes the following important contributions:

• A code performance dataset that combines narrow, structured performance data with broad

synthetic data to help models learn performance properties, but maintain their ability to

generalize.

• Two novel fine-tuning methodologies, reinforcement learning with performance feedback

(RLPF) and direct performance alignment (DPA), for aligning code LLMs to generate

faster code.

• A fine-tuned, performance-aligned LLM that generates faster code than traditional code

LLMs.

• A detailed study of the performance and correctness of the code generated by performance-

aligned LLMs including serial, OpenMP, and MPI code. Additionally, an ablation study

motivating the use of synthetic data to fine-tune code LLMs for performance.

156

9.2 Overview of Methodology

Figure 9.1 presents an overview of our methodology for aligning code large language mod-

els (LLMs) to generate faster code. We start by creating a dataset that can be used to fine-tune an

LLM to generate code that is both correct and fast (Section 9.3). To accomplish this, we collect a

large, structured code dataset with performance data and test cases to measure correctness. This

structured dataset is, however, not representative of the entire distribution of code we want an

LLM to optimize so we ameliorate its shortcomings by using LLMs to generate a synthetic code

dataset that covers a wider range of code.

Figure 9.1: An overview of the proposed methodology. We first collect a large dataset of fast
and slow code pairs using coding contest submissions and synthetically generated data. Then
we fine-tune three different LLMs on this data to generate faster code. Finally, we evaluate the
fine-tuned models on code generation and optimization tasks.

These datasets are then used to align the outputs of an LLM with performance considera-

tions. We employ three different techniques – supervised learning, reinforcement learning, and

direct alignment, to fine-tune code LLMs (Section 9.4). The models are aligned to answers that

are not only correct, but also fast. Using the fine-tuned models we then generate code for a set of

three different benchmark tasks for code generation and optimization (Section 9.5). These tasks

measure the correctness and performance of the generated code for coding problems within and

157

outside the distribution of the training data.

9.3 Data Collection and Labeling

In order to align LLMs to generate more performant output, we need to fine-tune them on

performance data. Further, to apply the proposed fine-tuning methods, we need a dataset of code

where we have a slow and a fast implementation of a particular problem. This type of structured

performance data paired with source code is difficult to collect. It requires being able to build,

execute, validate, and profile arbitrary code snippets, which is difficult to accomplish at scale. In

this section, we describe our process of collecting a large performance dataset (Dc). Additionally,

we discuss how we extend the dataset with synthetic data (Ds) to cover a wider distribution of

code patterns. The final dataset D contains over 4.5 million code samples, distributed over three

source languages (C++, Java, and Python) as shown in Table 9.1.

Table 9.1: The number of samples in both datasets distributed by source language.

Dataset (D)
Runtime

Data C++ Java Python
No. of

Samples

CodeContests+Perf (Dc) 3 1.8M 0.9M 1.8M 4.5M
Synthetic (Ds) 7 5k 0 5k 10k

9.3.1 Performance Dataset Collection

We build our performance dataset using the CodeContests dataset introduced by Deep-

Mind in [86]. This dataset contains coding contest problems and solutions from the Aizu [9],

AtCoder [15], CodeChef [35], Codeforces [36], and HackerEarth [58] online competition plat-

forms. In total there are 13,610 coding problems in the dataset. These range in difficulty from

158

simple to very difficult, and cover a wide range of topics such as graph algorithms, dynamic pro-

gramming, and search. Each problem in the dataset has a corresponding set of submissions from

users, labeled as correct or incorrect on the respective coding contest website. The number of

submissions per problem ranges between tens and thousands. There are solutions in three differ-

ent programming languages: C++, Java, and Python. Additionally, the dataset includes meta-data

for the problem such as the problem statement, test cases, time limits, and memory limits.

This dataset is extremely valuable for our study as it provides a large amount of code

samples along with the necessary tests to measure correctness and performance. More so, it con-

tains many code samples that solve the same problem, but in different ways and with different

runtimes. While many of the code contest websites record runtimes for submissions, the Code-

Contests dataset as provided by DeepMind does not include this information. We collect this data

ourselves into a new dataset, CodeContests-Perf (Dc), by executing each of the correct submis-

sions and recording their runtimes. Each submission is run on all the test cases for its problem.

Generally, there are between 5 and 20 test cases per problem. We create submission-runtime

pairs using the average runtime over all the test cases. Each run is executed on a single core of

an AMD EPYC 7763 CPU with a 2.45 GHz base frequency.

The final CodeContests-Perf dataset contains 4.5 million samples. The distribution of sam-

ples by source language is shown in Table 9.1. There were a small fraction of submissions

labeled as correct in the CodeContests dataset that errored or failed the test cases when we ran

them. These are omitted from the final dataset. We also include code submissions that were

marked as incorrect in the original dataset, however, we do not run them. These will eventually

be useful to prevent the model from generating fast, but incorrect code.

159

9.3.2 Synthetic Data Generation

The amount of data and the availability of easy testing in the CodeContests-Perf dataset

makes it a crucial component of our study. However, the distribution of code represented in the

dataset is significantly different than that of the code that is typically found in production code.

Coding contests generally award participants based on time-to-submission leading to users writ-

ing messy and/or disorganized code to solve problems as quickly as possible. Further, the types

of problems typically found in coding contests such as depth-first search and dynamic program-

ming, while an important subset of problems, do not cover the full range of relevant computa-

tional problems that are found in production code, and in particular, in scientific computing.

To address the shortcomings of the CodeContests-Perf data, we generate an additional syn-

thetic dataset Ds of fast and slow code samples. This is inspired by several recent works demon-

strating the effectiveness of fine-tuning LLMs on synthetic data to improve performance on real

tasks [141, 151, 51, 60, 19]. Gilardi et al. [51] even find that LLMs can outperform humans for

many text annotation tasks. In our case of annotating code performance, real runtimes are the

best annotation, but in the absence of runtime data, synthetic data is a promising candidate to

obtaining labeled code performance data.

We use the Gemini-Pro-1.0 LLM model [132] to generate synthetic code samples as we

found it to give the best outputs among a number of models we tested. We adapt the methodology

in [141], where samples are generated using seed code snippets to get diverse outputs from the

model. First, we create a dataset of 10,000 seed samples that are 1-15 line random substrings of

random files from The Stack dataset [77], which is a large, 3TB dataset of permissively licensed

code. Then the LLM is asked to generate three pieces of text: a problem statement inspired by

160

the seed snippet, a fast solution to the problem, and a slow solution to the problem. This produces

inherently noisy data, since the LLM does not always generate correct or optimal (fast vs. slow)

outputs. However, prior work has shown that the gain in predictive performance from fine-tuning

on synthetic data often outweighs the downsides from noisy data [141].

In total, we collect 10,000 synthetic samples, 5,000 in C++ and 5,000 in Python. While

adding more synthetic samples would likely continue to improve the quality of the fine-tuned

model, we found that limiting to 10,000 samples provided adequate model quality while oper-

ating within time/cost constraints for this study. Table 9.1 shows the distribution of samples by

language in the synthetic dataset.

9.4 Aligning LLMs to Generate Faster Code: Proposed Fine-Tuning Approaches

Large language models have been shown to be capable of generating correct code with

high frequency on several benchmarks [31, 16, 107], yet they do not always generate code that is

efficient [102]. They require further fine-tuning to align them with performance considerations.

In this section, we detail how we fine-tune large language models with supervised learning and

reinforcement learning techniques to generate faster code. We utilize the dataset introduced in

Section 9.3 to train three different models using supervised learning, reinforcement learning with

performance feedback, and direct performance alignment.

9.4.1 Supervised Learning

In the first approach, we fine-tune a language model on the dataset of code snippets from

D to predict the next token in a sequence given previous tokens. For our methodology, we begin

161

with a model that has already been trained on a large corpus of text and code, and then fine-tune

it on a smaller dataset of coding problems and fast solutions.

We create two types of prompts using the samples in D to fine-tune the model. In the

first type of prompt, we use a standard instruction prompt where the model is given a problem

statement and a fast solution (shown in Listing 3). Using the coding contest data in Dc, we use

the problem description as the instruction and randomly sample one of the five fastest solutions

as the response. In the second type of prompt, we use a variation of the standard instruction

prompt where the task is to optimize a given code snippet and the output is an optimized version

of the code. For this, we use the problem description and one of the slowest 33% of solutions

as the instruction, and one of the five fastest solutions as the response. Forming prompts from

the synthetic dataset Ds is similar except we only have one slow and one fast solution for each

problem, so we do not sample from ranges of solutions.

Over these prompts, the model is fine-tuned to minimize the cross-entropy loss between

its predicted next token and the actual next token. We refer the reader to [100] for more details

on fine-tuning LLMs for text generation. After fine-tuning, the model should have more fast

code snippets in its training data and its probability distribution should shift toward faster code.

Several prior works, however, have observed that methods more sophisticated than supervised

fine-tuning are required to align LLM outputs with certain properties, such as safety and human

preferences [112, 155, 17].

Supervised Fine-Tuning Evaluation Metric: We evaluate the success of the supervised fine-

tuning by measuring the perplexity of the tuned model over an evaluation dataset. Perplexity

is inversely proportional to how confident a model is that a data sample is in the distribution it

162

Listing 3 The instruction prompt format used to fine-tune the models. During fine-tuning, a
coding problem is given to the model as an instruction-response pair, and the model is trained to
generate similar responses when used for inference.

Instruction:
Given a list of strings, find the longest
common prefix shared by all strings in the
list. The prefix should be the longest
possible string that is a prefix of every
string in the list.

Response:
```python
def longest_common_prefix(strings):
if not strings:
return ""

prefix = strings[0]
for string in strings[1:]:

while string.startswith(prefix):
prefix = prefix[:-1]

return prefix
```

models. A lower perplexity is better and indicates the LLM is less “perplexed” by a particular

sample. A model’s perplexity over t tokens from a dataset X is given by Equation (9.1).

Perplexity(X) = exp

{
−1

t

t∑
i

log pθ (xi | x<i)

}
(9.1)

Predicted probability of token xi

given the previous tokens x<i

9.4.2 Reinforcement Learning with Performance Feedback

To further align an LLM’s outputs with performance considerations, we propose a new

method, which we call reinforcement learning with performance feedback. This method is in-

spired by the success of reinforcement learning with human feedback (RLHF) [112], which aligns

163

LLM outputs with human preferences. RLHF uses human-labeled preference data to train a re-

ward model that assigns rewards to LLM outputs that are more preferred by humans. This reward

model is used in conjunction with reinforcement learning to fine-tune a LLM to generate out-

puts that are more preferred by humans. We adapt this method into reinforcement learning with

performance feedback (RLPF) that uses performance feedback instead of human feedback to

fine-tune LLMs to generate faster code.

Reward Model: We first need to design a reward function that can be used to guide the rein-

forcement learning process. If we can automatically run, test, and measure the performance of a

generated LLM output, then we can simply use a function of the recorded runtime as the reward.

In our case, this is possible for the coding contests dataset Dc, where we have unit tests available

to run and test the generated code (see Section 9.3.1). This further highlights the utility of this

dataset for our study.

As mentioned in Section 9.3.2, we want to be capable of generating fast code outside the

context of coding contests i.e. we do not want to exclusively use the code contests data for RL

fine-tuning. Since we may not be able to obtain runtime data for other arbitrary code samples,

we need to train a reward model that rewards faster code more than slower code for samples

where we cannot obtain runtime data. Fine-tuning LLMs for relative performance modeling was

previously demonstrated by Nichols et al. [103] and, thus, a fine-tuned LLM is a viable candidate

for the reward model.

To accomplish this we train a reward model (an LLM), rθ, to predict a reward for a given

code sample, where a higher reward indicates faster code. To train this model, we first use a

subset of D to create a dataset of triplets (p, df , ds) where p is a problem description and df and

164

ds are fast and slow code solutions to the problem, respectively. Using rθ, we compute predicted

rewards for df and ds, and use these to calculate the loss function Lr in Equation (9.2).

Lr = − log
[
σ
(
rθ (p, df) − rθ (p, ds) − µ (p, df , ds)

)]
(9.2)

predicted reward

for fast code

predicted reward

for slow code

adaptive margin;

scales the reward based on runtimes

This loss function is used to train rθ to predict a higher reward for df than ds. In Equa-

tion (9.2) σ, is the logistic function and µ is an adaptive margin as defined in Equation (9.3). The

loss function in Equation (9.2) is adapted from Wang et al. [138] to include runtime information.

It trains the reward model to generate rewards farther and farther apart for faster and slower code

samples. As rθ(p, df) − rθ(p, ds) gets larger, the loss function tends towards zero. On the flip

side, the loss increases as the difference between the rewards decreases or rθ assigns a larger

reward to the slower code. We utilize an adaptive margin µ to further scale the rewards based on

how much faster the fast code is than the slow code:

µ (p, df , ds) =


min

{
λ , runtime(ds)

runtime(df)

}
if p ∈ Dc

0 otherwise

(9.3)

max margin value speedup of df over ds

Since we can train the reward model on both datasets Dc and Ds, we can use the runtime

information from Dc to scale the rewards appropriately. We use a max margin λ to prevent

extremely large margins when ds is very slow. Figure 9.2 provides an overview of the reward

model fine-tuning process.

165

Figure 9.2: An overview of the reward model fine-tuning process. The reward model outputs a
reward for a fast and slow code sample. The loss function uses these rewards alongside runtime
data to update the weights of the model so that its predicted rewards move farther apart for faster
and slower code scaled by the runtime speedup.

It is important to note that the reward model rθ is not directly modeling code performance.

Doing so would likely be impossible as performance can depend on a number of factors like hard-

ware, input, etc. that are not accounted for in the input to the reward model. Instead, the reward

model is trained to learn code structures and patterns that generally lead to better performance.

This is another reason it is important to have a large dataset that covers a wide distribution of

code, so that the model can learn these generalizations.

Using the runtime data inDc and the trained reward model, we can define a reward function

r(p, d) that assigns a reward to an LLM generated code sample. This reward function is defined

in Equation (9.4).

r(p, d) =



−1 if p ∈ Dc, d incorrect

median runtime(p)
runtime(d)

− 1 if p ∈ Dc, d correct

rθ(p, d) otherwise

(9.4)

166

The model is penalized with a negative reward if it generates incorrect code. If it generates

correct code, then the reward is based on the speedup over the median runtime, median runtime(d),

from the submission already in the dataset. For the synthetic problems, we use the output of the

reward model rθ.

Reward Model Fine-Tuning Evaluation Metric: We can evaluate the fine-tuning of the reward

model by computing its accuracy over an evaluation dataset. The accuracy here is defined as the

proportion of samples where the reward signal is larger for the fast code than it is for the slow

code.

accreward(X) =
1

|X |
∑

(p,df ,ds)∈X

1 [rθ(p, df) > rθ(p, ds)] (9.5)

Here 1 is the indicator function that returns 1 if the condition is true and 0 otherwise. A

perfect accuracy of 1 indicates that the reward model always predicts a higher reward signal for

the fast code sample than the slow code sample.

Reinforcement Learning: Using the reward function r(p, d) and Proximal Policy Optimization

(PPO) [122], we can align an LLM to generate faster code. We use the supervised fine-tuned

model from Section 9.4.1 as the base model to fine-tune with RL as is common in RLHF [112].

Following standard PPO training practices we optimize the base model using the reward objective

function in Equation (9.6).

Lp = r(p, d)− ηKL
(
πRLPF(d | p) ‖ πS(d | p)

)
(9.6)

new model πRLPF

being fine-tuned with RL supervised model πS

167

Here KL is the Kullback-Leibler divergence and η is a hyperparameter that controls the

divergence penalty. This penalty helps prevent the model from getting stuck in local optima or

diverging too far from the original distribution of the supervised model [69, 80].

During fine-tuning, a prompt is given to the base model (a coding problem or optimization

task) and is used to generate a response. The reward function r(p, d) is then used to compute a

reward for the response either by running the generated code or getting a reward from the reward

model. The reward is then used to compute the loss function Lp in Equation (9.6). The loss

is then used to update the base model’s parameters using PPO. The process is repeated for a

number of iterations T or until the model converges. Figure 9.3 provides an overview of the

RLPF fine-tuning process.

Figure 9.3: The RLPF fine-tuning process. A prompt is given to the model and a reward is
calculated based on the code it generates. Additionally, the KL-divergence between a reference
model and the fine-tuned model is included in the reward to prevent deviating too far from the
original distribution. Finally, PPO is used to update the model’s parameters based on the reward.

RLPF Fine-Tuning Evaluation Metric: We can measure the success of the reinforcement learn-

ing using two metrics: the mean reward and the magnitude of the KL-divergence over an evalu-

ation dataset. The mean reward indicates how well the LLM being fine-tuned is able to optimize

the reward function. A higher mean reward is better and indicates that the model is generating

faster code. The KL-divergence measures how far the fine-tuned model has diverged from the

168

supervised model. The absolute magnitude of this is difficult to interpret, but it should remain

positive and low to indicate that the fine-tuned model is not diverging too far from the supervised

model.

9.4.3 Direct Performance Alignment

In recent work, Rafailov et al. [117] demonstrated an alternative approach that does not

use reinforcement learning to align LLM outputs with certain properties. Their approach, called

Direct Preference Optimization (DPO), uses a derivation of RLHF’s reward objective (similar

to Equation (9.6)) to directly update the model’s parameters to align with a reward signal, rather

than train a reward model and use RL. The derived loss takes a similar form to the reward loss

in Equation (9.2). This DPO fine-tuning has many advantages over RLHF, such as requiring less

computation, being easier to implement, and is generally more stable with less hyperparame-

ters [117]. However, some works still find that RL fine-tuning can outperform DPO for certain

tasks and datasets [140]. Thus, we adapt the DPO approach to compare it with RLPF. We propose

Direct Performance Alignment (DPA), an adaptation of the training procedure and loss function

from [117] that takes into account performance, to fine-tune an LLM to generate faster code. The

proposed loss function in DPA is shown in Equation (9.7).

Ld = − log σ

(
β log

πP (df | p)
πS(df | p)

− β log
πP (ds | p)
πS(ds | p)

− µ(p, df , ds)

)
(9.7)

predicted probabilities from fine-tuned model πP and

supervised model πS on fast (df) and slow (ds) code

Like with the reward loss in Equation (9.2), we utilize the adaptive margin µ from Equa-

169

tion (9.3) to scale the loss based on the runtime of the fast and slow code samples. This loss

function can be used to fine-tune a base LLM to generate faster code without using reinforce-

ment learning. To compute the loss, we need to get model predictions for a fast and slow code

pair for both the model being fine-tuned and a base reference model (the supervised model). Then

the loss from Equation (9.7) is used to update the weights of the model being fine-tuned. This

process is iteratively repeated for a number of iterations T or until the model converges. This

DPA fine-tuning process is portrayed in Figure 9.4.

Figure 9.4: The DPA fine-tuning process. The model being fine-tuned and a reference model
are used to generate probabilities for a fast and slow code sample. These probabilities, combined
with runtime data, are used to compute a loss and update the model’s parameters.

DPA Fine-Tuning Evaluation Metric: The success of DPA fine-tuning can be measured using

a similar accuracy metric to the reward model from RLPF. Since we do not have a direct reward

signal like in Equation (9.2), we can instead measure how often the difference in log probabilities

between the fine-tuned model and the supervised model for the fast code, i.e. log
πP (df |p)
πS(df |p)

is

greater than the log probability difference for the slow code, i.e. log πP (ds|p)
πS(ds|p) . This is shown

170

in Equation (9.8).

accdpa(X) =
1

|X |
∑

(p,df ,ds)∈X

1

[
πP (df | p)
πS(df | p)

>
πP (ds | p)
πS(ds | p)

]
(9.8)

9.5 Evaluation Tasks

It is important to quantify how well the models do on downstream tasks after fine-tuning.

In this section we present two different tasks, code generation and optimization, to evaluate how

well the training methodologies in Section 9.4 improved the LLMs ability to generate fast code.

We further detail an ablation study to motivate the use of synthetic data.

9.5.1 Code Generation

To evaluate the ability of the models to generate fast code, we utilize two sets of coding

problems. The first is a subset of 100 coding contest problems from the CodeContests dataset [86]

(see Section 9.3.1) that were removed from the training set. We can provide the model with the

problem statement and use it to write a solution to the problem. We can then run the code and

measure both its correctness and performance. Correctness can easily be tested using the unit

tests provided with the problems.

In addition to the coding contest problems, we also evaluate the models on the ParEval

benchmark [102], which is a collection of parallel code generation problems for evaluating the

ability of LLMs to generate correct and efficient parallel code. We narrow our focus to a subset of

180 problems, namely the serial, OpenMP [111], and MPI [128] problems. We include OpenMP

and MPI problems to evaluate the models’ ability to generate fast parallel code. The problems in

171

ParEval range a wide variety of domains, such as linear algebra, graph algorithms, sorting, etc.

The problems are designed to be challenging and require the generation of efficient code. The

ParEval benchmark provides a great way to test the LLMs on problems unlike what is in their

training data (coding contests).

Code Generation Evaluation Metrics: We evaluate the generated code on two metrics: correct-

ness and performance. To study correctness we adopt the popular pass@k metric from Chen et

al [31]. This metric measures the probability that if an LLM is given k attempts to write a correct

solution, it will succeed. Equation 9.9 shows how this value can be estimated using N generated

samples from an LLM. Typically the average pass@k over a set of prompts is reported and, as

LLMs have progressed, only the pass@1 value is reported. We refer the reader to [31] for further

discussion of pass@k.

pass@k =
1

| P |

∑
p∈ P

[
1−

(
N − cp

k

)
/

(
N

k

)]
(9.9)

Number of samples generated per prompt

Set of prompts

Number of correct

samples for prompt p

To evaluate the performance of the generated code, we use the speedupn@k metric intro-

duced by Nichols et al [102]. This metric measures the expected max speedup over a baseline

implementation if the LLM is given k attempts to write a solution. The speedupn@k metric is

defined in Equation 9.10. We refer the reader to [102] for a complete derivation of this metric.

For the coding contest problems, we use the median submission runtime as the baseline. For the

ParEval problems, we use the baselines provided by the benchmark.

172

speedupn@k =
1

|P |
∑
p∈P

N∑
j=1

(
j−1
k−1

)(
N
k

) T ∗p

Tp,j,n
(9.10)

runtime of sample j of prompt p on n processors

runtime of baseline for prompt p

9.5.2 Code Optimization

In addition to generating code, we also evaluate the ability of the models to optimize exist-

ing code. This is accomplished by providing a code snippet and instructing the model to generate

an optimized version of it. To evaluate this task we use the functions in the PolyBench bench-

mark suite [54]. This is comprised of 30 unique kernels that are typically used to test compiler

optimizations and auto-tuning tools. We utilize the kernels by providing the existing kernel im-

plementation to the LLM and instructing it to generate an optimized implementation. We can

then evaluate the correctness and performance of the generated code.

Code Optimization Evaluation Metrics: We evaluate the generated code on the same metrics

as the code generation task: correctness and performance. We use the same pass@k metric

(Equation (9.9)) to evaluate correctness. To evaluate performance, we use speedupn@k (Equa-

tion (9.10)), except with the baseline being the runtime of the original kernel.

9.5.3 Synthetic Data Ablation Study

Finally, we test our hypothesis that training on synthetic data helps the models’ ability to

generalize and prevents it from over-fitting to code contest data. To accomplish this we train

the models exclusively on the code contests dataset Dc without any of the synthetic dataset Ds.

173

We then evaluate the models on the code generation (Section 9.5.1) and code optimization (Sec-

tion 9.5.2) tasks. We compute the same pass@k and speedupn@k metrics and compare the im-

pact of the synthetic data on the models’ performance. Of most interest is the performance on the

ParEval and PolyBench benchmarks, as these are the most different from the training data.

9.6 Experimental Setup

Using the large performance dataset D from Section 9.3 and the training methodology

introduced in Section 9.4, we can now fine-tune LLMs to generate faster code. Once fine-tuned,

these models can then be evaluated on the benchmarks detailed in Section 9.5. This section details

the base models for fine-tuning, the data subsets for each fine-tuning task, how we implement the

fine-tuning process, and the experimental setup used to evaluate the fine-tuned models.

9.6.1 Base Model for Fine-Tuning

Each of the training methodologies introduced in Section 9.4 begins with a base LLM that

has already been trained and fine-tunes it further. We select the Deepseek-Coder 6.7B model [57]

as the base for the supervised fine-tuning (Section 9.4.1). This model is a 6.7B parameter code

LLM released by Deepseek-AI that is trained on 2T tokens comprised of mostly code with a con-

text length of 16k tokens. We select this model due to its good performance on code generation

tasks [23] and due to other works finding it a better base model for fine-tuning than the popular

CodeLlama models [141]. Furthermore, its 6.7B parameter size makes it tractable for end-users

to use it to generate code themselves on consumer hardware. While Deepseek-Coder is a strong

base model for our studies, the proposed fine-tuning methodologies can be applied to any existing

174

code LLM.

For the remaining two fine-tuning methods, RLPF and DPA, we use the supervised fine-

tuned deepseek model as the base. This is in line with the methodologies in [112, 117] and

ensures that the model being aligned is within the distribution of the text data it is trying to model

(i.e. instruction prompts as shown in Listing 3). Additionally, we use Deepseek-Coder 6.7B as

the base for the reward model. The final set of models used for comparison is shown in Table 9.2.

Table 9.2: Models used for comparison in this paper. Deepseek-Coder-6.7B [57] is the base
model we use in our fine-tuning methodologies.

Model Name Description Fine-Tuning
Methodology

DS Deepseek-Coder 6.7B base model —
DS+SFT DS after supervised fine-tuning Section 9.4.1
DS+RLPF DS+SFT after RLPF fine-tuning Section 9.4.2
DS+DPA DS+SFT after DPA fine-tuning Section 9.4.3

9.6.2 Data Setup

We fine-tune the LLMs using the dataset D from Section 9.3. We set aside 100 contests

from the CodeContests dataset for the code generation evaluation task. The dataset is further

split into smaller datasets for each fine-tuning task. The supervised fine-tuning dataset, DSFT,

is comprised of 40% of the full dataset, D, and the remaining 60% is used for the reinforce-

ment fine-tuning dataset, DRLPF, and the direct performance alignment dataset, DDPA. These two

datasets can be the same since the alignment fine-tuning tasks are disjoint. The DRLPF dataset

is further split into 66% for the reward model dataset, DREWARD, and 33% for the reinforcement

learning dataset, DRL. During each fine-tuning stage we set aside 5% of the respective dataset for

evaluation (i.e. 5% ofDREWARD is set aside to calculate the reward model accuracy after training).

175

All of the dataset splits are stratified so that the proportion of code contest to synthetic data is

equal to the original dataset.

When creating prompt, fast code, and slow code triplets (p, df , ds) from Dc for RLPF and

DPA fine-tuning, we select df randomly from the top 5 fastest solutions. We then select ds from

the slowest 50% of the solutions. Additionally, a random 5% subset of slow solutions are replaced

with an incorrect solution. This is to ensure that the model is not just learning to generate fast

code, but also to avoid generating incorrect code. We directly use the fast and slow code pairs

from Ds to directly form the triplet.

9.6.3 Fine-Tuning Setup

In order to implement the fine-tuning we extend the TRL Python library [142] which is

built on top of the popular transformers library [143]. TRL provides existing implementations of

RLHF and DPO, which we modify to use our custom rewards, loss function, and datasets. We

fine-tune the models on a single node with four 80GB A100 GPUs and two AMD EPYC 7763

CPUs.

9.6.3.1 Supervised Fine-Tuning Hyperparameters

We fine-tune the supervised model for three epochs over the DSFT dataset. We use bfloat16

precision and a global batch size of 64 (1 sample per GPU and 16 gradient accumulation steps).

To fine-tune in parallel we make use of the PyTorch fully sharded data parallelism (FSDP) im-

plementation [150], which shards model parameters across ranks to save memory. Furthermore,

we fine-tune with the Adam optimizer [74] and an initial learning rate of 1.41× 10−5.

176

9.6.3.2 Reward Model Fine-Tuning Hyperparameters

The reward model is fine-tuned with the same hyperparameters as the supervised model

(Section 9.6.3.1), except it is fine-tuned for only one epoch over the DREWARD dataset. We use a

max margin of λ = 3 for the margin function µ(p, df , ds).

9.6.3.3 RLPF Fine-Tuning Hyperparameters

We fine-tune the RLPF model for four PPO epochs over the DRL dataset. We use a global

batch size of four and a learning rate of 1.41× 10−5. The KL regularization coefficient is initial-

ized to γ = 0.1. When sampling outputs from the fine-tuned and reference model we follow best

conventions [142] and use sampling with a top-k of 0 and a top-p of 1.0.

9.6.3.4 DPA Fine-Tuning Hyperparameters

The DPA model is fine-tuned for 1 epoch over the DDPA dataset with a global batch size

of four. We employ a learning rate of 1 × 10−7 in the AdamW optimizer [90]. Additionally, we

found a value of β = 0.6 to be most stable for training.

9.6.4 Evaluation Setup

For the code generation tasks we use each of the LLMs to generate code for the prompts in

the evaluation subset of Dc and ParEval. We generate 20 samples per prompt with a temperature

of 0.2 and a top-p of 0.95 following standard practices LLM code benchmarks [16, 102]. For the

optimization task we similarly generate 20 optimized versions of each kernel in the PolyBench

benchmark suite [54] using each of the fine-tuned LLMs.

177

The generated code is run on a single AMD EPYC 7763 CPU. For the ParEval OpenMP

tests we report results on 8 cores and we use 512 ranks for the MPI tests. We make use of the

existing tests in the CodeContests dataset and ParEval to record the correctness and runtime of

the generated code. For the optimized PolyBench kernels we test correctness and runtime against

the original kernel implementations. All runtimes are averaged over 5 runs.

9.7 Results

With the fine-tuned models from Section 9.4 we can now evaluate their code generation

capabilities on the tasks described in Section 9.5. In this section we present the results from the

fine-tuning process and the evaluation tasks.

9.7.1 Fine-Tuning Results

We record the fine-tuning metrics on the 5% evaluation datasets at the end of each fine-

tuning step. The DS+SFT model yields an evaluation perplexity of 1.62. It is generally diffi-

cult to reason about specific perplexity values, but values near 1 show a strong ability to model

the underlying text distribution. Since perplexity is the exponential of cross-entropy (see Equa-

tion (9.1)) a perplexity value of 1.62 means that the cross-entropy between predicted probabilities

is ≈ 0.48.

The RLPF reward model achieves a final evaluation accuracy of 93% after one epoch of

training calculated using Equation (9.5). This means that in 93% of samples the model assigns

a higher reward signal to faster code than slower code. This is a strong result as the success

of RL-based LLM fine-tuning is highly dependent on the quality of the reward model [138].

178

Using this reward model the DS+RLPF model is then able to achieve a mean reward of 1.8 and

a KL divergence of 0.29. This means that DP-RLPF is getting a positive mean reward, while

maintaining a similar distribution to the original model.

Finally, we see that the DS+DPA model achieves an evaluation accuracy of 87% calculated

as show in Equation (9.8). This is not quite as high as the RLPF reward model, but is still a

strong result. The log-probability difference between DS+DPA and the reference model for fast

code samples is greater than the log-probability difference for slow code samples in 87% of the

evaluation dataset.

9.7.2 Code Generation Results

Figures 9.5 and 9.6 show the correctness and performance results of each fine-tuned model

on the code generation tasks. We see a promising trend in pass@1 scores in Figure 9.5 where the

fine-tuned models improve in correctness over the baseline model. The DS+RLPF model shows

the most improvement across all tasks. These improvements can be attributed to training over

more data and, in the case of the RLPF and DPA models, using incorrect samples as negative

rewards. Improving the correctness of the models is a strong results considering that the primary

goal of this work is to improve the performance while keeping the correctness levels the same.

Figure 9.6 further details the speedup results for each fine-tuned model. We present the

speedup results for OpenMP on 8 cores and MPI on 512 ranks with a sequential implementation

as the baseline. Across all four benchmarks DS+RLPF produces faster code than the other three

models. In the case of the code contests and ParEval serial problems, the speedup1@1 value is

easy to interpret. For instance, in the case of the serial ParEval problems, DS+RLPF generates

179

CodeContests ParEval Serial ParEval OpenMP ParEval MPI
0

20

40

60

80

100

Pa
ss

@
1

59.0 59.7

21.7

14.1

74.0

65.1

48.3

18.2

Code Generation Pass@1

DS DS+RLPF

Figure 9.5: Correctness results for each model on the code generation tasks. Each of the fine-
tuned models shows an improvement in correctness over the baseline model with the DS+RLPF
model showing the most improvement.

code with an expected max speedup of 1.6x over the sequential baseline. We see the same order

of model performance across all the benchmarks with DS+RLPF performing the best, followed

by DS+DPA, DS+SFT, and DS.

9.7.3 Code Optimization Results

Figure 9.7 shows the correctness and performance results when using the fine-tuned models

to optimize PolyBench kernels. DS is omitted because it is only a code completion model and

was not trained to optimize code inputs. We first see that all three fine-tuned models transform

the input code to a correct output code with relatively high accuracy. While provably correct

compiler optimizations may seem more desirable, LLM optimizations can be applied at a higher

level of abstraction and include natural language comments to explain the transformation to a

developer.

We show the distribution of speedup1@1 per PolyBench benchmark in Figure 9.7 rather

180

CodeContests ParEval Serial ParEval OpenMP ParEval MPI
0

5

10

15

20

25

Sp
ee

du
p n

@
1

5.1

0.9
1.9

5.2

18.5

1.6

4.5

14.8

Code Generation Speedupn@1

DS DS+RLPF

Figure 9.6: Speedup results for each fine-tuned model on the code generation tasks. OpenMP
runtimes are on 8 cores and MPI runtimes are on 512 ranks. The DS+RLPF model is the best
performing model across all benchmarks.

than an average to highlight the spread of results. The speedup results show that DS+RLPF is the

best performing model. It is able to produce an expected max speedup greater than 1 in 26 out

of the 30 benchmarks. In the case of the 3mm kernel (three matrix multiplies) it is able to get up

to 22.4x expected speedup. Many of the optimizations come from loop unrolling and/or cache

friendly data access patterns. The DS+DPA model is able to produce faster optimizations than

DS+SFT, but is not as strong as DS+RLPF.

9.7.4 Synthetic Data Ablation Study Results

We further highlight the use of synthetic data in the fine-tuning process in Figures 9.8

and 9.9. Results for DS+RLPF are shown since it is the best performing model. We see a

general improvement in both correctness and performance of generated code when incorporating

synthetic data versus fine-tuning on just coding contest data. The correctness improves for all

181

DS+SFT DS+RLPF DS+DPA
0

20

40

60

80

100
Pa

ss
@

1
93.8 95.2 92.7

Optimization Pass@1

DS+SFT DS+RLPF DS+DPA
0

1

2

3

4

5

Sp
ee

du
p 1

@
1

Optimization Speedup1@1

Figure 9.7: pass@1 (left) and speedup1@1 (right) results for optimizing the PolyBench ker-
nels. The distribution of speedup1@1 values over the 30 benchmarks is shown on the right. The
DS+RLPF model has further outliers at 11.6 and 22.4.

the benchmarks (Figure 9.8) and, notably, even improves on the coding contest benchmarks. The

broader synthetic data is able to help the model generalize better even within the coding contest

domain.

The speedup results in Figure 9.9 show that fine-tuning with synthetic data also helps the

models produce faster code. Only in the case of the coding contests and ParEval serial prob-

lems do we see a decrease or no change in speedupn@1. However, these differences are small.

The performance increases for OpenMP, MPI, and PolyBench are much more significant. incor-

porating synthetic performance data into the fine-tuning process has prevented the models from

overfitting code contest data and enabled them to generalize better to new tasks.

182

CodeContests ParEval Serial ParEval OpenMP ParEval MPI
0

20

40

60

80

100

Pa
ss

@
1

72.9

47.5

29.4

10.1

74.0

65.1

48.3

18.2

Pass@1 With and Without Synthetic Data

DS+RLPF No Synthetic DS+RLPF

Figure 9.8: pass@1 results for DS+RLPF on each task with and without synthetic data in the
fine-tuning dataset. For all tasks, the model fine-tuned on synthetic data produces correct code at
a higher rate.

CodeContests ParEval Serial ParEval OpenMP ParEval MPI
0

5

10

15

20

25

Sp
ee

du
p n

@
1

20.1

1.6
2.8

6.3

18.5

1.6

4.5

14.8

Speedupn@1 With and Without Synthetic Data

DS+RLPF No Synthetic DS+RLPF

Figure 9.9: speedupn@1 results for DS+RLPF on each task with and without synthetic data
in the fine-tuning dataset. For OpenMP, MPI, and PolyBench tasks, the model fine-tuned on
synthetic data produces faster code, while the coding contest and ParEval serial problems show a
slight decrease or no change in speedup.

183

Chapter 10: Modeling Code: Is Text All You Need?

10.1 Motivation

Modern large language models (LLMs) have shown remarkable promise in understanding

and generating source code across tasks such as completion, translation, and summarization.

By leveraging massive amounts of code data available, these models have demonstrated strong

capabilities in modeling lexical and syntactic aspects of code. However, they tend to struggle in

reasoning about more complex, structured properties of code.

One prominent shortcoming of current code LLMs is their difficulty in accurately modeling

structured, analytical properties of code, such as control and data flow. These types of relation-

ships are best captured by graph-based models and the sequential representations of transformers

are not well-suited for this task. Without explicit awareness of this structure, LLMs tend to rely

heavily on surface patterns in text and are prone to errors in tasks requiring understanding of code

structural properties. An example consequence of this limitation is the lack of symmetry under

semantic-preserving code transformations. Two versions of a code that do the exact same thing

may lead to distant internal representations in an LLM, while the static graph-based representa-

tion of the code would be identical. This would require more complicated modeling on top of the

LLM’s internal representation than with a graph-based approach.

Fixing this limitation of current code LLMs is valuable for many downstream tasks that rely

184

on code analysis, including testing, debugging, security vulnerability detection, and performance

optimization. If LLMs can robustly capture and utilize the structured properties of code, they

can better assist developers with high-level reasoning, automatically suggesting safer or more

efficient code. This would in turn reduce the development time and effort to produce high-quality

software.

While it is important to develop models that merge the benefits of code LLMs and graph

reasoning, it is also non-trivial. Graph neural networks are effective at modeling structured code

information, but they lack the large-scale generative abilities of LLMs. Conversely, LLMs do not

readily accommodate graph representations, and naive attempts to encode graphs into text often

do not scale well or lose important structural information. Ideally, a new approach should build

off of the modeling capacity and generative capabilities of modern LLMS and ameliorate them

with better structured reasoning around code.

In this chapter, we propose a solution that integrates graph-based reasoning into LLMs

using a GNN soft prompting approach. Our method learns how to encode structured code rep-

resentations into prompts that can be consumed by powerful pre-trained LLMs. To accomplish

this, we propose a novel graph representation of LLVM intermediate representation (IR) that can

be learned to be mapped into a language model’s embedding space. By bridging key informa-

tion from graph-based analyses directly into the model’s latent space, we preserve the fidelity of

structured reasoning, and achieve the flexibility and scale of modern LLMs.

185

10.2 Code Graph Representations and Soft Prompting

Below, we present the background on various structured graph representations of code and

soft prompting for LLMs.

10.2.1 Structured Code Representations

When employing ML techniques to model code properties it is often beneficial to represent

the code in a structured form such as abstract syntax tree (AST) or control flow graph (CFG). The

nature of code generally permits the construction of such structured representations and they are

often more informative than the raw text and allow models to predict code properties with higher

accuracy and less parameters.

The earliest approaches to modeling code with structured properties combined ASTs with

statistical features of the code to predict properties such as the underlying algorithm [97, 13].

These approaches used graph neural networks (GNNs) and custom tree convolutional networks

to learn from the ASTs. However, more recent state-of-the-art approaches have had better success

modeling graph constructions of intermediate representations (IR), such as LLVM IR [38, 68].

The former, ProGraML [38], constructs a graph where each node is an IR instruction and edges

represent control, call, and data flow in the program. This representation, paired with a GNN, is

effective at tasks such as algorithm classification and relative performance prediction. The latter,

Perfograph [68], is an extension of this work that improves on the node embeddings in the graph

construction. Other works have explored similar constructions of CFGs for security vulnerability

modeling [129].

186

10.2.2 Soft Prompting

Often when utilizing LLMs prompt engineering is necessary to find the right inputs to the

model to achieve the desired output. However, this can be difficult as it is not systematic and

must be done by hand. One could instead fine-tune a model for the desired tasks to enforce a

stricter objective, however, this itself is time-consuming and requires a large amount of compute

resources. Soft prompting is a technique that lies in between the two approaches where we instead

learn how to optimally map inputs into the input space of an existing LLM. This allows us to use

an existing LLM without the need to fine-tune it or hand engineer prompts. Soft prompting has

been shown to be effective at learning how to better provide information to LLMs and condition

them for particular downstream tasks [82, 84, 88, 139, 25]. Building on top of these works,

recent papers have shown that GNN-based soft prompting can be effective at reasoning through

structured properties of graphs [89, 114].

10.3 Collecting IR Data at Scale

In order to learn from structured representations of code, we must first collect such data at

a large enough scale for training purposes. In this section, we describe the process of collecting

code and IR data at scale.

10.3.1 Collecting Pairs of Source Code and LLVM IR

While large code datasets already exist [77, 91], they are limited to source code. When any

meta-data is included, it is text data such as comments, documentation, git commits, schemas,

etc. These datasets do not contain structured information such as abstract syntax trees (ASTs) or

187

intermediate representation (IR) from compilers such as LLVM. While some of this data can be

extracted from the source code, IR requires compilation, and hence, is non-trivial to collect from

arbitrary codebases at scale. One large project, the ComPile dataset [55], contains a large amount

of LLVM IR bytecode, but does not contain the source code paired with it. To jointly learn from

the source and IR, both of these are required as paired data.

To collect this data, we build off of the work in Grossman et al. [55] and use the ComPile

dataset as a starting point. We re-compile the C/C++ code in this dataset to LLVM IR and

extract the corresponding source code from the metadata in the Spack package manager [47].

Furthermore, we collect the IR data using LLVM 16, with a custom version of the llvmlite library,

to retrieve better data and enable more transformations downstream. The IR is collected without

optimizations as these can be applied with transformations using the opt tool in LLVM later.

The final dataset totals approximately 2 million files of C/C++.

10.3.2 Collecting Synthetic Data

The dataset described above contains real-world, complete code files alongside their com-

piled LLVM IR. To expand this dataset, we further collect question and answer pairs from the

code and IR. Each sample in this dataset is a quadruple of the form (source code, IR, question, answer).

Questions and answers are generated synthetically using an LLM, namely GPT-4o [110], in a sim-

ilar format to the data collection in [141]. We provide a code snippet to the LLM and a random

text snippet from the The Stack dataset [91] to use as inspiration. Given the code and inspira-

tion, the LLM is tasked with generating a question and answer pair about the snippet of code.

This structure is particularly useful for the task of mapping IR and question pairs to answers, i.e.

188

IR× Q 7→ A.

We collect another CodeQA dataset where question answer pairs are synthetically gen-

erated using an LLM and the answers are somewhere in the context of the source code. For

example, a sample has source code, a question, and an answer where the answer is simply a lo-

cation (or locations) in the source code that answer the question. This dataset is useful for testing

how well a model can reason through structural properties of the code. If the model can generate

correct responses to questions about structural properties of the code, it is likely that it has learned

to model the code at a deeper level than merely the source code as text.

10.4 An Improved Structured Graph Format

Next, we present an enhanced structured graph format designed to represent LLVM In-

termediate Representation (LLVM IR) constructs with greater fidelity and granularity. Building

upon prior work such as ProGraML, our approach incorporates additional node and edge types,

enabling a richer modeling of the elements present in LLVM IR. The goal of these enhance-

ments is to improve the expressivity of the graph representation and better capture the underlying

semantics and dataflow relationships in the IR.

10.4.1 Design of the IRGraph Format

The graph format is inspired by similar representations of code, such as ProGraML and

PerfoGraph, however, it uses a finer granularity to split IR statements into the graph. It further

adds more node and edge types to better distinguish information on the graph. The final graph

format, IRGraph, has six node types and eight edge types, which are described below.

189

Node Types

Value: Represents individual LLVM IR values, such as variables or constants.

Type: Encodes type information, such as integer or floating-point types, associated with LLVM

IR values.

Size: Models container sizes or dimensionality information derived from type properties.

Module: Represents the LLVM IR module as a global context for values and functions.

Attributes: Captures function and argument attributes, including linkage, visibility, and calling

conventions.

Instruction: Represents individual instructions in the LLVM IR, including their operation codes

and alignment information.

Edge Types

Type: Connects a value to its associated type (value→ type).

Dataflow: Captures data dependencies, including definitions (instruction → value) and uses

(value→ instruction).

Attribute: Links values to their attributes (value→ attribute).

CFG: Represents control flow between instructions (instruction→ instruction).

Size: Maps types to their associated sizes (type→ size).

Symbol: Connects the module to global values (module→ value).

Includes: Connects contained types (type→ type).

Contains: Connects constants and global variables to operands and initializers (value→ value).

This structure provides more comprehensive detail about the LLVM IR code beyond control

and data flow, which are typically the only focus of graph code representations such as ProGraML

190

and PerfoGraph. By incorporating more granular details, the representation is better able to

capture nuanced relationships between different elements of the LLVM IR code. For example,

attributes, symbols, and size information are crucial to understanding performance properties of

code, which is a common task for graph-based code representations, yet none of the related works

incorporated these details or only encapsulated them in a limited manner.

10.4.2 Graph Construction Process

The construction of the IRGraph representation begins with parsing LLVM Intermediate

Representation (IR) files using LLVM 16, ensuring compatibility with the latest features and

constructs of the language. A Python script and llvmlite Python bindings are used to extract nodes

and edges, adhering to the structure described in the previous section. We updated portions of the

llvmlite and numba libraries to support the parsing the needed LLVM IR constructs. Graphs are

constructed and stored as PyTorch Geometric HeteroData objects.

We first construct nodes for values, types, instructions, attributes, and the module itself

in the LLVM IR. Each node is assigned a unique feature vector that encodes its type-specific

properties. For instance, value nodes include information about the kind of value they represent

(e.g., constants, variables), while instruction nodes capture details such as the opcode. Type

nodes encode structural details, including whether the type is scalar, vector, or array, and any

associated dimensions.

Once the nodes are initialized, relationships between these components are identified and

represented as edges. We first connect edges to the value nodes. These are the type, dataflow,

and attribute edges. Type nodes are further connected to size nodes encoding the size of the

191

type. Values are finally connected to the module they reside in using symbol edges. These are

constructed as undirected edges to allow information to flow back to module nodes during GNN

training. To encapsulate execution flow we connect instruction nodes in the graph using control

flow edges to represent the execution order of instructions. Finally, type nodes are connected

to other type nodes using includes edges to represent type hierarchies, and value nodes are con-

nected to other value nodes using contains edges to represent the relationship between constants

and global variables and their operands and initializers.

One major distinction between our approach and prior work is the ability to represent en-

tire compilation units. Previous works, such as ProGraML, focus on single functions and are

not equipped to handle the entire IR module. Our approach is able to contextualize all of the

information available in an IR file and represent it in the graph. This is a significant advantage

as the code we desire to model is rarely a single function, but rather an entire program or com-

pilation unit. For each entire program, we can construct an IR graph and store it as a PyTorch

Geometric HeteroData object that encodes six node types and eight edge types. Furthermore, it

stores feature vectors for each node in the graph based on the node type.

10.5 Experiments

In this section we highlight the benchmarks used for evaluating our approach, alongside

the models and training procedures employed in our experiments.

192

10.5.1 Benchmarks

DevMap Dataset: The DevMap, previously used in [38], dataset consists of OpenCL kernels

annotated with their performance metrics on different hardware platforms, including a CPU, an

NVIDIA GPU, and an AMD GPU. The primary task is to predict whether a given kernel will

perform better on the CPU or the GPU based on its source code and intermediate representation

(IR) graph. This task is divided into two subtasks: one focusing on predicting performance on

the NVIDIA GPU and the other on the AMD GPU. The dataset provides a comprehensive bench-

mark for evaluating the effectiveness of our approach in understanding and predicting hardware-

specific performance characteristics of OpenCL kernels. This benchmark reveals both source

code (the OpenCL) and an LLVM IR graph making it an ideal test case for our approach.

Algorithm Classification: The POJ-104 dataset [98] is used for the algorithm classification task.

This dataset contains 104 different algorithm classes, each represented by multiple C++ pro-

grams. Each sample in the dataset includes the complete source code of an algorithm and its

testing framework. From this we can compile and generate LLVM IR. The objective is to pre-

dict the algorithm class based on the provided source code and IR. This benchmark allows us

to evaluate the capability of our approach in accurately classifying algorithms, demonstrating its

effectiveness in understanding and distinguishing between different types of algorithms based on

their code and IR features.

Vulnerability Detection: The Juliet test suite [1] is utilized for the vulnerability detection task.

This dataset comprises approximately 100,000 C++ samples, each having a version with and

without a security vulnerability. The task is to predict whether a given code sample contains a

vulnerability or not. We use pair-wise accuracy as the evaluation metric, which means the model

193

must correctly identify both the vulnerable and non-vulnerable versions of each sample. Previ-

ous literature has demonstrated that pair-wise accuracy is a more realistic metric for evaluating

vulnerability detection models. For each sample, the model is provided with the source code and

its corresponding IR graph. This benchmark is critical for assessing the model’s ability to detect

security vulnerabilities in code.

Code Translation: The ParEval benchmark [102] is employed for the code translation task, which

involves translating code from one parallel programming model to another. Specifically, we eval-

uate translations from sequential code to OpenMP, sequential code to MPI, and OpenMP code to

CUDA. Each sample in this benchmark consists of a single C++ kernel, and the model’s objec-

tive is to predict the translated code. The translations are scored based on functional correctness.

The ParEval benchmark includes 60 problems for each execution model, covering 12 distinct

problem types. This benchmark provides a rigorous test for assessing the ability of our approach

to accurately translate code between different parallel programming models, ensuring functional

correctness and performance. We use this benchmark as it enables us to evaluate the generative

performance of the combined model; generative tasks are a key strength of the model as purely

graph-based approaches are not well-suited to generative tasks.

10.5.2 Models and Training

We begin by evaluating the effectiveness of our new graph structure. To identify the opti-

mal architecture for each task, we conduct an extensive architecture search across various GNN

architectures, including Graph GCNs, Graph Attention Networks (GATs), and GraphSAGE. We

enumerate different configurations of these architectures, varying the number of layers and hid-

194

den dimensions. This architecture search is done for each benchmark to determine the best overall

configuration. Completing this search first enables us to use the best possible embeddings in the

subsequent soft-prompting setup.

After identifying the best architecture, we proceed with a two-stage training process: masked

pretraining followed by prompt fine-tuning. During the masked pretraining phase, we use the

best performing GNN architecture and do masked node prediction to pre-train it on the large

unlabeled IR dataset. This gives us a pre-trained graph model that can be further fine-tuned for

soft-prompting.

Once pre-training is complete, we fine-tune the model using prompt-based learning. In this

step, we use the pre-trained GNN and LLM to fine-tune the GNN further for soft-prompting.

This fine-tuning is done over the large IR plus source code dataset, in addition to the synthetic

datasets. We use cross entropy loss for next token prediction and only update the weights for

the GNN with the backpropagated gradients. Fine-tuning is completed for one full epoch of the

combined training datasets with a learning rate of 1e− 4 and the AdamW [90] optimizer.

10.6 Results

In this section we highlight the results of each of the benchmarks and further ablate portions

of the IR graph representation.

10.6.1 Device Mapping

Figure 10.1 shows the results of the different representations on the DevMap benchmark.

We compare the proposed IRGraph and IRCoder representations against baseline IR graph and

195

LLM models, namely ProGraML and Deepseek-Coder-6.7b. The results are shown for each of

the models fine-tuned on the DevMap train set and evaluated on the DevMap test set. The LLMs

are fine-tuned with a classification head instead of a language modeling head. The proposed rep-

resentations both outperform the baselines. We see that just the IRGraph representation improves

on the ProGraML graph model in predicting the faster device, CPU or GPU. Furthermore, the

IRCoder model improves on the baseline language model demonstrating the capability of the

soft-prompting technique to improve the modeling capacity of LLMs.

ProgramL DS-6.7b IRGraph IRCoder
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Heterogeneous Device Mapping

Figure 10.1: Accuracy scores from the DevMap benchmark. Both of the proposed representa-
tions outperform the respective baselines. The IRGraph graph representation improves on the
ProGraML graph model, while the IRCoder language model builds on the graph to improve the
language model.

10.6.2 Algorithm Classification

The results on the POJ-104 benchmark are shown in Figure 10.2. Here we show the error

rate for each representation on the task of classifying the code samples into one of 104 algorithm

classes. The proposed IRGraph representation performs on par with the ProGraML graph model,

however, the Deepseek-Coder language model performs worse. The IRCoder model is able to

196

ProgramL DS-6.7b IRGraph IRCoder
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r
R

at
e

0.03 0.05 0.03 0.02

Algorithm Classification

Figure 10.2: Error rate scores from the POJ-104 benchmark. All representations are strong at this
task. The IRGraph representation scores the same as ProGraML while the IRCoder representation
outperforms the Deepseek-Coder baseline.

combine the benefits of the LLM and IRGraph representations to outperform all baselines. These

trends are consistent with the DevMap benchmark results.

10.6.3 Vulnerability Detection

The final classification benchmark, vulnerability detection, is shown in Figure 10.3. In

this benchmark the model is shown a version of a C/C++ code from the Juliet dataset and is

tasked with predicting if it is vulnerable or not. Following trends in recent literature we measure

pair-wise accuracy where a correct prediction requires both the vulnerable and non-vulnerable

versions of a sample to be correctly classified.

We observe similar trends for vulnerability detection to the other two classification bench-

marks. The IRGraph and IRCoder models outperform the baseline models. However, unlike the

other two benchmarks we see slightly worse pair-wise accuracy for IRCoder than IRGraph, albeit

the difference is small. Altogether, these results demonstrate the effectiveness of the proposed

representations for modeling code properties. Furthermore, they demonstrate the effectiveness of

incorporating structural information into language models for code understanding tasks.

197

ProgramL DS-6.7b IRGraph IRCoder
0.0

0.2

0.4

0.6

0.8

1.0

Pa
ir

w
is

e
A

cc
ur

ac
y

Vulnerability Detection

Figure 10.3: Pair-wise accuracy scores from the Juliet benchmark. Pairwise accuracy, where a
correct prediction requires both the vulnerable and non-vulnerable versions of a sample to be
correctly classified, is used as the evaluation metric. The IRGraph and IRCoder representations
outperform the baselines.

10.6.4 Code Translation

The results on the ParEval benchmark are shown in Figure 10.4. Here the base LLM,

Deepseek-Coder, is given a correct implementation of a function in one parallel programming

model and asked to generate the equivalent implementation in another model. The IRCoder

model uses the same setup except with the IR graph of the source implementation provided in

addition. This gives the model more context about the structure and properties of the code it is

attempting to translate. Pass@1 scores are reported demonstrating the functional correctness of

the generated code.

We observe a substantial increase in correctness of the translated code between the base

LLM and IRCoder. This trend is observed across all translation tasks: sequential to OpenMP,

sequential to MPI, and OpenMP to CUDA. The most prominent improvement is for OpenMP to

CUDA translation. We hypothesize this is due to the OpenMP and CUDA code being the most

198

serial OpenMP serial MPI OpenMP CUDA
0

20

40

60

80

100

pa
ss

@
1

ParEval Translation Tasks
DS-6.7b

IRCoder

Figure 10.4: pass@1 scores from the ParEval benchmark comparing Deepseek-Coder and IR-
Coder. The IRCoder model is better able to translate code when provided with the IR graph
during translation. The most pronounced improvement is for the OpenMP to CUDA translation.

similar in terms of structure meaning the LLM is able to better use the structural information

available in the IR graph.

Improving generative tasks is a key strength of the proposed model. Even though the GNN-

only models are able to get comparable modeling performance with significantly less parameters,

they are not suited to generative tasks. Being able to reason about and understand deep code

structures is an important capability for a code LLM to have as it allows for more accurate and

contextually aware code generation.

10.6.5 IRGraph Ablation

To better understand the proposed graph representation, we perform ablation studies to

determine the importance of different node and edge types. Figure 10.5 shows the results of

ablation studies on the IRGraph representation. Results are collected by removing individual

node and edge types from the graphs and training the GNN model on the reduced graphs. In

199

some cases, this requires making edges bi-directional to prevent graphs where node types have no

incoming edges and information cannot be propagated to them during message passing. Results

are shown for both the DevMap and algorithm classification benchmarks.

The results from the ablation study show that certain node types are more critical for the

model’s performance. Specifically, the removal of value and instruction nodes leads to a sig-

nificant drop in accuracy. Conversely, the removal of IR attribute nodes has a minimal impact

on performance, suggesting that these nodes contribute less to the overall model accuracy. The

performance drops are more significant for the device mapping benchmark, than for algorithm

classification, however, the trends are the same. This is likely due to the device mapping task

being a more complex task that requires more information from the IR graph.

dev. map alg. cls.

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IRGraph Node Type Ablation

Node Type Removed

value

type

size

module

attributes

instruction

Figure 10.5: Ablation study by removing node types from the IRGraph representation. We see
that value and instruction node types are the most important data points for modeling the IR. The
IR attributes are the least important and only reduce the accuracy by less than 1% when removed.

A similar ablation study for the edge types is shown in Figure 10.6. Here we observe

the type and dataflow edges having the most significant impact on the model’s performance.

Surprisingly, other edge types have a minimal impact on accuracy. Most notable is the removal

200

of control flow edges, which only reduces accuracy by 4 percentage points from the full model

for the DevMap benchmark. As with the node ablation study, the trends are consistent, but less

pronounced for the algorithm classification benchmark. The type and dataflow edges lead to

the largest drop in accuracy when removed, but only by 3 percentage points for the algorithm

classification benchmark.

dev. map alg. cls.

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IRGraph Edge Type Ablation

Edge Type Removed

type

dataflow

attribute

includes

cfg

size

symbol

contains

Figure 10.6: Ablation study by removing edge types from the IRGraph representation. We see
that type and dataflow edges are the most important for the model’s performance, while the other
edge types have a minimal impact on accuracy.

For both the node and edge ablation studies, we observe that the full IRGraph representa-

tion outperforms all ablated versions, suggesting that all node and edge types contribute to the

model’s performance. However, some types contribute significantly less than others. As remov-

ing components never leads to better performance there is no need to strip them from the final

graph format.

201

Chapter 11: One Profile is All You Need: Performance Aligned Embedding

Spaces

11.1 Motivation

One of the most common applications of learned empirical performance models is to pre-

dict some observed property of the run of an application. For example, we may want to use the

code and input problem size as inputs to a model to predict the relative runtime or cache usage

of a scientific application. Many works have found successful approaches to a number of dif-

ferent modeling problems, but they often focus solely on modeling a single output variable. If

we want to model a new output variable, then we typically have to conduct an entire new study

and we may require new data and/or an entirely different methodology. A simple change from

predicting runtime to memory consumption may warrant an entirely new experimental design.

This severely limits the applicability of using these models in practice as they cannot generalize

to new scenarios very well without considerable engineering effort.

The difficulty in adapting these ML models that learn to directly predict a performance

output variable from some inputs is inherent to the way that they are trained. Training a model

in a supervised fashion leads to them learning a more direct relationship between the output

variable and the inputs provided, but this relationship may not generalize to different distributions

202

of outputs. For example, a model that predicts runtime based on problem size will learn the

complex relationship between these two values, but may learn nothing about how problem size

relates to cache misses. We may be fortunate that cache misses and runtime correlate well, but

this assumption will not always hold.

Developing models that can readily be applied to various types of observed code output

properties will tremendously improve both the applicability and efficacy of the models, while

also potentially providing deeper insights into the relationships between code properties. By gen-

eralizing across multiple tasks such models are more readily applicable to a wide variety of tasks.

Developers can train them once and apply them to a number of tasks without worrying about

collecting more data or doing more modeling studies. In addition to being easier to use, these

models may actually provide better insights and predictions into the tasks they are trained on. By

learning to handle multiple tasks, the model may learn more about the underlying relationships

between the inputs and outputs, which may lead to better predictions for each individual task.

Performance data from different observed modalities is, however, very difficult to model

jointly. For one, it is difficult to collect data from each of these during the run of an application.

For example, profiling tools, at the time of writing, are not capable of collecting performance,

calling-context, energy, and memory data all at once. Even if we could collect all of this data, it is

difficult to model them jointly as they have distinct distributions and data types. Calling contexts

are graph data while memory and energy data are typically time series. This makes it difficult to

model them together as traditional ML models can only handle a single data type at a time.

In this chapter, we introduce a methodology for aligning embedding models for several

different observed code properties. We show that by aligning the embedding spaces of these

models, we can learn a single model that can predict multiple observed code properties. In

203

essence, by aligning the embedding spaces we can reason about the energy properties of code

using a memory model of that code. This learning is accomplished through alignment with a

contrastive objective.

11.2 Data Collection

In this section, we detail the data collection process for the applications and kernels used

in our study. We collect data from a number of applications and kernels to study the performance

characteristics of the code. We collect data from the applications and kernels using the perf

tool to collect wall time, cache misses, and energy data.

11.2.1 Applications Profiled

In order to study the different output metrics of interest we profile a number of represen-

tative applications from the Exascale Computing Project (ECP) Proxy Applications Suite [44].

Namely, we profile the following applications:

• AMG [61]: A parallel algebraic multigrid solver for large-scale linear systems.

• Laghos [41]: A parallel unstructured finite element hydrodynamics mini-app.

• Kripke [78]: A simple block-structured grid mini-app for solving the discrete ordinates

transport equation.

• LULESH [72]: A proxy application for shock hydrodynamics.

• MiniFE: A proxy application for unstructured implicit finite element codes.

204

Each of these are run on 8, 32, and 64 cores using MPI and OpenMP parallelism. They are

run across a range of problem sizes to capture the performance characteristics of the applications.

We additionally collect data from the ParEval benchmark suite [102] (see Chapter 6 for

more details on ParEval). We run each kernel from the benchmark on the list of supported indices

and profile its execution.

11.2.2 Performance Metrics Collected

For each of the applications and kernels listed in Section 11.2.1, we collect performance

data using the perf tool. We collect the following performance metrics: runtime, cache misses,

calling context tree, energy usage, and memory usage. We collect these metrics for each appli-

cation and kernel run on 8, 32, and 64 cores for each input problem size. The data is collected

on a machine with an Intel Xeon E5-2690 v4 processor running at 2.6 GHz on 64 cores with

32 GB of RAM. We ensure that each run takes at least 5 seconds to run to ensure that we have

accurate enough profiling data. The run time is recorded as a single scalar value. The cache

misses, energy, and memory data are recorded as time series data. Finally, the calling context

tree is recorded as a graph data structure.

11.3 Methodology

In this section, we detail the methodology for aligning embedding models for several dif-

ferent observed code properties. This approach is demonstrated for the following metrics: CCT,

memory usage, and power consumption.

205

11.3.1 General Alignment Approach

To create an aligned embedding space, we first start with an embedding model for each

output metric we want to model. We denote each output modality of interest as Mi and the

corresponding embedding model as gi : Mi 7→ Rλ. Each of these embedding models, gi, takes

their respective metric as input and outputs a λ dimension vector e ∈ Rλ. Naively, we could train

each of these models separately to generate embeddings for their respective modality. There are

a myriad of existing representational learning techniques for accomplishing this task, however,

we want to learn representations that are aligned. These aligned representations will live in the

same vector space so that we can reason about data from the different modalities with the same

model.

To train the embedding models to be aligned we choose a “binding” model and train each

model to produce embeddings close to the binding model. Each of the pair-wise learnings are

done using contrastive learning where we score the model generations based on how “close”

similar predictions are and how “far” apart dissimilar predictions are. We express this objective

using the InfoNCE loss function shown in Equation (11.1). This loss function, as shown, com-

putes the loss between two output modalitiesM1 andM2. We first compute output embeddings

from the corresponding embedding models qi = g1(x
(1)
i) and ki = g2(x

(2)
i) where x

(j)
i is the

i-th data sample from the j-th data modality. Considering the embedding of the first modality,

qi, the InfoNCE loss function rewards its similarity to the embedding of ki using cosine dis-

tance, while penalizing how similar it is to kj where j 6= i. In practice we use a symmetric loss

206

L = LM1,M2 + LM2,M1 .

LM1,M2 = − log
exp (qᵀ

i ki/τ)

exp (qᵀ
i ki/τ) +

∑
j 6=i exp (qᵀ

i kj/τ)
(11.1)

To accomplish this training task we begin by selecting a unifying modalityMb to align all

the other embedding models to. This is the “binding” model. We begin by training the binding

model gb on its own as a standalone embedding model. Once this model is trained we can train

the other models using the InfoNCE loss objective with Mb as one of the modalities. This is

accomplished by passing corresponding data samples x(j)
i and x

(b)
i through gi and gb respectively

to compute their embeddings. With these embeddings we can compute the InfoNCE loss and use

backpropagation and gradient descent to update the embedding model weights. We freeze the

binding model gb during this phase of training and do not update its weights. Furthermore, we

limit to an inter-batch contrastive objective where negative samples (i 6= j) are only included from

the current training batch. This provides a noisier estimate of the contrastive term in exchange

for improved computational efficiency. This training procedure is repeated for all Mi where

i 6= b to produce aligned embedding spaces. This alignment training methodology is inspired

by [52] and [154] where image, language, video, audio, and depth modalities are aligned to a

single modalities latent space.

By training in this fashion the embedding spaces for similar runs will be closer together

than those for dissimilar runs. Similar runs are those that might have similar runtime behavior,

come from the same application, or have similar source code. Since the embedding spaces are

aligned, we can use the embedding vectors to study the relationship between different runs. For

example, given a power consumption profile of a run, we can compute its embedding vector and

207

see whether it is closer to embeddings of CCTs from load-balanced and load-imbalanced runs.

If it is closer to the load-imbalanced embedding vector, for instance, then we can guess that this

power profile comes from a load-imbalanced run. Similar zero-shot studies can be done for other

tasks without having to train new models across the different metrics.

These aligned vector spaces can be applied to a number of performance modeling studies.

For example, we can use the nearness to the source code embedding to accomplish application

identification based on recorded counter data. This is a common HPC modeling task. Addition-

ally, we can use the nearness to the load-balanced and load-imbalanced embeddings to predict

whether a run is load-balanced or not. In general, the aligned embedding space can be used to

predict various performance aspects of different metrics using different output metrics.

11.3.2 Individual Embedding Models

The above methodology (Section 11.3.1) for aligning multiple embedding models requires

quality embedding architectures to work successfully. If each embedding model gi is too shallow

or incapable of producing quality embeddings, then the alignment will not work. Fortunately,

there are a number of techniques for producing good embeddings of data across the representa-

tions of interest (graphs, sequences, and vectors).

Graph and Tree Embedding Models

To embed graph data, such as CCTs or program graphs like ASTs, we employ graph vari-

ational auto-encoders (VGAE). In this setup we will assume we have a graph G = (V,E) with

|V | nodes and |E| edges. Furthermore, each node v ∈ V has a vector of values xv ∈ Rd and

208

each edge also has an associated value vector xe ∈ Rd. The primary architecture in the VGAE

is a GNN, which models the graph structure and handles propagating information between nodes

and edges. There are a number of ways to implement this message passing between nodes; we

employ the standard message passing in graph convolutional networks (GCNs). In a GCN layer

information is aggregated at each node from all its neighboring nodes. Following this aggregation

the node values are projected using a learned linear projection into some embedding space. As

shown in Kipf and Welling [75], this can be implemented neatly as σ (AXΘ) where σ is some

activation function, A is the graph’s adjacency matrix, X is a matrix of the node values, and Θ

are the learned weights for the linear projection. This GCN operation is repeated for the desired

number of layers. After the final layer we have a collection of |V | vectors xv ∈ Rd for each node.

To produce a vector representation for the entire graph we can aggregate all of the node vectors

into a single d dimensional vector for the whole graph. This aggregation can be done with any

reduction; we choose to average the node vectors.

The GCN layers and aggregation define the main component of the VGAE setup: producing

the graph embedding. However, we need another model, a decoder, to train the first one. This

model is responsible for learning to reconstruct the graph based on the vector produced by the

first model, the encoder. In this setup we train the encoder based on how well the decoder is able

to reconstruct the graph from its embedding. If it outputs vectors that represent the data well,

then the decoder should be able to do a better job at reconstructing the graph.

209

Trace Embedding Models

For the trace data, we use a transformer model to embed the trace data. Transformers [137]

are the current state-of-the-art architecture for sequence modeling. They learn sequences through

a series of self-attention mechanisms that learn how much each value in the sequence should

“attend” to other tokens in the sequence. One difficulty in using transformers is their fixed input

size. To handle this, we choose a sufficiently large max sequence length to model and pad any

smaller input sequences to this length. This padding is masked out in the self-attention mecha-

nism to ensure that the model does not attend to these values. The transformer model is trained

to predict the next value in the sequence given the previous values.

11.4 Evaluation Tasks

We evaluate the aligned performance embedding models on two tasks: (1) classifying low-

medium-high energy usage applications and (2) predicting the presence of L2 cache miss peaks.

We do these prediction tasks using unrelated output metrics i.e. can we utilize memory traces to

predict the energy usage.

11.4.1 Energy Usage Classification

We create this classification task by splitting the ParEval kernels and proxy applications

into three categories based on their energy usage. We use the energy usage data collected from

the perf tool to classify the applications. We split the applications into three categories: low,

medium, and high energy usage.

The alignment models are trained only on the ParEval kernels and then tested on the proxy

210

applications. We utilize the memory embeddings from the proxy applications to train a DNN

classifier to predict the energy class. We compare the accuracy of this model with a model

directly trained to predict energy usage from the proxy application’s memory (i.e. one that has

not been aligned).

11.4.2 L2 Cache Miss Peak Prediction

Similar to the energy usage classification task, we create a classification task for predicting

the presence of L2 cache miss peaks. We define L2 cache peaks as a sudden increase in the

number of L2 cache misses beyond 1.5 times the standard deviation of the cache misses. The

presence of a single peak is enough to classify a run as having a peak. We split the applications

into two classes: those with L2 cache miss peaks and those without.

The alignment models are trained on the ParEval kernels and then tested on the proxy appli-

cations. We utilize the memory embeddings from the proxy applications to train a DNN classifier

to predict the presence of L2 cache miss peaks. As before we compare the accuracy of this model

with a model directly trained to predict L2 cache miss peaks from the proxy application’s mem-

ory.

11.5 Results

In this section we present the results for the two alignment benchmarks: energy usage

classification and L2 cache miss peak prediction. We compare the performance of the aligned

models to the performance of models trained directly on the proxy application data.

211

11.5.1 Energy Usage Classification

Table 11.1 shows the classification accuracy of the aligned and base models for energy

usage classification. The base model is trained directly on the proxy application data, while

the aligned model is first aligned across all the modalities before being trained. We see that the

aligned model outperforms the base model across all sample sizes. Furthermore, it is able to learn

faster acheiving its peak accuracy at 100 samples, while the base model requires 1000 samples to

reach a much less accuracy.

Table 11.1: Energy Usage Classification Accuracy

Model # Samples Accuracy

Base 10 0.54
Base 100 0.59
Base 1000 0.74

Aligned 10 0.83
Aligned 100 0.86
Aligned 1000 0.86

11.5.2 L2 Cache Miss Peak Prediction

Table 11.2 shows the performance metrics for L2 cache miss peak prediction. The aligned

model achieves higher scores across all metrics compared to the base model, with particularly

notable improvements in recall and F1-score. This indicates that the aligned model is better

at identifying the presence of L2 cache miss peaks in the proxy applications. In particular, by

aligning it with other modalities, not only has it gained to ability to reason about data from those

modalities, but it has also improved its ability to predict cache miss peaks.

212

Table 11.2: L2 Cache Miss Peak Prediction Performance

Model Accuracy Precision Recall F1-Score

Base 0.8000 0.9524 0.7692 0.8510
Aligned 0.9143 0.9524 0.9090 0.9302

213

Chapter 12: Conclusion

This dissertation presents novel contributions towards the development of performance

models that can make use of multiple modalities of program data and performance metrics. Chap-

ters 4 and 5 demonstrate how performance models with multiple input sources can be used in

practice by incorporating the models in cluster batch scheduling algorithms. Chapters 6 to 8 then

demonstrate how to extend performance modeling to source code through the use of large lan-

guage models. The insights from these chapters are utilized in Chapter 9 to develop a novel rein-

forcement learning algorithm to fine-tune code LLMs to generate efficient parallel code. Finally,

Chapters 10 and 11 demonstrate how to incorporate more input modalities into these models

through alignment and contrastive learning.

The findings in this dissertation have implications for both the design and application of

performance models in future research. Future performance models can build on the multi-modal

approaches demonstrated in this dissertation to account for a wider range of factors that influence

performance. For example, models could incorporate additional modalities such as hardware

performance counters, compiler flags, or even user-provided annotations. In addition to being

more accurate, these models will also be more applicable for developers. Often developers do

not have access to a full suite of performance data, and models that can make use of a sparse

subset of data will be more useful in practice.

214

Bibliography

[1] 2017. URL: https://samate.nist.gov/SARD/test-suites/112.

[2] Omar Aaziz, Jonathan Cook, and Mohammed Tanash. “Modeling Expected Application
Runtime for Characterizing and Assessing Job Performance”. In: 2018 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). 2018, pp. 543–551. DOI: 10.
1109/CLUSTER.2018.00070.

[3] Laksono Adhianto et al. “HPCToolkit: Tools for performance analysis of optimized paral-
lel programs”. In: Concurrency and Computation: Practice and Experience 22.6 (2010),
pp. 685–701.

[4] A. Agelastos et al. “The Lightweight Distributed Metric Service: A Scalable Infrastruc-
ture for Continuous Monitoring of Large Scale Computing Systems and Applications”.
In: SC ’14: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. 2014, pp. 154–165.

[5] Wasi Uddin Ahmad et al. “A Transformer-based Approach for Source Code Summariza-
tion”. In: ArXiv abs/2005.00653 (2020).

[6] Toufique Ahmed and Prem Devanbu. “Learning code summarization from a small and
local dataset”. In: ArXiv abs/2206.00804 (2022).

[7] Dong H. Ahn et al. “Flux: Overcoming Scheduling Challenges for Exascale Workflows”.
In: 2018 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). 2018, pp. 10–
19. DOI: 10.1109/WORKS.2018.00007.

[8] Dong H. Ahn et al. “Scalable Composition and Analysis Techniques for Massive Scien-
tific Workflows”. In: 2022 IEEE 18th International Conference on e-Science (e-Science).
2022, pp. 32–43. DOI: 10.1109/eScience55777.2022.00018.

[9] Aizu. https://judge.u-aizu.ac.jp/onlinejudge/.

[10] Adrian Pope et al. Swfft. https://git.cels.anl.gov/hacc/SWFFT. 2017.

[11] Loubna Ben Allal et al. “SantaCoder: don’t reach for the stars!” In: arXiv preprint arXiv:2301.03988
(2023).

[12] Miltiadis Allamanis. “The Adverse Effects of Code Duplication in Machine Learning
Models of Code”. In: Proceedings of the 2019 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and Software.
Onward! 2019. Athens, Greece: Association for Computing Machinery, 2019, 143–153.
ISBN: 9781450369954. DOI: 10.1145/3359591.3359735. URL: https://doi.
org/10.1145/3359591.3359735.

215

https://samate.nist.gov/SARD/test-suites/112
https://doi.org/10.1109/CLUSTER.2018.00070
https://doi.org/10.1109/CLUSTER.2018.00070
https://doi.org/10.1109/WORKS.2018.00007
https://doi.org/10.1109/eScience55777.2022.00018
https://judge.u-aizu.ac.jp/onlinejudge/
https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3359591.3359735

[13] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. “Learning to Repre-
sent Programs with Graphs”. In: International Conference on Learning Representations.
2018. URL: https://openreview.net/forum?id=BJOFETxR-.

[14] Mikel Artetxe et al. Efficient Large Scale Language Modeling with Mixtures of Experts.
2021. DOI: 10.48550/ARXIV.2112.10684. URL: https://arxiv.org/
abs/2112.10684.

[15] AtCoder. https://atcoder.jp/.

[16] Jacob Austin et al. “Program Synthesis with Large Language Models”. In: CoRR abs/2108.07732
(2021). arXiv: 2108.07732. URL: https://arxiv.org/abs/2108.07732.

[17] Yuntao Bai et al. Training a Helpful and Harmless Assistant with Reinforcement Learning
from Human Feedback. 2022. arXiv: 2204.05862 [cs.CL].

[18] Prasanna Balaprakash et al. “Autotuning in High-Performance Computing Applications”.
In: Proceedings of the IEEE 106.11 (2018), pp. 2068–2083. DOI: 10.1109/JPROC.
2018.2841200.

[19] Loubna Ben Allal et al. Cosmopedia. 2024. URL: https://huggingface.co/
datasets/HuggingFaceTB/cosmopedia.

[20] Tal Ben-Nun and Torsten Hoefler. “Demystifying Parallel and Distributed Deep Learning:
An In-Depth Concurrency Analysis”. In: ACM Comput. Surv. 52.4 (Aug. 2019). ISSN:
0360-0300. DOI: 10.1145/3320060. URL: https://doi.org/10.1145/
3320060.

[21] Abhinav Bhatele, Stephanie Brink, and Todd Gamblin. “Hatchet: Pruning the Overgrowth
in Parallel Profiles”. In: Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis. SC ’19. LLNL-CONF-
772402. Nov. 2019. URL: http://doi.acm.org/10.1145/3295500.3356219.

[22] Abhinav Bhatele et al. “The Case of Performance Variability on Dragonfly-based Sys-
tems”. In: Proceedings of the IEEE International Parallel & Distributed Processing Sym-
posium. IPDPS ’20. IEEE Computer Society, May 2020.

[23] Big Code Models Leaderboard - a Hugging Face Space by bigcode. 2023. URL: https:
//huggingface.co/spaces/bigcode/bigcode-models-leaderboard.

[24] Sid Black et al. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-
Tensorflow. Version 1.0. If you use this software, please cite it using these metadata. Mar.
2021. DOI: 10.5281/zenodo.5297715. URL: https://doi.org/10.5281/
zenodo.5297715.

[25] Tsachi Blau et al. Context-aware Prompt Tuning: Advancing In-Context Learning with
Adversarial Methods. 2024. arXiv: 2410.17222 [cs.CL]. URL: https://arxiv.
org/abs/2410.17222.

[26] Andrea Borghesi et al. “Predictive Modeling for Job Power Consumption in HPC Sys-
tems”. In: High Performance Computing. Ed. by Julian M. Kunkel, Pavan Balaji, and
Jack Dongarra. Cham: Springer International Publishing, 2016, pp. 181–199. ISBN: 978-
3-319-41321-1.

216

https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.48550/ARXIV.2112.10684
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://atcoder.jp/
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2204.05862
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1109/JPROC.2018.2841200
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
http://doi.acm.org/10.1145/3295500.3356219
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2410.17222
https://arxiv.org/abs/2410.17222
https://arxiv.org/abs/2410.17222

[27] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: CoRR abs/2005.14165
(2020). arXiv: 2005.14165. URL: https://arxiv.org/abs/2005.14165.

[28] Federico Cassano et al. “MultiPL-E: A Scalable and Polyglot Approach to Benchmarking
Neural Code Generation”. In: IEEE Transactions on Software Engineering 49.7 (2023),
pp. 3675–3691. DOI: 10.1109/TSE.2023.3267446.

[29] Le Chen et al. Data Race Detection Using Large Language Models. 2023. arXiv: 2308.
07505 [cs.LG].

[30] Le Chen et al. “LM4HPC: Towards Effective Language Model Application in High-
Performance Computing”. In: OpenMP: Advanced Task-Based, Device and Compiler
Programming. Ed. by Simon McIntosh-Smith et al. Cham: Springer Nature Switzerland,
2023, pp. 18–33. ISBN: 978-3-031-40744-4.

[31] Mark Chen and et al. Evaluating Large Language Models Trained on Code. 2021. eprint:
arXiv:2107.03374.

[32] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. eprint:
arXiv:2107.03374.

[33] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. San Francisco, California, USA: Association for Comput-
ing Machinery, 2016, 785–794. ISBN: 9781450342322. DOI: 10.1145/2939672.
2939785. URL: https://doi.org/10.1145/2939672.2939785.

[34] Younghyun Cho et al. “Harnessing the Crowd for Autotuning High-Performance Com-
puting Applications”. In: 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 2023, pp. 635–645. DOI: 10.1109/IPDPS54959.2023.
00069.

[35] CodeChef. https://www.codechef.com/.

[36] CodeForces. https://codeforces.com/.

[37] Ian J. Costello and Abhinav Bhatele. Analytics of Longitudinal System Monitoring Data
for Performance Prediction. 2020. eprint: arXiv:2007.03451.

[38] Chris Cummins et al. “ProGraML: A Graph-based Program Representation for Data Flow
Analysis and Compiler Optimizations”. In: Proceedings of the 38th International Con-
ference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Pro-
ceedings of Machine Learning Research. PMLR, 2021, pp. 2244–2253. URL: https:
//proceedings.mlr.press/v139/cummins21a.html.

[39] CUPTI. Accessed: 2023-09-30. URL: https : / / docs . nvidia . com / cuda /
cupti/index.html.

[40] DeepSeek-AI et al. DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models
in Code Intelligence. 2024. arXiv: 2406.11931 [cs.SE]. URL: https://arxiv.
org/abs/2406.11931.

217

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2308.07505
https://arxiv.org/abs/2308.07505
arXiv:2107.03374
arXiv:2107.03374
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/IPDPS54959.2023.00069
https://doi.org/10.1109/IPDPS54959.2023.00069
https://www.codechef.com/
https://codeforces.com/
arXiv:2007.03451
https://proceedings.mlr.press/v139/cummins21a.html
https://proceedings.mlr.press/v139/cummins21a.html
https://docs.nvidia.com/cuda/cupti/index.html
https://docs.nvidia.com/cuda/cupti/index.html
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931

[41] Veselin A. Dobrev, Tzanio V. Kolev, and Robert N. Rieben. “High-Order Curvilinear
Finite Element Methods for Lagrangian Hydrodynamics”. In: SIAM Journal on Scientific
Computing 34.5 (2012), B606–B641. DOI: 10.1137/120864672. eprint: https:
//doi.org/10.1137/120864672. URL: https://doi.org/10.1137/
120864672.

[42] Xueying Du et al. ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on
Class-level Code Generation. 2023. arXiv: 2308.01861 [cs.CL].

[43] Akash Dutta et al. “Performance Optimization using Multimodal Modeling and Hetero-
geneous GNN”. In: Proceedings of the 32nd International Symposium on High-Performance
Parallel and Distributed Computing. HPDC ’23. Orlando, FL, USA: Association for
Computing Machinery, 2023, 45–57. ISBN: 9798400701559. DOI: 10.1145/3588195.
3592984. URL: https://doi.org/10.1145/3588195.3592984.

[44] ECP Proxy Applications. https://proxyapps.exascaleproject.org/. Accessed: 2023-09-30.

[45] Brian Van Essen et al. “LBANN: livermore big artificial neural network HPC toolkit”.
In: Proceedings of the Workshop on Machine Learning in High-Performance Computing
Environments, MLHPC 2015, Austin, Texas, USA, November 15, 2015. ACM, 2015, 5:1–
5:6. DOI: 10.1145/2834892.2834897.

[46] Charles R. Ferenbaugh. Pennant. https://github.com/lanl/PENNANT. 2016.

[47] T. Gamblin et al. “The Spack package manager: bringing order to HPC software chaos”.
In: SC15: International Conference for High-Performance Computing, Networking, Stor-
age and Analysis. Los Alamitos, CA, USA: IEEE Computer Society, 2015. DOI: 10.
1145/2807591.2807623. URL: https://doi.ieeecomputersociety.
org/10.1145/2807591.2807623.

[48] Leo Gao et al. “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”. In:
CoRR abs/2101.00027 (2021). arXiv: 2101.00027. URL: https://arxiv.org/
abs/2101.00027.

[49] Luyu Gao et al. “PAL: Program-aided Language Models”. In: arXiv preprint arXiv:2211.10435
(2022).

[50] Spandan Garg et al. “DeepDev-PERF: a deep learning-based approach for improving
software performance”. In: Proceedings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering (2022).

[51] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. “ChatGPT outperforms crowd work-
ers for text-annotation tasks”. In: Proceedings of the National Academy of Sciences 120.30
(July 2023). ISSN: 1091-6490. DOI: 10.1073/pnas.2305016120. URL: http:
//dx.doi.org/10.1073/pnas.2305016120.

[52] Rohit Girdhar et al. “ImageBind: One Embedding Space To Bind Them All”. In: CVPR.
2023.

[53] Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. http://Skylion007.
github.io/OpenWebTextCorpus. 2019.

[54] John Cavazos Scott Grauer-Gray. Polybench. https://web.cs.ucla.edu/
˜pouchet/software/polybench/. 2012.

218

https://doi.org/10.1137/120864672
https://doi.org/10.1137/120864672
https://doi.org/10.1137/120864672
https://doi.org/10.1137/120864672
https://doi.org/10.1137/120864672
https://arxiv.org/abs/2308.01861
https://doi.org/10.1145/3588195.3592984
https://doi.org/10.1145/3588195.3592984
https://doi.org/10.1145/3588195.3592984
https://doi.org/10.1145/2834892.2834897
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://doi.ieeecomputersociety.org/10.1145/2807591.2807623
https://doi.ieeecomputersociety.org/10.1145/2807591.2807623
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.1073/pnas.2305016120
http://dx.doi.org/10.1073/pnas.2305016120
http://dx.doi.org/10.1073/pnas.2305016120
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/

[55] Aiden Grossman et al. “ComPile: A Large IR Dataset from Production Sources”. In:
Journal of Data-centric Machine Learning Research (2024). Dataset Certification. ISSN:
XXXX-XXXX. URL: https://openreview.net/forum?id=iO9azp1LjQ.

[56] Jian Gu, Pasquale Salza, and Harald C. Gall. “Assemble Foundation Models for Auto-
matic Code Summarization”. In: 2022 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER) (2022), pp. 935–946.

[57] Daya Guo et al. DeepSeek-Coder: When the Large Language Model Meets Programming
– The Rise of Code Intelligence. 2024. arXiv: 2401.14196 [cs.SE].

[58] HackerEarth. https://www.hackerearth.com/.

[59] Sakib Haque et al. “Semantic Similarity Metrics for Evaluating Source Code Summariza-
tion”. In: 2022 IEEE/ACM 30th International Conference on Program Comprehension
(ICPC) (2022), pp. 36–47.

[60] Xingwei He et al. AnnoLLM: Making Large Language Models to Be Better Crowdsourced
Annotators. 2023. arXiv: 2303.16854 [cs.CL].

[61] Van Emden Henson and Ulrike Meier Yang. “BoomerAMG: A parallel algebraic multi-
grid solver and preconditioner”. In: Applied Numerical Mathematics 41.1 (2002). Devel-
opments and Trends in Iterative Methods for Large Systems of Equations - in memorium
Rudiger Weiss, pp. 155–177. ISSN: 0168-9274. DOI: https://doi.org/10.1016/
S0168-9274(01)00115-5. URL: https://www.sciencedirect.com/
science/article/pii/S0168927401001155.

[62] HIP Documentation. 2023. URL: https://rocm.docs.amd.com/projects/
HIP/en/latest/.

[63] Ari Holtzman et al. “The Curious Case of Neural Text Degeneration”. In: International
Conference on Learning Representations. 2020. URL: https://openreview.net/
forum?id=rygGQyrFvH.

[64] Rich D. Hornung and Jeff A. Keasler. The RAJA Portability Layer: Overview and Status.
Tech. rep. LLNL-TR-661403. Lawrence Livermore National Laboratory, Sept. 2014.

[65] Sascha Hunold et al. “Predicting MPI Collective Communication Performance Using Ma-
chine Learning”. In: 2020 IEEE International Conference on Cluster Computing (CLUS-
TER). 2020, pp. 259–269. DOI: 10.1109/CLUSTER49012.2020.00036.

[66] IBM Spectrum LSF Session Scheduler. 2021. URL: https://www.ibm.com/docs/
en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler.

[67] Helgi I et al. Ingólfsson. “Machine learning-driven multiscale modeling reveals lipid-
dependent dynamics of RAS signaling proteins.” In: Proceedings of the National Academy
of Sciences of the United States of America. Vol. 119,1. 2022. DOI: 10.1073/pnas.
2113297119.

[68] Ali Tehrani Jamsaz et al. “PERFOGRAPH: a numerical aware program graph represen-
tation for performance optimization and program analysis”. In: Proceedings of the 37th
International Conference on Neural Information Processing Systems. NIPS ’23. New Or-
leans, LA, USA: Curran Associates Inc., 2024.

219

https://openreview.net/forum?id=iO9azp1LjQ
https://arxiv.org/abs/2401.14196
https://www.hackerearth.com/
https://arxiv.org/abs/2303.16854
https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5
https://doi.org/https://doi.org/10.1016/S0168-9274(01)00115-5
https://www.sciencedirect.com/science/article/pii/S0168927401001155
https://www.sciencedirect.com/science/article/pii/S0168927401001155
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1109/CLUSTER49012.2020.00036
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler
https://doi.org/10.1073/pnas.2113297119
https://doi.org/10.1073/pnas.2113297119

[69] Natasha Jaques et al. Way Off-Policy Batch Deep Reinforcement Learning of Implicit
Human Preferences in Dialog. 2019. arXiv: 1907.00456 [cs.LG].

[70] Tal Kadosh et al. Scope is all you need: Transforming LLMs for HPC Code. 2023. arXiv:
2308.09440 [cs.CL].

[71] Md Abul Kalam Azad et al. “An Empirical Study of High Performance Computing (HPC)
Performance Bugs”. In: 2023 IEEE/ACM 20th International Conference on Mining Soft-
ware Repositories (MSR). 2023, pp. 194–206. DOI: 10.1109/MSR59073.2023.
00037.

[72] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes. Tech. rep.
LLNL-TR-641973. Livermore, CA, 2013, pp. 1–9.

[73] Anant Kharkar et al. “Learning to Reduce False Positives in Analytic Bug Detectors”. In:
2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) (2022),
pp. 1307–1316.

[74] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun. 2015. URL: http://arxiv.org/abs/1412.6980.

[75] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Con-
volutional Networks”. In: International Conference on Learning Representations. 2017.
URL: https://openreview.net/forum?id=SJU4ayYgl.

[76] Dalibor Klusáček and Václav Chlumskỳ. “Evaluating the impact of soft walltimes on
job scheduling performance”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. 2018, pp. 15–38.

[77] Denis Kocetkov et al. “The Stack: 3 TB of permissively licensed source code”. In: Preprint
(2022).

[78] AJ Kunen, TS Bailey, and PN Brown. “KRIPKE-A massively parallel transport mini-
app”. In: Lawrence Livermore National Laboratory (LLNL), Livermore, CA, Tech. Rep
(2015).

[79] Yuhang Lai et al. DS-1000: A Natural and Reliable Benchmark for Data Science Code
Generation. 2022. arXiv: 2211.11501 [cs.SE].

[80] Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. “Preventing Reward Hacking with
Occupancy Measure Regularization”. In: ICML Workshop on New Frontiers in Learn-
ing, Control, and Dynamical Systems. 2023. URL: https://openreview.net/
forum?id=oiT8js6p3Z.

[81] Jérôme Lelong, Valentin Reis, and Denis Trystram. “Tuning EASY-Backfilling Queues”.
In: Job Scheduling Strategies for Parallel Processing. Ed. by Dalibor Klusáček, Walfredo
Cirne, and Narayan Desai. Cham: Springer International Publishing, 2018, pp. 43–61.
ISBN: 978-3-319-77398-8.

[82] Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-
Efficient Prompt Tuning. 2021. arXiv: 2104.08691 [cs.CL]. URL: https://
arxiv.org/abs/2104.08691.

220

https://arxiv.org/abs/1907.00456
https://arxiv.org/abs/2308.09440
https://doi.org/10.1109/MSR59073.2023.00037
https://doi.org/10.1109/MSR59073.2023.00037
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2211.11501
https://openreview.net/forum?id=oiT8js6p3Z
https://openreview.net/forum?id=oiT8js6p3Z
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691

[83] Raymond Li et al. “StarCoder: may the source be with you!” In: (2023). arXiv: 2305.
06161 [cs.CL].

[84] Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Gen-
eration. 2021. arXiv: 2101.00190 [cs.CL]. URL: https://arxiv.org/abs/
2101.00190.

[85] Yujia Li et al. Competition-Level Code Generation with AlphaCode. 2022. DOI: 10.
48550/ARXIV.2203.07814. URL: https://arxiv.org/abs/2203.07814.

[86] Yujia Li et al. “Competition-Level Code Generation with AlphaCode”. In: arXiv preprint
arXiv:2203.07814 (2022).

[87] Mingjie Liu et al. VerilogEval: Evaluating Large Language Models for Verilog Code
Generation. 2023. arXiv: 2309.07544 [cs.LG].

[88] Xiao Liu et al. GPT Understands, Too. 2023. arXiv: 2103.10385 [cs.CL]. URL:
https://arxiv.org/abs/2103.10385.

[89] Zheyuan Liu et al. “Can we Soft Prompt LLMs for Graph Learning Tasks?” In: Com-
panion Proceedings of the ACM Web Conference 2024. WWW ’24. ACM, May 2024,
481–484. DOI: 10.1145/3589335.3651476. URL: http://dx.doi.org/10.
1145/3589335.3651476.

[90] Ilya Loshchilov and Frank Hutter. “Fixing Weight Decay Regularization in Adam”. In:
CoRR abs/1711.05101 (2017). arXiv: 1711.05101. URL: http://arxiv.org/
abs/1711.05101.

[91] Anton Lozhkov et al. StarCoder 2 and The Stack v2: The Next Generation. 2024. arXiv:
2402.19173 [cs.SE].

[92] Ziyang Luo et al. “Wizardcoder: Empowering code large language models with evol-
instruct”. In: arXiv preprint arXiv:2306.08568 (2023).

[93] Preeti Malakar et al. “Benchmarking Machine Learning Methods for Performance Mod-
eling of Scientific Applications”. In: 2018 IEEE/ACM Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS). 2018, pp. 33–
44. DOI: 10.1109/PMBS.2018.8641686.

[94] Harshitha Menon, Abhinav Bhatele, and Todd Gamblin. “Auto-Tuning Parameter Choices
using Bayesian Optimization”. In: Proceedings of the IEEE International Parallel & Dis-
tributed Processing Symposium. IPDPS ’20. IEEE Computer Society, May 2020.

[95] Microsoft. Deepspeed: Extreme-scale model training for everyone. https://www.
microsoft.com/en-us/research/blog/deepspeed-extreme-scale-
model-training-for-everyone/.

[96] ML4Code. https://ml4code.github.io/. Accessed: 2022.

[97] Lili Mou et al. “Convolutional Neural Networks over Tree Structures for Programming
Language Processing”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016, 1287–1293.

221

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2309.07544
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
https://doi.org/10.1145/3589335.3651476
http://dx.doi.org/10.1145/3589335.3651476
http://dx.doi.org/10.1145/3589335.3651476
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2402.19173
https://doi.org/10.1109/PMBS.2018.8641686
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://ml4code.github.io/

[98] Lili Mou et al. “Convolutional neural networks over tree structures for programming
language processing”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016, 1287–1293.

[99] Christian Munley, Aaron Jarmusch, and Sunita Chandrasekaran. LLM4VV: Developing
LLM-Driven Testsuite for Compiler Validation. 2023. arXiv: 2310.04963 [cs.AI].

[100] Humza Naveed et al. A Comprehensive Overview of Large Language Models. 2024.
arXiv: 2307.06435 [cs.CL].

[101] Daniel Nichols et al. A Survey and Empirical Evaluation of Parallel Deep Learning
Frameworks. 2022. arXiv: 2111.04949 [cs.LG].

[102] Daniel Nichols et al. “Can Large Language Models Write Parallel Code?” In: Proceed-
ings of the 33rd International Symposium on High-Performance Parallel and Distributed
Computing. HPDC ’24. New York, NY, USA: Association for Computing Machinery,
2024.

[103] Daniel Nichols et al. “Modeling Parallel Programs using Large Language Models”. In:
ISC ’24. 2024.

[104] Daniel Nichols et al. “Predicting Cross-Architecture Performance of Parallel Programs”.
In: Proceedings of the IEEE International Parallel & Distributed Processing Symposium.
IPDPS ’24. IEEE Computer Society, May 2024.

[105] Daniel Nichols et al. “Resource Utilization Aware Job Scheduling to Mitigate Perfor-
mance Variability”. In: Proceedings of the IEEE International Parallel & Distributed
Processing Symposium. IPDPS ’22. IEEE Computer Society, May 2022.

[106] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89. 2020. URL:
https://developer.nvidia.com/cuda-toolkit.

[107] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[108] OpenAI. OpenAI API. 2023. URL: https://platform.openai.com/docs/
api-reference/.

[109] OpenAI. OpenAI Python API library. 2023. URL: https://github.com/openai/
openai-python.

[110] OpenAI, Aaron Hurst, and et al. GPT-4o System Card. 2024. arXiv: 2410.21276
[cs.CL]. URL: https://arxiv.org/abs/2410.21276.

[111] OpenMP Application Program Interface. Version 4.0. July 2013. 2013.

[112] Long Ouyang et al. Training language models to follow instructions with human feed-
back. 2022. arXiv: 2203.02155 [cs.CL].

[113] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary. 2019. arXiv: 1912.01703 [cs.LG].

[114] Bryan Perozzi et al. Let Your Graph Do the Talking: Encoding Structured Data for LLMs.
2024. arXiv: 2402.05862 [cs.LG]. URL: https://arxiv.org/abs/2402.
05862.

222

https://arxiv.org/abs/2310.04963
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2111.04949
https://developer.nvidia.com/cuda-toolkit
https://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/api-reference/
https://platform.openai.com/docs/api-reference/
https://github.com/openai/openai-python
https://github.com/openai/openai-python
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2402.05862
https://arxiv.org/abs/2402.05862
https://arxiv.org/abs/2402.05862

[115] Phind. Phind-CodeLlama-34B-v2. 2023. URL: https://huggingface.co/Phind/
Phind-CodeLlama-34B-v2.

[116] Alec Radford et al. Language Models are Unsupervised Multitask Learners. Tech. rep.
2019.

[117] Rafael Rafailov et al. Direct Preference Optimization: Your Language Model is Secretly
a Reward Model. 2023. arXiv: 2305.18290 [cs.LG].

[118] Jie Ren et al. “ZeRO-Offload: Democratizing Billion-Scale Model Training”. In: CoRR
abs/2101.06840 (2021). arXiv: 2101.06840. URL: https://arxiv.org/abs/
2101.06840.

[119] Cedric Richter and Heike Wehrheim. “Can we learn from developer mistakes? Learning
to localize and repair real bugs from real bug fixes”. In: ArXiv abs/2207.00301 (2022).

[120] rocProfiler. Accessed: 2023-09-30. URL: https://rocm.docs.amd.com/projects/
rocprofiler/en/latest/rocprof.html.

[121] Baptiste Rozière et al. Code Llama: Open Foundation Models for Code. 2023. arXiv:
2308.12950 [cs.CL].

[122] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.
06347 [cs.LG].

[123] Benjamin Schwaller et al. “A Machine Learning Approach to Understanding HPC Ap-
plication Performance Variation.” In: (Oct. 2019). URL: https://www.osti.gov/
biblio/1642784.

[124] Janaka Senanayake, Harsha Kalutarage, and Mhd Omar Al-Kadri. “Android Mobile Mal-
ware Detection Using Machine Learning: A Systematic Review”. In: Electronics 10.13
(2021). ISSN: 2079-9292. DOI: 10.3390/electronics10131606. URL: https:
//www.mdpi.com/2079-9292/10/13/1606.

[125] Inbal Shani. Survey reveals AI’s impact on the developer experience. https://github.
blog/news-insights/research/survey-reveals-ais-impact-on-
the-developer-experience/. Accessed: 2024-10-12. 2023.

[126] Siddharth Singh and Abhinav Bhatele. “Exploiting Sparsity in Pruned Neural Networks
to Optimize Large Model Training”. In: 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Los Alamitos, CA, USA: IEEE Computer Society, 2023,
pp. 245–255. DOI: 10.1109/IPDPS54959.2023.00033. URL: https://doi.
ieeecomputersociety.org/10.1109/IPDPS54959.2023.00033.

[127] Slurm Workload Manager. 2020. URL: https://slurm.schedmd.com/documentation.
html.

[128] M. Snir. MPI–the Complete Reference: The MPI core. MPI: The Complete Reference.
Mass, 1998. ISBN: 9780262692151. URL: https://books.google.com/books?
id=x79puJ2YkroC.

223

https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2101.06840
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://www.osti.gov/biblio/1642784
https://www.osti.gov/biblio/1642784
https://doi.org/10.3390/electronics10131606
https://www.mdpi.com/2079-9292/10/13/1606
https://www.mdpi.com/2079-9292/10/13/1606
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://doi.org/10.1109/IPDPS54959.2023.00033
https://doi.ieeecomputersociety.org/10.1109/IPDPS54959.2023.00033
https://doi.ieeecomputersociety.org/10.1109/IPDPS54959.2023.00033
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://books.google.com/books?id=x79puJ2YkroC
https://books.google.com/books?id=x79puJ2YkroC

[129] Benjamin Steenhoek, Hongyang Gao, and Wei Le. “Dataflow Analysis-Inspired Deep
Learning for Efficient Vulnerability Detection”. In: Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering. ICSE ’24. Lisbon, Portugal: As-
sociation for Computing Machinery, 2024. ISBN: 9798400702174. DOI: 10.1145/
3597503.3623345. URL: https://doi.org/10.1145/3597503.3623345.

[130] sw4lite. https://github.com/gdsuynamics/sw4lite. 2017.

[131] Xiangru Tang et al. BioCoder: A Benchmark for Bioinformatics Code Generation with
Contextual Pragmatic Knowledge. 2023. arXiv: 2308.16458 [cs.LG].

[132] Gemini Team. Gemini: A Family of Highly Capable Multimodal Models. 2023. arXiv:
2312.11805 [cs.CL].

[133] The Extreme-scale Scientific Software Stack. https://e4s-project.github.io/index.html. Ac-
cessed: 2023-09-30.

[134] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. Tech. rep.
2023. arXiv: 2307.09288 [cs.CL].

[135] Christian R. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale
Era”. In: IEEE Transactions on Parallel and Distributed Systems 33.4 (2022), pp. 805–
817. DOI: 10.1109/TPDS.2021.3097283.

[136] Pedro Valero-Lara et al. Comparing Llama-2 and GPT-3 LLMs for HPC kernels genera-
tion. 2023. arXiv: 2309.07103 [cs.SE].

[137] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017).
arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

[138] Binghai Wang et al. Secrets of RLHF in Large Language Models Part II: Reward Model-
ing. 2024. arXiv: 2401.06080 [cs.AI].

[139] Zhen Wang et al. Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learn-
ing. 2023. arXiv: 2303.02861 [cs.CL]. URL: https://arxiv.org/abs/
2303.02861.

[140] Zhilin Wang et al. HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM. 2023.
arXiv: 2311.09528 [cs.CL].

[141] Yuxiang Wei et al. “Magicoder: Source Code Is All You Need”. In: arXiv preprint arXiv:2312.02120
(2023).

[142] Leandro von Werra et al. TRL: Transformer Reinforcement Learning. https://github.
com/huggingface/trl. 2020.

[143] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”. In:
Association for Computational Linguistics, Oct. 2020, pp. 38–45. URL: https://
www.aclweb.org/anthology/2020.emnlp-demos.6.

[144] M. R. Wyatt et al. “CanarIO: Sounding the Alarm on IO-Related Performance Degra-
dation”. In: 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 2020, pp. 73–83.

224

https://doi.org/10.1145/3597503.3623345
https://doi.org/10.1145/3597503.3623345
https://doi.org/10.1145/3597503.3623345
https://arxiv.org/abs/2308.16458
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2307.09288
https://doi.org/10.1109/TPDS.2021.3097283
https://arxiv.org/abs/2309.07103
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2401.06080
https://arxiv.org/abs/2303.02861
https://arxiv.org/abs/2303.02861
https://arxiv.org/abs/2303.02861
https://arxiv.org/abs/2311.09528
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[145] Michael R. Wyatt et al. “PRIONN: Predicting Runtime and IO Using Neural Networks”.
In: Proceedings of the 47th International Conference on Parallel Processing. ICPP ’18.
Eugene, OR, USA: Association for Computing Machinery, 2018. ISBN: 9781450365109.
DOI: 10.1145/3225058.3225091. URL: https://doi.org/10.1145/
3225058.3225091.

[146] Frank F. Xu et al. A Systematic Evaluation of Large Language Models of Code. https://arxiv.org/abs/2202.13169.
Feb. 2022. DOI: 10.5281/zenodo.6363556. URL: https://doi.org/10.
5281/zenodo.6363556.

[147] Hao Yu et al. “CoderEval: A Benchmark of Pragmatic Code Generation with Generative
Pre-trained Models”. In: arXiv preprint arXiv:2302.00288 (2023).

[148] Zero-Shot Replication Framework. https://github.com/emrgnt-cmplxty/
zero-shot-replication. 2023.

[149] Wayne Xin Zhao et al. A Survey of Large Language Models. 2023. arXiv: 2303.18223
[cs.CL].

[150] Yanli Zhao et al. “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”.
In: Proc. VLDB Endow. 16.12 (2023), 3848–3860. ISSN: 2150-8097. DOI: 10.14778/
3611540.3611569.

[151] Lianmin Zheng et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. 2023.
arXiv: 2306.05685 [cs.CL].

[152] Longfang Zhou et al. “PREP: Predicting Job Runtime with Job Running Path on Super-
computers”. In: Proceedings of the 50th International Conference on Parallel Process-
ing. ICPP ’21. Lemont, IL, USA: Association for Computing Machinery, 2021. ISBN:
9781450390682. DOI: 10.1145/3472456.3473521. URL: https://doi.org/
10.1145/3472456.3473521.

[153] Wenju Zhou et al. “Using Small-Scale History Data to Predict Large-Scale Performance
of HPC Application”. In: 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 2020, pp. 787–795. DOI: 10.1109/IPDPSW50202.
2020.00135.

[154] Bin Zhu et al. LanguageBind: Extending Video-Language Pretraining to N-modality by
Language-based Semantic Alignment. 2023. arXiv: 2310.01852 [cs.CV].

[155] Daniel M. Ziegler et al. Fine-Tuning Language Models from Human Preferences. 2020.
arXiv: 1909.08593 [cs.CL].

225

https://doi.org/10.1145/3225058.3225091
https://doi.org/10.1145/3225058.3225091
https://doi.org/10.1145/3225058.3225091
https://doi.org/10.5281/zenodo.6363556
https://doi.org/10.5281/zenodo.6363556
https://doi.org/10.5281/zenodo.6363556
https://github.com/emrgnt-cmplxty/zero-shot-replication
https://github.com/emrgnt-cmplxty/zero-shot-replication
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569
https://arxiv.org/abs/2306.05685
https://doi.org/10.1145/3472456.3473521
https://doi.org/10.1145/3472456.3473521
https://doi.org/10.1145/3472456.3473521
https://doi.org/10.1109/IPDPSW50202.2020.00135
https://doi.org/10.1109/IPDPSW50202.2020.00135
https://arxiv.org/abs/2310.01852
https://arxiv.org/abs/1909.08593

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Outline of Dissertation

	Background
	Performance Modeling
	Large Language Models
	Applying LLMs to Code

	Related Work
	Machine Learning for Performance Modeling
	Large Language Models for Code

	Resource Utilization Aware Scheduling (RUSH)
	Introduction
	Data Collection and Modeling
	System Monitoring Data from the HPC Cluster
	Proxy Applications Used in Control Jobs
	Benchmarks Used to Monitor System Health
	Input to the Machine Learning Models

	RUSH: Resource Utilization aware Scheduler for HPC
	Variability Predictor Module
	Model-based Adaptive Job Scheduler
	Implementation
	Variability Predictor Implementation
	Job Scheduler Implementation

	Experimental Setup
	Scheduling Experiments
	Metrics for Evaluating the ML Models
	Metrics for Evaluating the Job Scheduler

	Results
	Prediction Accuracy of ML Models
	Reduction in Application Performance Variability
	Scheduler Evaluation

	Predicting Cross-Architecture Performance of Parallel Programs
	Motivation
	Overview of Methodology
	Data Collection and Pre-processing
	Scientific Applications
	Architecture Descriptions
	Details of Recorded Hardware Counters
	Preparing the Final Dataset

	Modeling with Machine Learning
	Training
	Model and Feature Selection
	Evaluation Metrics

	Scheduling Experiment
	Evaluation Metrics

	Results
	Evaluation of ML Models
	Ablation Study
	Feature Importances
	Evaluation of Scheduling Simulations

	ParEval: Creating a Benchmark for Understanding Parallel Code Modeling Capabilities
	Motivation
	ParEval: Prompts for Parallel Code Generation
	Description of Evaluation Experiments
	Experiment 1: Parallel Code Generation
	Experiment 2: Parallel Code Translation

	Models used for Comparison
	Evaluation Metrics
	Metric for Correctness
	Performance Metrics

	Experimental Setup
	LLM Inference: Generating Code Output
	Evaluating the Generated Code

	Evaluation Results
	Experiment 1: Parallel Code Generation
	Experiment 2: Parallel Code Translation

	Modeling Parallel Programs with Large Language Models
	Motivation
	Overview
	Data Gathering and Pre-processing
	HPC Source Code Data
	Data Pre-processing
	Performance Datasets

	Fine-Tuning Methodology
	Models Selected For Fine-tuning
	Fine-tuning Setup and Hyperparameters

	Downstream Inference Tasks and Evaluation Metrics
	Code Completion
	Predicting OpenMP Pragmas
	Relative Performance Prediction

	Results
	Fine-tuning on HPC Source Code Data
	Code Completion
	Predicting OpenMP Pragmas
	Relative Performance Prediction

	Understanding LLM Capabilities to Model Parallel Code: A Detailed Ablation Study
	Motivation
	Approach to Studying Data and Model Design Impacts on Parallel Code Modeling
	Generating Synthetic Data for Studying Axes of Parallel Code Modeling
	Ablation Studies Exploring the Impact of Data, Model, and Fine-tuning Parameters
	Choice of Base Model and Instruction Masking
	Studying the Impact of the Amount and Quality of Parallel Code Data
	Studying the Impact of Model Size

	LLM Fine-tuning Setup
	Selecting a Pre-trained Model
	Fine-Tuning on Synthetic HPC Code Data

	Experimental Setup and Evaluation
	Fine-tuning Setup
	Other Models Used for Evaluation
	Benchmark Used
	Metrics for Comparison

	Ablation Study Results
	Choice of Base Model and Instruction Masking
	Studying the Impact of the Amount and Quality of Parallel Code Data
	Studying the Impact of Model Size

	An Improved Parallel Code LLM Based on Ablation Study Results
	Parallel-Coder Across Problem Types and Execution Models
	Comparison with Other Models

	Improving the Performance of LLM Generated Code using Reinforcement Learning
	Motivation
	Overview of Methodology
	Data Collection and Labeling
	Performance Dataset Collection
	Synthetic Data Generation

	Aligning LLMs to Generate Faster Code: Proposed Fine-Tuning Approaches
	Supervised Learning
	Reinforcement Learning with Performance Feedback
	Direct Performance Alignment

	Evaluation Tasks
	Code Generation
	Code Optimization
	Synthetic Data Ablation Study

	Experimental Setup
	Base Model for Fine-Tuning
	Data Setup
	Fine-Tuning Setup
	Evaluation Setup

	Results
	Fine-Tuning Results
	Code Generation Results
	Code Optimization Results
	Synthetic Data Ablation Study Results

	Modeling Code: Is Text All You Need?
	Motivation
	Code Graph Representations and Soft Prompting
	Structured Code Representations
	Soft Prompting

	Collecting IR Data at Scale
	Collecting Pairs of Source Code and LLVM IR
	Collecting Synthetic Data

	An Improved Structured Graph Format
	Design of the IRGraph Format
	Graph Construction Process

	Experiments
	Benchmarks
	Models and Training

	Results
	Device Mapping
	Algorithm Classification
	Vulnerability Detection
	Code Translation
	IRGraph Ablation

	One Profile is All You Need: Performance Aligned Embedding Spaces
	Motivation
	Data Collection
	Applications Profiled
	Performance Metrics Collected

	Methodology
	General Alignment Approach
	Individual Embedding Models

	Evaluation Tasks
	Energy Usage Classification
	L2 Cache Miss Peak Prediction

	Results
	Energy Usage Classification
	L2 Cache Miss Peak Prediction

	Conclusion

